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One of the objectives of spatio-temporal data mining is to analyze moving object datasets to exploit interesting patterns. Traditionally, existing methods only focus on an unchanged group of moving objects during a time period. Thus, they cannot capture object moving trends which can be very useful for better understanding the natural moving behavior in various real world applications. In this paper, we present a novel concept of "time relaxed gradual trajectory pattern", denoted real-Gpattern, which captures the object movement tendency. Additionally, we also propose an ecient algorithm, called ClusterGrowth, designed to extract the complete set of all interesting maximal real-Gpatterns. Conducted experiments on real and large synthetic datasets demonstrate the e↵ectiveness, parameter sensitiveness and e ciency of our methods.

INTRODUCTION

Nowadays, the use of many electronic devices in real world applications has led to an increasingly large amount of data containing moving object information. One of the objectives of spatio-temporal data mining [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF][START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF][START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF] is to analyze such datasets for interesting patterns which usually are moving object clusters. A moving object cluster can be defined in both spatial and temporal dimensions: (1) a group of moving objects should be geometrically closed to each other, (2) they should be together for at least some number of certain timestamps. In this context, many recent studies have been defined to mine moving object clusters including flocks [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF], Figure 1: An example of real-Gpattern. moving clusters [START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF], convoy queries [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF], closed swarms [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF], group patterns [START_REF] Wang | E cient Mining of Group Patterns from User Movement Data[END_REF], periodic patterns [START_REF] Mamoulis | Mining, Indexing, and Querying Historical Spatiotemporal Data[END_REF], etc... The interested readers may refer to [START_REF] Bogorny | Spatial and Spatio-Temporal Data Mining. Tutorial on Spatial and Spatio-Temporal Data Mining[END_REF] where descriptions of the most e cient approaches and patterns are proposed.

Unfortunately, these patterns cannot help us fully understand the complex object moving behavior. To illustrate, let us consider the Salmon1 migration in the ocean, where the adult salmons return primarily to their natal stream to spawn. From time to time, more and more salmons get closed together to go to their stream origin. Actually, this phenomenon is involved in many real world applications (e.g. tra c congestion, animal or population migration, etc).

In this paper, we propose a novel movement pattern, real-Gpattern (i.e. time relaxed gradual trajectory pattern), which is designed to capture the gradual object moving trend. More precisely, a gradual moving object cluster is a list of moving object clusters satisfying the graduality constraint and integrity condition during at least mint timestamps. The graduality constraint can be the increase or decrease of the number of objects while the integrity condition can be that all the objects should remain in the next cluster.

For instance, in Figure 1, if we set mint = 3, one object moving trend is "from t1 to t6, the more time passes, the more objects are following the trajectory {A i B i D i F}". Note that moving objects in a cluster may actually diverge temporarily and converge at certain timestamps. Furthermore, if we denote a real-Gpattern as a list of clusters C then, we have 4 patterns: C1 = {c1, c2, c4}, C2 = {c1, c2, c6}, C3 = {c2, c4, c6} and C4 = {c1, c2, c4, c6}. Actually, they are redundant since C1, C2, C3 are included in C4.

To avoid finding redundant real-Gpatterns, we further propose the maximal real-Gpattern concept. The basic idea is that if C is a real-Gpattern, it is useless to output any subset C 0 of C. For example, see Figure 1, a maximal real-Gpattern is C4 = {c1, c2, c4, c6}.

E cient extracting of complete set of maximal real-Gpatterns in a large moving object database, denoted DB, is a non-trivial task: 1) the size of all the possible com-binations is exponential, 2) none of previous studies (i.e. frequent pattern mining [START_REF] Han | Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach[END_REF], moving object clusters [START_REF] Gudmundsson | Computing longest duration flocks in trajectory data[END_REF][START_REF] Kalnis | On Discovering Moving Clusters in Spatio-temporal Data[END_REF][START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF]) has addressed the same issue.

Facing the huge potential search space, we propose an efficient approach, named ClusterGrowth. In ClusterGrowth, we design two e cient rules which are Graduality Pruning rule and Backward Pruning rule to avoid unnecessary further search. Additionally, to eliminate uninteresting patterns, we relax the time constraint within a time-based sliding window. Furthermore, we also present an Actual Maximum Checking step that reports the interesting maximal real-Gpatterns on-the-fly without extra space to store candidates and extra time for post-processing. The e↵ectiveness, parameter sensitiveness and e ciency of our methods are demonstrated on both real and large synthetic databases.

PROBLEM STATEMENT

In this section, we give the real-Gpattern and maximal real-Gpattern definitions. Let us assume that we have a set of moving objects ODB = {o1, o2, . . . , oz}, a set of timestamps TDB = {t1, t2, . . . , tm}, and a gradual variation ⇤ 2 { , }.

Database of clusters.

A database of clusters, CDB = {Ct 1 , Ct 2 , . . . , Ct m }, is a collection of snapshots of the moving object clusters at timestamps {t1, t2, . . . , tm}. Note that an object could belong to several clusters at one timestamp (overlapping clusters). Given a cluster c 2 CDB and c ✓ ODB, |c| and t(c) are respectively used to denote the number of objects belonging to cluster c and the timestamp that c involved in. In this paper, we take clustering as a preprocessing step.

Real-Gpattern and maximal real-Gpattern. A list of clusters C ⇤ = {c1, . . . , cn} is said to be a real-Gpattern if each pair of consecutive clusters in C ⇤ satisfies graduality condition and C ⇤ contains at least mint clusters. The definition of real-Gpattern is as follows.

Definition 1. Real-Gpattern. Given a list of clusters C ⇤ = {c1, . . . , cn} and a minimum threshold mint. C ⇤ is a real-Gpattern if:

C ⇤ = C : 8 > > < > > : (1) : |C ⇤ | mint. 8i 2 {1, . . . , n 1}, (2) : ci ✓ ci+1. (3) : |cn| > |c1|.
(1)

C ⇤ = C  : 8 > > < > > : (1) : |C ⇤ | mint. 8i 2 {1, . . . , n 1}, (2) : ci ◆ ci+1. (3) : |cn| < |c1|. (2) 
For instance, see Figure 1, there are 6 objects and 6 timestamps: (ODB = {o1, . . . , o6}, TDB = {t1, . . . , t6}). Given

mint = 3, C 1 = {c1, c2, c4} is a real-Gpattern since |C 1 | mint, c1 ⇢ c2 ⇢ c4 and |c4| = 4 > |c1| = 1. Furthermore, the set of all real-Gpatterns is: C 1 = {c1, c2, c4}, C 2 = {c1, c2, c6}, C 3 = {c2, c4, c6} and C 4 = {c1, c2, c4, c6}.
However, it is obviously redundant to output C 1 , C 2 , C 3 since all of them can be enlarged to C 4 . Therefore, we only focus on extracting maximal real-Gpatterns.

Definition 2. Maximal Real-Gpattern. Given a real- Gpattern C ⇤ = {c1, . . . , cn}. C ⇤ is maximal if @C 0⇤ , C ⇤ ⇢ C 0⇤ and C 0⇤ is a real-Gpattern.
For instance, in Figure 1, Uninteresting real-Gpatterns. As mentioned before the size of all the possible combinations is exponential (i.e. there are totally 2 |C DB | potential pattern candidates) and naturally not all of them are interesting and useful for analysts. For instance, see Figure 2, {c1, c2} is a real-Gpattern but it is not interesting and useless. Since the objects o1, o2, o3, o4 only meet each other at F by chance after 999 timestamps. To eliminate such kind of uninteresting patterns, we propose to relax time constraint within a time-based sliding window with size denoted w. That is, given a current cluster c, c can combine with clusters c 0 where 1  t(c 0 ) t(c)  w to be candidates. Note that

C 4 = {c1, c2, c4, c6} is a maxi- mal real-Gpattern.
t(c 0 ) t(c)
1 because two clusters at a timestamp cannot belong to a pattern. By using this sliding window, we can ignore a number of uninteresting patterns. For instance, see Figure 2, given that w = 2, {c1, c2} is an uninteresting pattern since t(c2) t(c1) = 998 > w = 2.

Definition 3. Interesting Maximal Real-Gpattern. Given a maximal real-Gpattern C ⇤ = {c1, . . . , cn}, a timebased sliding window size w. C ⇤ is an interesting pattern if: 8i 2 {1, . . . , n 1} : 1  t(ci+1) t(ci)  w (3)

DISCOVERING MAXIMAL REAL-GRADUAL TRAJECTORY PATTERNS

First we know that the number of di↵erent real-Gpatterns could be 2 |C DB | . Second, we need to compute the intersections between clusters and then we have to find an e cient way to manage them. We propose to reconfigure spatiotemporal databases by using a bit set presentation, called object key, for each timestamp and for each cluster as illustrated in Table 1.

Main idea of ClusterGrowth algorithm. For the search space of CDB, we apply a depth-first search on all subsets of CDB, which is illustrated as a pre-order tree traversal in Figure 4: tree nodes are labeled with numbers, denoting the depth-first search order. Note that CDB is ordered by the time from the beginning (resp. t1) to the end (resp. tm).

We propose two pruning rules to further shrink the search space. The former, called Graduality Pruning, aims at ending traversing the subtree when we find further traversal that cannot satisfy graduality and interestingness requirement (Definition 3). The latter, called Backward Pruning, is in charge of managing the maximum property. This rule checks whether there is a superset of the current list of clusters, which has been traversed. If so, the traversal of the subtree under the current list of clusters is meaningless since all its supersets are not maximal. After pruning the invalid candidates, remaining candidates may or may not be interesting maximal real-Gpatterns. We further propose an Actual Maximum checking to embed a maximum checking step in the search process. This checking step immediately determines whether a real-Gpattern C ⇤ is maximal after the subtrees under C ⇤ are traversed. Thus, interesting maximal real-Gpatterns are extracted in the search process and no extra post-processing step is needed. Now, we formally define some properties for pruning. The ClusterGrowth method is a depth-first-search (DFS) approach based on the cluster set search space.

Property 1. (Graduality Pruning Rule). Given a list of clusters C ⇤ = {c1, c2, . . . , cn}, a cluster c 0 where t(c 0 ) > t(cn) and a window size w. There is no strict superset

C 0⇤ ◆ (C ⇤ [ c 0 ) s.t. C 0⇤ is an interesting maximal real-Gpattern if: C ⇤ = C : (t(c 0 ) t(cn) > w) _ (c 0 + cn) ( 4 ) 
C ⇤ = C  : (t(c 0 ) t(cn) > w) _ (cn + c 0 ) ( 5 ) 
In Figure 4, the nodes with list of clusters C = {c1, c2, c3} and its subtree are pruned by Graduality Pruning rule because c2 * c3. This is similar for {c1, c3}, {c1, c2, c4}.

Even though Graduality Pruning rule can eliminate a large number of useless candidates, there are many other candidates can be pruned. For instance, {c2} subtrees cannot provide any interesting maximal real-Gpatterns. This is because {c1, c2} has been already traversed and {c1, c2} is a real-Gpattern. Therefore, for any superset of {c2}, denoted {c2} [ C ⇤ , if it is a real-Gpattern then we also have {c1, c2} [ C ⇤ is a real-Gpattern. Thus, {c2} [ C ⇤ is not maximal and therefore {c2} subtrees need to be pruned. The Backward Pruning rule can be formalized as follows.

Property 2. (Backward Pruning Rule). Given a list of clusters C ⇤ = {c1, c2, . . . , cn}. If there exists a cluster c 0 such that t(c 0 ) < t(cn), c 0 6 2 C ⇤ and C 0⇤ = C ⇤ [ {c 0 } satisfies the condition 2 -Definition 1 (i.e. graduality condition) then any supersets of C ⇤ are not interesting maximal real-Gpatterns. Thus, C ⇤ subtrees can be pruned.

Backward Pruning is e cient in the context since we only need to examine supersets of C ⇤ with one more cluster rather than all the supersets.

After pruning all useless candidates, we need to verify the remaining ones for obtaining the complete set of interesting maximal real-Gpatterns. We can consider that a list of clusters C ⇤ is maximal and interesting if there is no superset of C ⇤ , denoted C 0⇤ , so that C 0⇤ contains at least mint clusters and the first cluster (resp. c1 2 C 0⇤ ) and the last cluster (resp. cn 2 C 0⇤ ) satisfy the condition 3-Definition 1.

Property 3. (Actual Maximum Rule). Given a list of clusters C ⇤ = {c1, . . . , cn}. If there exists a cluster c 0 (i.e. 1  t(c 0 ) t(cn)  w) so that C 0⇤ is generated by adding c 0 into C ⇤ and C 0⇤ satisfies the condition 2-Definition 1 then C ⇤ is not an interesting maximal real-Gpattern.

Note, it is di↵erent from the first two rules, this rule does not prune C ⇤ subtrees in the DFS and therefore we cannot end DFS from C ⇤ . However, this rule is useful for detecting non-interesting maximal real-Gpatterns.

Theorem 1. (Interesting maximal real-Gpattern in ClusterGrowth). Given a node with list of clusters C ⇤ = {c1, . . . , cn}, C ⇤ is an interesting maximal real-Gpattern if and only if it passes all the rules Graduality Pruning, Backward Pruning, Actual Maximum rule, and |C ⇤ | mint and if c1, cn satisfy the condition 3-Definition 1 (i.e. if ⇤ = ' ' then |cn| > |c1|, or if ⇤ = '' then |cn| < |c1|).

Theorem 1 shows that the discovery of interesting maximal real-Gpatterns can be performed without any postprocessing step. Figure 4 gives the search space for Clus-terGrowth on our running example.

EXPERIMENTAL RESULTS

A comprehensive performance study has been conducted on real and synthetic datasets. All the algorithms are implemented in C++, and all the experiments are carried out on a 2.8GHz Intel Core i7 system with 4GB Memory. The system runs Ubuntu 11.10 and g++ version 4.6.1.

The implementation of our proposed algorithm is also integrated in a demonstration system available online2 . As in [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF], Swainsoni dataset3 (i.e. 43 objects, 764 timestamps) has been used during experiments. In the comparison, we employ the latest pattern mining algorithms such as CuT S ⇤4 [3] (convoy mining) and ObjectGrowth [START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF] (closed swarm mining). Similarly to [START_REF] Jeung | Discovery of Convoys in Trajectory Databases[END_REF][START_REF] Li | Swarm: Mining Relaxed Temporal Moving Object Clusters[END_REF], we first use linear interpolation to fill in the missing data. Furthermore, DBScan [START_REF] Ester | A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[END_REF] (MinP ts = 2, Eps = 0.001) is applied to generate clusters at each timestamp. To make fair comparison, we adapt all the algorithms to accommodate clusters as input but their time complexity will remain the same. Additionally, the default (resp. hardest) value of mint is 1, mino = 1 (i.e. for ObjectGrowth and CuTS*). In this paper, w is set to 10%|TDB| for each dataset. It means that w = 76 days for Swainsoni dataset, w = 1,000 days for Synthetic dataset.

E↵ectiveness and Pattern Meaning. The e↵ectiveness of interesting maximal real-Gpatterns can be demonstrated through our online demo system. One of the extracted patterns from Swainsoni dataset is illustrated in Figure 5. Each color represents a Swainsoni trajectory segment involved in the pattern. Additionally, each place mark is a cluster center with the number of objects information and we only report the locations where the #objects changes.

Distinguish from previous work, by proposing interesting maximal real-Gpattern, we are able to capture the moving behavior of the class of Swainsonies in a graduality point of view. Looking at the illustrated pattern in Figure 5, we can consider that they start with 8 objects from the north of America and then they group together to be 11, 14, 16, 20 and 23 objects before flying over the sea. Moreover, during the fly, they continue getting closed each other and at the Colombia, we can observe a total of 27 objects flying together. Interestingly, we also can say that "from 1996-10-01 to 1996-10-25, the more time passes, the more objects are following the trajectory {Oregoni Nevadai Utahi Arizonai Mexicoi Colombia}". Moreover, on 1996-10-14, they group almost together at some important places such as Mexico where they begin to fly along a narrow corridor through Central America and down to South America. Furthermore, Panama is also important since all objects are together before arriving Colombia, South America.

Parameter Sensitiveness. To show the parameter sensitiveness and e ciency of the proposed algorithm, we also generate a large synthetic dataset using Brinkho↵'s network 5 -based generator of moving objects. We generate 500 objects (|ODB| = 500) for 10 4 timestamps (|TDB| = 10 4 ) using the generator's default map. There are 5 ⇥ 10 6 points in total. DBScan (MinP ts = 3, Eps = 300) is applied to obtain clusters at each timestamp.

Sensitiveness w.r.t w. See Figure 6a, we can consider that ClusterGrowth is linear in terms of sliding window size w. The reason is that, the higher window sizes w the more patterns are extracted. This is because, for any cluster c, c can combine with an additional number of other clusters corresponding to the increase of w. Consequently, there are more number of candidates and patterns.

Sensitiveness w.r.t mint. Figure 6b shows that Ob-jectGrowth is the most sensitive algorithm in mint. This is because ObjectGrowth applies a mint-based pruning rule, called Apriori Pruning, which is very sensitive in mint. Since, it is used to limit approximately 2 |T DB | candidates in total. Furthermore, with di↵erent values of mint, there are great di↵erences in terms of the number of extracted closed swarms. Meanwhile, ClusterGrowth and CuTS* only use mint at the pattern reporting step without any pruning rule for mint. Therefore, similar to CuTS*, the Clus-terGrowth sensitiveness in mint is minimized and it is less sensitive than ObjectGrowth.

Sensitiveness w.r.t ODB, TDB. Once again, Object-Growth is the most sensitive algorithm (see Figures 6c-d). The reason is that the number of candidates is greatly increased due to the size increase of |ODB|, |TDB| (i.e. approximately 2 |O DB | ⇥2 |T DB | candidates). As the results, the number of closed swarms is significantly increased. Meanwhile, ClusterGrowth and CuTS* do not generate much more candidates as ObjectGrowth does. This is because: 1) the number of clusters at a certain timestamp is not exponentially increased due to the |ODB| and |TDB| increases, 2) for any cluster c, c can combine with the clusters at the next timestamp (i.e. for CuTS*) or the clusters within a sliding window (i.e. for ClusterGrowth). Obviously, ClusterGrowth is similar to CuTS* and less sensitive than ObjectGrowth in terms of |ODB| and |TDB|.

CONCLUSION

In this paper, we propose the concepts of real-Gpattern and interesting maximal real-Gpattern. These concepts enable the discovery of interesting movement patterns which 
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 1 An example of a reconfigured spatiotemporal database in Figure3.

	Timestamp Object Key Cluster
	t1	1000	c1
	t2	1100	c2
	t3	0101	c3
	t3	1010	c4
	t4	1111	c5
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The source code of CuT S ⇤ is available at http://lsirpeople.epfl.ch/jeung/source codes.htm