
HAL Id: lirmm-00798064
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798064

Submitted on 30 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Cluster Tracking for Visualization of Large
Dynamic Graphs

Chris Muelder, Arnaud Sallaberry, Kwan-Liu Ma

To cite this version:
Chris Muelder, Arnaud Sallaberry, Kwan-Liu Ma. Improved Cluster Tracking for Visualization of
Large Dynamic Graphs. EGC: Extraction et Gestion des Connaissances, Jan 2013, Toulouse, France.
pp.21-32. �lirmm-00798064�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798064
https://hal.archives-ouvertes.fr

Improved Cluster Tracking for Visualization
of Large Dynamic Graphs

Chris Muelder

⇤
, Arnaud Sallaberry

⇤⇤
, Kwan-Liu Ma

⇤

⇤
VIDi group - University of California, Davis

One Shields Avenue

Davis, CA 95616-8562, USA

muelder@cs.ucdavis.edu, ma@cs.ucdavis.edu

http://vis.cs.ucdavis.edu/~muelder/, http://www.cs.ucdavis.edu/~ma/

⇤⇤
LIRMM - Université Montpellier 3

UMR 5506 - CC 477

161, rue Ada

34095 Montpellier Cedex 5, France

arnaud.sallaberry@lirmm.fr

http://www2.lirmm.fr/~sallaberry/

Abstract. Analysis and visualization of dynamic graphs is a challenging prob-

lem. Clustering can be applied to dynamic graphs in order to generate interac-

tive visualizations with both high stability and good layout quality. However, the

existing implementation is naïve and unoptimized. Here we present new algo-

rithms to improve both the temporal clustering results and the efficiency of the

cluster tracking calculation, and evaluate the results and performance.

1 Introduction
In recent years, the domain of network visualization has yielded many techniques for ex-

ploring large graphs. Most of these deal with static networks and are based on graph drawing

algorithms (see for example Hachul and Jünger (2006) or Muelder and Ma (2008)), clustering

techniques (see Schaeffer (2007) for an introduction), or exploratory methods (see for example

van Ham and van Wijk (2004), Abello et al. (2006) or Archambault et al. (2008)). In con-

trast, fewer works have been devoted to the exploration of dynamic graphs. A dynamic graph

is an evolving graph where vertices and edges are added and removed over time. Examples

of such graphs include social networks, dependency graphs in software engineering, website

hyperlinks, router networks, collaboration networks, etc.
When creating a node-link diagram for a dynamic graph, not only does the layout need

to consider graph topology, but also the stability between time-steps. This generally forces

a trade-off between layout quality and stability, as a perfectly stable layout would sacrifice

layout quality, and naively calculating ideal layouts would not offer stability. While there are a

number of existing methods for creating these layouts, they have not been shown to scale well

to large dynamic graphs.

- 21 -

Improved Cluster Tracking for Visualization of Large Dynamic Graphs

A dynamic clustering based approach for visualization of dynamic graphs can provide an

overview of the entire dynamic graph over time, yield high quality layouts for every time-

step, minimize node motion between time steps to provide stability and preserve the user’s

mental map, and allow for interactive exploration even under random access patterns. One

existing approach consists of first clustering each time-step independently to guarantee good

locality for every time-step, then tracking the clusters between time-steps, and finally arranging

the clusters and nodes such that nodes that are consistant are stationary and transitional node

motion is minimized Sallaberry et al. (2013). This produces a temporal arrangement which we

directly visualize as a timeline, and which is used to define layouts for a node link diagram for

each time-step which both meets general layout criteria (namely cluster co-location and short

average edge length) and where node motion is minimized between time-steps.

However, there are some limitations to this approach. First, by only considering pairwise

timesteps, it is impossible to track clusters that disappear for some amount of time before

reforming, which results in the formation of extraneous dynamic clusters. Second, the associ-

ation between timesteps was previously cacluated very naïvely, with pairwise comparison and

Jaccard calculation for each possible association.

Here, we describe improvements to this approach that resolve both of these issues. The

first issue is addressed by an algorithm for preserving unused dynamic clusters from old time

steps and allowing them to be reincorporated into new time steps. And the second issue is

addressed through a heavy optimization of the association algorithm that not only reduces the

number of clusters that have to be compared but which also enables direct calculation of the

Jaccard index. The result of the combination of these improvements is a more compact, robust,

dynamic clustering that can be computed much more efficiently.

2 Related Works
A common method for visualizing dynamic graphs is to animate the transitions between

time-steps (North, 1996; Diehl and Görg, 2002; Erten et al., 2004; Görg et al., 2004; Boitmanis

et al., 2008; Frishman and Tal, 2008). This approach yields dynamic visualization with nodes

appearing, disappearing and moving to produce readable layout for each time-step. Alterna-

tively, multiple time-steps can be staticly placed next to each other using “Small Multiples"

Tufte (1990). This eases the comparison of distant time-steps but the area devoted for each

time-step is small and this reduces the readability of each graph. An empirical study to com-

pare the advantages and drawbacks of these approaches ("Animation" vs. "Small Multiples")

has been performed by Archambault et al. (2011). A major issue for both methods is to en-

sure the stability of the layout (Kumar and Garland, 2006; Frishman and Tal, 2008; Brandes

and Mader, 1012; Hu et al., 2012). A stable layout helps preserve the user’s mental map as

there is less movement between time-steps, but sacrifices quality in terms of readability for

later time-steps as their layout depends on previous time-steps. Many experiments has been

proposed to examine the effect of preserving the mental map in dynamic graphs visualization

(Purchase et al., 2007; Saffrey and Purchase, 2008; Purchase and Samra, 2008). The results

of Purchase and Samra (2008) were quite surprising because the most effective visualizations

were the extreme ones, i.e. the ones with very low or high mental map preservation: visual-

izations with medium preservation performed less well. The approach described in this paper

aims to achieve high mental map preservation.

- 22 -

C. Muelder et al.

An interesting visualization dealing with dynamic large directed graphs has been proposed

by Burch et al. (2011). Vertices are ordered and positioned on several vertical parallel lines,

and directed edges connect these vertices from left to right. Each time-step’s graph is thus

displayed between two consecutive vertical axes. Hu et al. (2012) proposed a method based

on a geographical metaphor to visualize clustered dynamic graphs. However, their approach

requires one global clustering over time, while ours allows nodes to be transferred in order to

create better local clusterings and to capture the evolutions of the communities.

Finding a partition of the nodes of a static graph according to its structure is a well studied

problem; Schaeffer (2007) has published a good overview of graph clustering methods. But

clustering a dynamic graph is a less studied problem.

3 Clustering
A dynamic graph can be defined formally as an agglomerate graph G = (V,E) and an

ordered sequence of subgraphs S = {G1 = (V1, E1), G2 = (V2, E2), ..., Gk = (Vk, Ek)}
where each Gt is the subgraph of G at time t. V, V1, V2, ..., Vk are finite and non-disjointed

sets of nodes, E,E1, E2, ..., Ek are finite and non-disjointed sets of edges such that V =

V1 [V2 [... [Vk and E = E1 [E2 [... [Ek. What we need is to create a time-varying

clustering, i.e. a set of clusters evolving over time. The clustering method we describe here

is a two step algorithm. The first step consists of partitioning the nodes for each time step

independently. Then, we associate these clusters through time to derive time-varying clusters.

3.1 Time-step Clusterings
To calculate a dynamic clustering, we first find a partition for each time step, i.e. a set of

clusterings C = {C1, C2, ..., Ck} where Ct = {ct1, ct2, ..., ctlt} is a partition of the nodes Vt of

Gt. In this paper, we call each Ct a “time-step clustering" where cti is the “time-step cluster" i
at time t, and cti ✓ Vt for each i 2 J1, ltK, Vt = ct1 [ct2 [...ctl and cti \ ctj = ; for each pair

(i, j) 2 J1, ltK2.

Our algorithm is based on the so-called modularity function of Newman and Girvan (2004).

It represents the sum of the number of edges linking nodes of the same clusters minus the

expected such sum if edges were distributed at random. For a graph Gt = (Vt, Et) and a

partition Ct of its nodes, the modularity Q(Ct) is defined by:

Q(Ct) =
1

2|Et|
X

u,v2Vt


Auv �

kukv
2|Et|

�
�(ct(u), ct(v))

where |Et| is the number of edges, Auv is 1 if there is an edge between u and v and 0

otherwise, ku =

P
v Auv is the number of edges attached to u, ct(u) is the time-step cluster

of Ct containing u, �(ct(u), ct(v)) is 1 if ct(u) = ct(v) and 0 otherwise.

A partition that maximizes this function helps to discover clusters of densely connected

communities. Moreover, as shown by Noack (2008), optimizing the modularity is the same as

optimizing an energy function in graph layout. This equivalence implies that our layout based

on such a clustering algorithm yields a good representation of the graph.

- 23 -

Improved Cluster Tracking for Visualization of Large Dynamic Graphs

The problem of finding a partition that maximizes the modularity is hard, and the corre-

sponding decision problem is NP-complete (Brandes et al., 2006). We use the heuristic pro-

posed by Blondel et al. (2008), which works well in terms of both the quality of the results and

the computation time. Initially, each node belongs to its own cluster. Then pairs of clusters

are recursively merged such that the modularity of the partitioning increases. If two possible

merges involve the same cluster, the merge that improves the modularity the most is performed.

3.2 Time-varying Clustering
3.2.1 Overview

The previous approach (Sallaberry et al., 2013) was to compare each time-step cluster in

the current time-step pairwise with the time-step clusters of the previous time-step according

to the Jaccard index, and then to itratively and greedily associate the time-step clusters that

most closely match into the same time-varying cluster, halting when all clusters are assigned

or the similarity falls below a user-defined threshold. If there are any remaining new clusters

that do not have a match, they are considered new clusters, and so they start new time-varying

clusters. And any remaining time-varying clusters present in the previous time-step that were

not assigned a cluster in the current time-step were discarded, as there was no match.

Our approach here operates fairly similarly, with two key differences. The first improve-

ment is that rather than discarding time-varying clusters after they fail to find a match, we

retain them in the matching algorithm so that they can return if that portion of the network

returns to a similar enough state, even if there are many intervening time-steps. This reduces

the overall number of time-varying clusters, and can aid in identifying certain patterns (such

as periodicity, split/merges, clustering instability, etc...). The second improvement is to reduce

the number of pairwise clusters to evaluate, by only comparing clusters that share at least one

vertex. This optimization method has the added bonus that it can be used to calculate the

Jaccard index very efficiently.

3.2.2 Details

We define a time-varying clustering of a dynamic graph G as a set of time-varying clusters

V C = {V C1, V C2, ..., V Cl}. Each of these time-varying clusters is an ordered sequence

V Ci = {vc1i , vc2i , ..., vcki } where k is the number of time steps and each vcti is a subset of the

vertices Vt at time t. That is, each time-varying cluster V Ci is a cluster whose membership

can evolve over time, where vcti represents the set of nodes in the cluster i at time t. As the

number of time-step clusters can change between timesteps, not every time-varying cluster is

populated at every timestep, and the total number of time-varying clusters l can be larger than

the number of time-step clusters at any time step.

We start from an empty set V C of time-varying clusters and we create a time-varying

cluster V Ci for each time-step cluster c1i of the first time-step clustering C1. The set of nodes

of these time-varying clusters V Ci at time 1 are initialized with the time-step clusters c1i :

vc1i c1i . Then, for each subsequent timestep t, we want to compute similarities between each

time-step cluster cti 2 Ct and potential time-varying clusters V Ci. In our implementation, we

use the Jaccard index to compute the similarities. For two clusters ct�1
i and ctj , this is defined

by the equation |ct�1
i \ ctj |/|c

t�1
i [ctj |. There are two main advantages in using this metric.

- 24 -

C. Muelder et al.

First it takes into account the number of shared nodes as well as the total number of nodes,

which guarantees homogeneity between consecutive steps of a time-varying cluster. Secondly

it returns a value normalized between 0 and 1 which is helpful for empirically defining a

threshold.

In the original algorithm, the association step was performed by comparing each time-step

cluster cti 2 Ct to every time-step cluster ct�1
j 2 Ct�1 to create a similarity matrix, which costs

O(|Ct| ⇤ |Ct�1|) times the cost of the similarity calculation. Associations are then performed

greedily, starting with the largest matrix value, and stopping when either one set of clusters

is exhausted or the remaining matrix values are less than the threshold. Then, any remaining

clusters in Ct were assigned new time-varying clusters in V C. And any remaining clusters in

Ct�1 were discarded, and their corresponding time-varying cluster in V C was terminated for

the remainder of the execution.

However, we found that this process led to the creation of many new time-varying clusters,

because sometimes the network might revert to a clustering previously encountered where the

corresponding time-varying cluster was already terminated, so the method would create a new

time-varying cluster. To resolve this, we preserve the most recent time-step cluster cuk for

each time-varing clusters in V C that would have been terminated, and compare against those

as well, where 0 < u < t � 1. If an older cuk is more similar than any time-step cluster

ct�1
j 2 Ct�1, then the system will select and revive the time-varying cluster of cuk instead

of that of one of active time-varying clusters V Ci. This adds additional complexity to the

algorithm, but produces more robust and compact results, as time-varying clusters are allowed

to reform instead being terminated.

Another issue is that many of the time-step clusters are disjoint sets of nodes, and thus

we do not need to compute their similarity. In our improved version, rather than computing

the entire matrix, we consider only the clusters that share at least one node. We do this by

computing a list of candidate clusters CCt
i for each time-step cluster cti, which we define as

CCt
i = {(vc⇤a, |cti \ vc⇤a|), (vc⇤b , |cti \ vc⇤b |), ...}, where each vc⇤j is the most recent timestep of

V Cj . This can be computed relatively efficiently by iterating over each node n 2 cti: for each

n we take any vc⇤j that contains n, then either add vc⇤j to CCt
i with a paired value of 1, or if

it is already in the list, we simply increment its paired value. To make this process even more

efficient, we use a lookup table to map each node n to its existing vc⇤j clusters. In the original

process, this would be trivial to do, as each node n could only exist in one previous cluster vc⇤j .

However, since we are now preserving terminated clusters, it is possible for n to have multiple

previous clusters. So we build a hash to map each node n to its prior clusters by iterating over

each vc⇤j and inserting a pointer to vc⇤j for each node m 2 vc⇤j . This elimates the need for

any searching. While this process appears to add some computational overhead as it iterates

over every node instead of working with the clusters, this is entirely offset in the calculation of

the Jaccard index, as we have already computed the size of each intersection |cti \ vc⇤j |. From

this, we can calculate the Jaccard index in O(1) time as J(cti, vc
⇤
j) =

|cti\vc⇤j |
|cti|+|vc⇤j |�|cti\vc⇤j |

. So

while this optimization does add additional memory overhead, the computation is much more

efficient.

- 25 -

Improved Cluster Tracking for Visualization of Large Dynamic Graphs

4 Ordering
Our visualization is based not just on a clustering, but on an ordering of the time-varying

clusters (in the next sections, we use the word “cluster" instead of “time-varying cluster" to

simplify the notation). Then, nodes are also ordered within each cluster. A node that moves

from a cluster V Ca to a cluster V Cb is involved in the node ordering of both V Ca and V Cb,

e.g. it can be the 6th node of V Ca and the 3rd node of V Cb.

4.1 Ordering clusters
The stability of the layout is one of the main goals of our method: we want to easily see

the evolution of the clusters and also be able to follow nodes that move between clusters. As

the layout depends on the ordering, clusters need to be ordered in such a way that two clusters

exchanging many nodes are close to each other.

We do this by first creating a weighted quotient graph QG = (VQG, EQG,!) defined by

the relationships between the time-varying clusters V C of G. Each node of VQG represents

a cluster of V C, i.e. VQG V C. There is an edge in EQG between V Ci and V Cj if and

only if there is at least one node in the sets of V Ci that is also in a set of V Cj . The weight

function ! is a function ! : EQG ! N defined for each edge e = (V Ci, V Cj) as the number

of transferred of nodes between sets of V Ci and sets of V Cj .

Next we need to find an ordering of these clusters, i.e. a permutation � : VQG !
{1, 2, ..., |VQG|} that minimizes the function:

LA�(QG) =

X

uv2EQG

u,v2VQG

!(uv) · |�(u)� �(v)|

This function is called the Linear arrangement function (LA) and finding an ordering that

minimizes it is known as the Minimum Linear Arrangement Problem, MinLA (Petit, 2001).

MinLA is NP-hard and the corresponding decision problem is NP-complete (Garey and John-

son, 1979). Many heuristics have been proposed to find a satisfying solution. A list of these

methods and an experiment has been proposed by Petit (2001). More recently, Koren and Harel

(2002) have proposed a new heuristic that is a good compromise between computation time

and quality of the results.

4.2 Ordering nodes
The second ordering step consists in finding a permutation of the nodes within each cluster

V Ci of V C. Since we want to maximize stability, we calculate this permutation over all time,

so that nodes will not move within a cluster, even if this leaves gaps at some time-steps. As

with the clusters, this is another MinLA problem. Let vci be the set of nodes of V Ci: vci =S
1tk vc

t
i. Then the permutation is defined as 'i : vci ! {1, 2, ..., |vci|}. This ordering

needs to take into account the ordering of the clusters computed previously: for example, if a

node v moves only once from a cluster V Ca to a cluster V Cb and if �(V Ca) < �(V Cb), then

v should lie at the upper extremity of V Ca (high 'a(v)) and at the lower extremity of V Cb

(low 'b(v)). To find the permutation 'i, we first compute for each node v of vci the median

- 26 -

C. Muelder et al.

of the clusters V Ci v belongs to:

mediani(v) =

X

V Cj ;v2vcj

�(V Cj)

|{V Cj ; v 2 vcj}|

Then, the permutation 'i is the ordering obtained by sorting the nodes of vci according to their

median value: mediani(v) < mediani(u), 'i(v) < 'i(u).

5 Visualization
The visualization methods we employ focus on representing the evolving clusters in dy-

namic graphs. We employ two views: a time-line inspired by Ogawa and Ma (2010); Tanahashi

and Ma (2012) that provides an overview of the entire dynamic graph, and a more traditional

node-link view for individual time-steps. Both of these views are derived from the clustering

and ordering methods described earlier. Moreover, since the clustering and ordering are com-

puted as a preprocessing step, the computation times of the visualizations are linear, which

makes it possible to obtain real-time, interactive navigation of the dynamic graph.

5.1 Time-line view
The time-line view depicts an overview of the nodes’ arrangement into clusters and of the

nodes motion between clusters. Each node is represented as a line where the x-position is

time and the y-positions corresponds the cluster the nodes belong to at each given time and

its position within the cluster. Figure 1(a) shows an example. For reference purposes, in this

diagram the time-steps are represented with vertical grey lines (from t=1 to 5) positioned along

the x-axis that represents time. There are 8 plotted lines (including black, blue and green

ones), which correspond to 8 nodes. There are four clusters on the y-axis, and a horizontal line

is in front of one of them when the corresponding node belongs to it. Clusters are positioned

according to the ordering � computed by the pre-processing algorithm, from bottom to top

(e.g. the cluster labelled 4 is the cluster V Ca with a such that 4 = �(V Ca)).

As an example of reading this plot, consider the blue line. The corresponding node v
belongs to the cluster 4 at times 1 and 2, and it belongs to the cluster 3 at times 3 and 4, since

the blue line moves from cluster 4 to cluster 3 at time 3. Also, the blue node is no longer in the

graph at the time-step 5 and that the green node appears in the graph at the time-step 2.

Lines in the clusters are positioned according to the orderings 'i computed during the pre-

processing step. In this way, a node v that moves from a cluster V Ca to a cluster V Cb with

�(V Ca) < �(V Cb) is likely to be positioned at the upper extremity of V Ca (high 'a(v))
and at the lower extremity of V Cb (low 'b(v)). This technique reduces edge crossings and

improves the readability of the view.

Clusters are separated by a constant gap to clarify their distinctions. The height of a cluster

V Ci corresponds to the size the set vci of all the nodes that belong to it at least for one time-

step. As an example, |vcb| = 4 (see the red circle 1) and |vcc| = 3 with c such that 2 = �(V Cc)

(see the red circles 2 and 3). Thanks to this, a node has always the same position in the same

cluster, so there will be no bends when a node remains in the same cluster and the area devoted

to a cluster remains the same.

- 27 -

Improved Cluster Tracking for Visualization of Large Dynamic Graphs

1

2
1

2

3

4

1 2 3 4 5

3

(a) (b)

FIG. 1: (a) The time-line gives an overview of the clusters and of the nodes moving from

clusters to clusters. Each horizontal or bent line is a node. Vertical grey lines represent time-

steps, from 1 to 5. Y-axis represents clusters, e.g. the blue line near the cluster 4 at time-steps

1 and 2 stands for a node v that belongs to V Ca with a such that 4 = �(V Ca), at the time 1

and at the time 2 (it belongs to vc1a and vc2a but not to vc3a, vc4a and vc5a). (b) Time-step view

of the graph used in the example of Figure 1(a). It shows the graph at the 3rd time-step. We

don’t display the edges here. Nodes represented as disks are positioned along a Hilbert’s curve,

represented by the black bended line.

5.2 Time-step view

The second view is a node-link diagram that shows the graph at any selected time-step.

The layout is based on the technique of Muelder and Ma (2008), which maps a 1-D ordering

of nodes to a space-filling curve to define the layout.

Since we have already computed a stable ordering of nodes, it is sensible to map this same

ordering onto the space-filling curve. In the timeline, the height of each line at any time step

corresponds to the pre-computed ordering. So, we can reuse these y-positions as a 1-D layout

for that time-step, then map the nodes directly to a space-filling curve by placing the nodes at

the corresponding distance along the curve. This is done by normalizing both the 1-D layout

and the length of the curve, then calculating the position of each node by recursively mapping

it to the curve in constant time, as in the original paper (Muelder and Ma, 2008). Figure 1(b)

shows an example of this node positioning on the same example as the one presented in Figure

1(a) for time-step 3. In this diagram, we use a Hilbert curve, but we also use Peano curve, a

Gosper curve, and an H-curve, and the user can switch between these curves as desired (see

Haverkort and van Walderveen (2010) for a summary of well-known space-filling curves).

One interesting property of a space-filling curve is known as the Worst-Case Locality
(Haverkort and van Walderveen, 2010). This property guarantees that the euclidean distances

between nodes in the layout are bounded by the distances of the same nodes in the one-

dimensional layout. So, the proximities of elements (nodes/clusters) depend directly on the

ordering. As the ordering is based primarily on the connectivity of the networks, this guar-

antees layout quality metrics, such as tightly connected groups of nodes being placed close

together with a good aspect ratio, and short average edge lengths.

Since a node has always the same position in the time-line when it is in the same cluster and

the area devoted to a cluster remains the same, its placement in the layout will also be constant.

This ensures the stability of the layout. Even the distance that nodes move is minimized, as the

ordering is such that clusters that exchange many nodes are placed closer together.

- 28 -

C. Muelder et al.

As the layout itself runs in linear time, the visualization can be updated interactively by

the user and we can even easily play the sequence of graphs and animate the transitions with

graphs of tens of thousands nodes/edges (see our previous paper (Sallaberry et al., 2013) for

more details).

As we use a clustering hierarchy, we can also employ the hierarchical edge bundling tech-

nique of Holten (2006) which improves the readability of the graph. Control points of the

spline linking a node v and a node u are defined by the path through the clustering hierarchy,

and placed according to the clusters’ centroids.

5.3 Interaction and navigation
One of the most useful features of our approach is that any time-step can be laid out quickly

and directly, without needing to iterate over the other time-steps. The benefit of this is that it

enables random access. That is, users can find interesting time-steps in the time-line and skip

between them directly. We enable this form of interaction by letting the user simply click in

the time-line on the time-step that they want to load. We also include the more traditional

approach of simply animating over the entire dynamic graph. In either case, the positions of

nodes that move are interpolated between time-steps so that the user can follow their motion.

Within the node-link diagram itself, we can also allow for traditional graph interaction, such

as selection, or focus+context zooming.

6 Discussion
We have described two algorithmic improvements over the previous approach. First, our

new approach is tuned to reduce the total number of persistant time-varying clusters, which

will improve the space utilization of the resulting visualization. Second, we have substantially

optimized the cluster association step, which greatly reduces the time it takes to process the

data. Here, we present some case studies and quantitatively evaluate both improvements.

To test our improvements, we ran both improvements as well as the original approach on

several datasets. First, we ran them on a social network dataset collected from the Rimzu social

networking site, as used by Frishman and Tal (2008). While quite small and straightforward,

this dataset makes a good baseline for comparison against existing works. Next, we evaluated

the MIT Reality dataset (Eagle and Pentland, 2005). In this dataset, there is a small, strong core

of about 80 people, but hundreds of periferal nodes that do persist through the data and which

generally only have one connection. Due to their transitivity, they do not contriubte much to

the overall structure of the network, so we evaluate both the entire network and just the core

network without the external nodes. Finally, we evaluate the improvement on a dataset of the

autonomous systems of the internet, derived from data collected by the Oregon Route Views

project and as used in several existing works (Muelder, 2011; Sallaberry et al., 2013).

In each case, the results followed our expectation, as is shown in Table 1. The inclusion of

additional comparisons against dead clusters succeeds in reducing the total number of dynamic

time-varying clusters, but requires more comparisons, and hence takes more computation time.

However, this is entirely offset by the optimization, which reduces the computation time by

around a factor of 20 or more.

- 29 -

Improved Cluster Tracking for Visualization of Large Dynamic Graphs

Original Improved

N Clusters Time (ms) N Clusters Time (ms) Opt. time (ms)

Social network 392 3050 391 3150 160

MIT reality 518 120 457 518 80

MIT reality (core) 136 30 78 50 <1

Internet (16 steps) 162 7220 86 9640 400

TAB. 1: Results of our improvements. We found that our methods reduce the number of time-

varying clusters by up to half, and reduce computation time by a factor of about 20 or more.

7 Conclusion and Future Work

This paper presents an incremental improvement to a previous work. While the visual rep-

resentation remains the same, the underlying clustering algorithm has been greatly improved

and optimized. The evaluation follows accordingly, and demonstrates our improvements quan-

titatively.

While the results described in this paper are promising, they are still further ways they

can be improved. Most importantly, the cluster and node ordering steps are still extremely

slow and we are investigating ways to improve upon this. One such method is to assign more

localized orderings, where we find the actual time range used by each dynamic cluster, and

more compactly arrange the clusters accordingly, similar to the work of Tanahashi and Ma

(2012). However, this algorithm is also very time consuming, and we are investigating heuristic

improvements.

References
Abello, J., F. van Ham, and N. Krishnan (2006). ASK-GraphView: A large scale graph visu-

alization system. IEEE Transactions on Visualization and Computer Graphics 12(5), 669–

676.

Archambault, D., T. Munzner, and D. Auber (2008). GrouseFlocks: Steerable exploration of

graph hierarchy space. IEEE Transactions on Visualization and Computer Graphics 14(4),

900–913.

Archambault, D., H. C. Purchase, and B. Pinaud (2011). Animation, small multiples, and the

effect of mental map preservation in dynamic graphs. IEEE Transactions on Visualization
and Computer Graphics 17(4), 539–552.

Blondel, V., J. Guillaume, R. Lambiotte, and E. Lefebvre (2008). Fast unfolding of communi-

ties in large networks. Journal of Statistical Mechanics: Theory and Experiment.
Boitmanis, K., U. Brandes, and C. Pich (2008). Visualizing internet evolution on the au-

tonomous systems level. In Proceedings of the International Symposium on Graph Drawing
(GD’07), Volume 4875 of LNCS, pp. 365–376. Springer.

Brandes, U., D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and D. Wagner

(2006). Maximizing modularity is hard. arxiv.org/abs/physics/0608255.

- 30 -

C. Muelder et al.

Brandes, U. and M. Mader (1012). A quantitative comparison of stress-minimization ap-

proaches for offline dynamic graph drawing. In Proceedings of the International Symposium
on Graph Drawing (GD’11), Volume 7034 of LNCS, pp. 99–110. Springer.

Burch, M., C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf (2011). Parallel edge splatting for

scalable dynamic graph visualization. IEEE Transactions on Visualization and Computer
Graphics 17(12), 2344–2353.

Diehl, S. and C. Görg (2002). Graphs, they are changing. In Proceedings of the International
Symposium on Graph Drawing (GD’02), Volume 2528 of LNCS, pp. 23–30. Springer.

Eagle, N. and A. S. Pentland (2005). CRAWDAD data set mit/reality (v. 2005-07-01). Down-

loaded from http://crawdad.cs.dartmouth.edu/mit/reality.

Erten, C., P. J. Harding, S. G. Kobourov, K. Wampler, and G. V. Yee (2004). GraphAEL: Graph

animations with evolving layouts. In Proceedings of the International Symposium on Graph
Drawing (GD’03), Volume 2912 of LNCS, pp. 98–110. Springer.

Frishman, Y. and A. Tal (2008). Online dynamic graph drawing. IEEE Transactions on Visu-
alization and Computer Graphics 14(4), 727–740.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman.

Görg, C., P. Birke, M. Pohl, and S. Diehl (2004). Dynamic graph drawing of sequences of or-

thogonal and hierarchical graphs. In Proceedings of the International Symposium on Graph
Drawing (GD’04), Volume 3383 of LNCS, pp. 228–238. Springer.

Hachul, S. and M. Jünger (2006). An experimental comparison of fast algorithms for drawing

general large graphs. In Proceedings of the International Symposium on Graph Drawing
(GD’05), Volume 3843 of LNCS, pp. 235–250. Springer.

Haverkort, H. J. and F. van Walderveen (2010). Locality and bounding-box quality of two-

dimensional space-filling curves. Computational Geometry, Theory and Applications 43(2),

131–147.

Holten, D. (2006). Hierarchical edge bundles: Visualization of adjacency relations in hierar-

chical data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748.

Hu, Y., S. G. Kobourov, and S. Veeramoni (2012). Embedding, clustering and coloring for

dynamic maps. In Proceedings of the 5th IEEE Pacific Visualization Symposium (PacificVis
2012), pp. 33–40.

Koren, Y. and D. Harel (2002). A multi-scale algorithm for the linear arrangement problem.

In 28th International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2002), Volume 2573 of LNCS, pp. 296–309. Springer.

Kumar, G. and M. Garland (2006). Visual exploration of complex time-varying graphs. IEEE
Transactions on Visualization and Computer Graphics 12(5), 805–812.

Muelder, C. (2011). Advanced Visualization Techniques for Abstract Graphs and Computer
Networks . Dissertation, University of California, Davis.

Muelder, C. and K.-L. Ma (2008). Rapid graph layout using space filling curves. IEEE Trans-
actions on Visualization and Computer Graphics 14(6), 1301–1308.

Newman, M. E. J. and M. Girvan (2004). Graph clustering. Physical Review E 69(026113).

- 31 -

Improved Cluster Tracking for Visualization of Large Dynamic Graphs

Noack, A. (2008). Modularity clustering is force-directed layout. CoRR abs/0807.4052.

North, S. C. (1996). Incremental layout in DynaDAG. In Proceedings of the International
Symposium on Graph Drawing (GD’95), Volume 1027 of LNCS, pp. 409–418. Springer.

Ogawa, M. and K.-L. Ma (2010). Software evolution storylines. In Proceedings of the ACM
2010 Symposium on Software Visualization (SoftVis’10), pp. 35–42.

Petit, J. (2001). Experiments on the minimum linear arrangement problem. Technical Report

LSI-01-7-R, Universitat Politecnica de Catalunya, Departament de Llenguatges i Sistemes

Informatics.

Purchase, H., E. Hoggan, and C. Görg (2007). How important is the "mental map"? - an empir-

ical investigation of a dynamic graph layout algorithm. In Proceedings of the International
Symposium on Graph Drawing (GD’06), Volume 4372 of LNCS, pp. 184–195. Springer.

Purchase, H. and A. Samra (2008). Extremes are better: Investigating mental map preservation

in dynamic graphs. In Proceedings of the 5th International Conference on Diagrammatic
Representation and Inference (Diagrams 2008), Volume 5223 of LNCS, pp. 60–73. Springer.

Saffrey, P. and H. Purchase (2008). The "mental map" versus "static aesthetic" compromise

in dynamic graphs: A user study. In Proceedings of the 9th Australasian User Interface
Conference (AUIC2008), pp. 85–93.

Sallaberry, A., C. W. Muelder, and K.-L. Ma (2013). Clustering, visualizing, and navigating for

large dynamic graphs. In Proceedings of the International Symposium on Graph Drawing
(GD’12), LNCS. Springer (to appear).

Schaeffer, S. E. (2007). Graph clustering. Computer Science Review 1(1), 27–64.

Tanahashi, Y. and K.-L. Ma (2012). Design considerations for optimizing storyline visualiza-

tions. IEEE Transactions on Visualization and Computer Graphics 18(12), 2679–2688.

Tufte, E. R. (1990). Envisionning Information. Graphics Press.

van Ham, F. and J. J. van Wijk (2004). Interactive visualization of small world graphs. In

Proceedings of the IEEE Symposium on Information Visualization (InfoVis’04), pp. 199–

206.

Résumé
L’analyse et la visualisation de graphes dynamiques est un problème difficile. Une méthode

de clustering que nous avons développée lors d’un précédent travail peut être appliquée à de

tels graphes afin de générer des visualisations interactives à la fois stables et de bonne qualité.

Cependant, l’implémentation existante est naïve et non optimisée. Dans cet article, nous pré-

sentons de nouveaux algorithmes pour améliorer à la fois les résultats du clustering dynamique

et la rapidité des calculs. Nous comparons les résultats et le rendement par rapport à la méthode

précédente.

- 32 -

