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ABSTRACT

One of the objectives of spatio-temporal data mining is to
analyze moving object datasets to exploit interesting pat-
terns. Traditionally, existing methods only focus on an
unchanged group of moving objects during a time period.
Thus, they cannot capture object moving trends which can
be very useful for better understanding the natural moving
behavior in various real world applications. In this paper, we
present a novel concept of ”time relaxed gradual trajectory
pattern”, denoted real-Gpattern, which captures the object
movement tendency. Additionally, we also propose an e�-
cient algorithm, called ClusterGrowth, designed to extract
the complete set of all interesting maximal real-Gpatterns.
Conducted experiments on real and large synthetic datasets
demonstrate the e↵ectiveness, parameter sensitiveness and
e�ciency of our methods.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining, Spatial Databases and GIS

General Terms

Theory, Algorithms, Experimentation

Keywords

Gradual moving object cluster, gradual trajectories.

1. INTRODUCTION

Nowadays, the use of many electronic devices in real world
applications has led to an increasingly large amount of data
containing moving object information. One of the objectives
of spatio-temporal data mining [1, 4, 6] is to analyze such
datasets for interesting patterns which usually are moving
object clusters. A moving object cluster can be defined in
both spatial and temporal dimensions: (1) a group of mov-
ing objects should be geometrically closed to each other, (2)
they should be together for at least some number of certain
timestamps. In this context, many recent studies have been
defined to mine moving object clusters including flocks [1],
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Figure 1: An example of real-Gpattern.

moving clusters [4], convoy queries [3], closed swarms [6],
group patterns [9], periodic patterns [7], etc... The inter-
ested readers may refer to [8] where descriptions of the most
e�cient approaches and patterns are proposed.
Unfortunately, these patterns cannot help us fully under-

stand the complex object moving behavior. To illustrate,
let us consider the Salmon1 migration in the ocean, where
the adult salmons return primarily to their natal stream to
spawn. From time to time, more and more salmons get
closed together to go to their stream origin. Actually, this
phenomenon is involved in many real world applications (e.g.
tra�c congestion, animal or population migration, etc).
In this paper, we propose a novel movement pattern, real-

Gpattern (i.e. time relaxed gradual trajectory pattern),
which is designed to capture the gradual object moving
trend. More precisely, a gradual moving object cluster is a
list of moving object clusters satisfying the graduality con-
straint and integrity condition during at least mint times-
tamps. The graduality constraint can be the increase or
decrease of the number of objects while the integrity condi-
tion can be that all the objects should remain in the next
cluster.
For instance, in Figure 1, if we set mint = 3, one object

moving trend is ”from t1 to t6, the more time passes, the
more objects are following the trajectory {A i B i D i F}”.
Note that moving objects in a cluster may actually diverge
temporarily and converge at certain timestamps. Further-
more, if we denote a real-Gpattern as a list of clusters C

then, we have 4 patterns: C1 = {c1, c2, c4}, C2 = {c1, c2, c6},
C3 = {c2, c4, c6} and C4 = {c1, c2, c4, c6}. Actually, they are
redundant since C1, C2, C3 are included in C4.
To avoid finding redundant real-Gpatterns, we further

propose the maximal real-Gpattern concept. The basic idea
is that if C is a real-Gpattern, it is useless to output any
subset C

0 of C. For example, see Figure 1, a maximal real-
Gpattern is C4 = {c1, c2, c4, c6}.
E�cient extracting of complete set of maximal real-

Gpatterns in a large moving object database, denoted DB,
is a non-trivial task: 1) the size of all the possible com-

1http://en.wikipedia.org/wiki/Salmon



binations is exponential, 2) none of previous studies (i.e.
frequent pattern mining [2], moving object clusters [1, 4, 6])
has addressed the same issue.

Facing the huge potential search space, we propose an ef-
ficient approach, named ClusterGrowth. In ClusterGrowth,
we design two e�cient rules which are Graduality Pruning
rule and Backward Pruning rule to avoid unnecessary fur-
ther search. Additionally, to eliminate uninteresting pat-
terns, we relax the time constraint within a time-based slid-
ing window. Furthermore, we also present an Actual Max-
imum Checking step that reports the interesting maximal
real-Gpatterns on-the-fly without extra space to store candi-
dates and extra time for post-processing. The e↵ectiveness,
parameter sensitiveness and e�ciency of our methods are
demonstrated on both real and large synthetic databases.

2. PROBLEM STATEMENT

In this section, we give the real-Gpattern and maximal
real-Gpattern definitions. Let us assume that we have a
set of moving objects ODB = {o1, o2, . . . , oz}, a set of
timestamps TDB = {t1, t2, . . . , tm}, and a gradual variation
⇤ 2 {�,}.

Database of clusters. A database of clusters, CDB =
{Ct1 , Ct2 , . . . , Ctm}, is a collection of snapshots of the mov-
ing object clusters at timestamps {t1, t2, . . . , tm}. Note that
an object could belong to several clusters at one times-
tamp (overlapping clusters). Given a cluster c 2 CDB and
c ✓ ODB , |c| and t(c) are respectively used to denote the
number of objects belonging to cluster c and the timestamp
that c involved in. In this paper, we take clustering as a
preprocessing step.
Real-Gpattern and maximal real-Gpattern. A list

of clusters C
⇤ = {c1, . . . , cn} is said to be a real-Gpattern

if each pair of consecutive clusters in C
⇤ satisfies gradual-

ity condition and C
⇤ contains at least mint clusters. The

definition of real-Gpattern is as follows.

Definition 1. Real-Gpattern. Given a list of clusters
C

⇤ = {c1, . . . , cn} and a minimum threshold mint. C
⇤ is

a real-Gpattern if:

C
⇤ = C

� :

8
>><

>>:

(1) : |C⇤| � mint.

8i 2 {1, . . . , n� 1},
(2) : ci ✓ ci+1.

(3) : |cn| > |c1|.

(1)

C
⇤ = C

 :

8
>><

>>:

(1) : |C⇤| � mint.

8i 2 {1, . . . , n� 1},
(2) : ci ◆ ci+1.

(3) : |cn| < |c1|.

(2)

For instance, see Figure 1, there are 6 objects and 6 time-
stamps: (ODB = {o1, . . . , o6}, TDB = {t1, . . . , t6}). Given
mint = 3, C�

1 = {c1, c2, c4} is a real-Gpattern since |C�
1 | �

mint, c1 ⇢ c2 ⇢ c4 and |c4| = 4 > |c1| = 1. Furthermore,
the set of all real-Gpatterns is: C

�
1 = {c1, c2, c4}, C

�
2 =

{c1, c2, c6}, C�
3 = {c2, c4, c6} and C

�
4 = {c1, c2, c4, c6}.

However, it is obviously redundant to output C�
1 , C

�
2 , C

�
3

since all of them can be enlarged to C
�
4 . Therefore, we only

focus on extracting maximal real-Gpatterns.

Definition 2. Maximal Real-Gpattern. Given a real-
Gpattern C

⇤ = {c1, . . . , cn}. C
⇤ is maximal if @C0⇤

, C
⇤ ⇢

C
0⇤ and C

0⇤ is a real-Gpattern.

For instance, in Figure 1, C�
4 = {c1, c2, c4, c6} is a maxi-

mal real-Gpattern.

Figure 2: An example of uninteresting real-

Gpattern and (time-based) sliding window (w = 2).

Table 1: An example of a reconfigured spatio-

temporal database in Figure 3.

Timestamp Object Key Cluster

t1 1000 c1

t2 1100 c2

t3 0101 c3

t3 1010 c4

t4 1111 c5

Uninteresting real-Gpatterns. As mentioned before
the size of all the possible combinations is exponential (i.e.
there are totally 2|CDB | potential pattern candidates) and
naturally not all of them are interesting and useful for
analysts. For instance, see Figure 2, {c1, c2} is a real-
Gpattern but it is not interesting and useless. Since the
objects o1, o2, o3, o4 only meet each other at F by chance
after 999 timestamps. To eliminate such kind of uninter-
esting patterns, we propose to relax time constraint within
a time-based sliding window with size denoted w. That is,
given a current cluster c, c can combine with clusters c

0

where 1  t(c0) � t(c)  w to be candidates. Note that
t(c0) � t(c) � 1 because two clusters at a timestamp can-
not belong to a pattern. By using this sliding window, we
can ignore a number of uninteresting patterns. For instance,
see Figure 2, given that w = 2, {c1, c2} is an uninteresting
pattern since t(c2)� t(c1) = 998 > w = 2.

Definition 3. Interesting Maximal Real-Gpattern.
Given a maximal real-Gpattern C

⇤ = {c1, . . . , cn}, a time-
based sliding window size w. C

⇤ is an interesting pattern if:
8i 2 {1, . . . , n� 1} : 1  t(ci+1)� t(ci)  w (3)

3. DISCOVERING MAXIMAL REAL-

GRADUAL TRAJECTORY PATTERNS

First we know that the number of di↵erent real-Gpatterns
could be 2|CDB |. Second, we need to compute the intersec-
tions between clusters and then we have to find an e�cient
way to manage them. We propose to reconfigure spatio-
temporal databases by using a bit set presentation, called
object key, for each timestamp and for each cluster as illus-
trated in Table 1.
Main idea of ClusterGrowth algorithm. For the

search space of CDB , we apply a depth-first search on all sub-
sets of CDB , which is illustrated as a pre-order tree traversal
in Figure 4: tree nodes are labeled with numbers, denoting
the depth-first search order. Note that CDB is ordered by
the time from the beginning (resp. t1) to the end (resp. tm).
We propose two pruning rules to further shrink the search

space. The former, called Graduality Pruning, aims at end-
ing traversing the subtree when we find further traversal
that cannot satisfy graduality and interestingness require-
ment (Definition 3). The latter, called Backward Pruning,
is in charge of managing the maximum property. This rule
checks whether there is a superset of the current list of clus-
ters, which has been traversed. If so, the traversal of the
subtree under the current list of clusters is meaningless since



all its supersets are not maximal. After pruning the invalid
candidates, remaining candidates may or may not be in-
teresting maximal real-Gpatterns. We further propose an
Actual Maximum checking to embed a maximum checking
step in the search process. This checking step immediately
determines whether a real-Gpattern C

⇤ is maximal after the
subtrees under C⇤ are traversed. Thus, interesting maximal
real-Gpatterns are extracted in the search process and no
extra post-processing step is needed.

Now, we formally define some properties for pruning. The
ClusterGrowth method is a depth-first-search (DFS) ap-
proach based on the cluster set search space.

Property 1. (Graduality Pruning Rule). Given a
list of clusters C

⇤ = {c1, c2, . . . , cn}, a cluster c
0 where

t(c0) > t(cn) and a window size w. There is no strict su-
perset C

0⇤ ◆ (C⇤ [ c
0) s.t. C

0⇤ is an interesting maximal
real-Gpattern if:

C
⇤ = C

� : (t(c0)� t(cn) > w) _ (c0 + cn) (4)

C
⇤ = C

 : (t(c0)� t(cn) > w) _ (cn + c
0) (5)

In Figure 4, the nodes with list of clusters C
� =

{c1, c2, c3} and its subtree are pruned by Graduality Pruning
rule because c2 * c3. This is similar for {c1, c3}, {c1, c2, c4}.
Even though Graduality Pruning rule can eliminate a

large number of useless candidates, there are many other
candidates can be pruned. For instance, {c2} subtrees can-
not provide any interesting maximal real-Gpatterns. This
is because {c1, c2} has been already traversed and {c1, c2}
is a real-Gpattern. Therefore, for any superset of {c2}, de-
noted {c2} [ C

⇤, if it is a real-Gpattern then we also have
{c1, c2}[C

⇤ is a real-Gpattern. Thus, {c2}[C
⇤ is not max-

imal and therefore {c2} subtrees need to be pruned. The
Backward Pruning rule can be formalized as follows.

Property 2. (Backward Pruning Rule). Given a list
of clusters C

⇤ = {c1, c2, . . . , cn}. If there exists a cluster c
0

such that t(c0) < t(cn), c
0 62 C

⇤ and C
0⇤ = C

⇤ [ {c0} satisfies
the condition 2 - Definition 1 (i.e. graduality condition)
then any supersets of C⇤ are not interesting maximal real-
Gpatterns. Thus, C⇤ subtrees can be pruned.

Backward Pruning is e�cient in the context since we only
need to examine supersets of C⇤ with one more cluster rather
than all the supersets.
After pruning all useless candidates, we need to verify the

remaining ones for obtaining the complete set of interesting
maximal real-Gpatterns. We can consider that a list of clus-
ters C⇤ is maximal and interesting if there is no superset of
C

⇤, denoted C
0⇤, so that C0⇤ contains at least mint clusters

and the first cluster (resp. c1 2 C
0⇤) and the last cluster

(resp. cn 2 C
0⇤) satisfy the condition 3-Definition 1.

Property 3. (Actual Maximum Rule). Given a list
of clusters C⇤ = {c1, . . . , cn}. If there exists a cluster c0 (i.e.
1  t(c0)� t(cn)  w) so that C0⇤ is generated by adding c

0

into C
⇤ and C

0⇤ satisfies the condition 2-Definition 1 then
C

⇤ is not an interesting maximal real-Gpattern.

Note, it is di↵erent from the first two rules, this rule does
not prune C

⇤ subtrees in the DFS and therefore we cannot
end DFS from C

⇤. However, this rule is useful for detecting
non-interesting maximal real-Gpatterns.

Theorem 1. (Interesting maximal real-Gpattern in
ClusterGrowth). Given a node with list of clusters C

⇤ =
{c1, . . . , cn}, C

⇤ is an interesting maximal real-Gpattern if
and only if it passes all the rules Graduality Pruning, Back-
ward Pruning, Actual Maximum rule, and |C⇤| � mint and
if c1, cn satisfy the condition 3-Definition 1 (i.e. if ⇤ = ’�’
then |cn| > |c1|, or if ⇤ = ’’ then |cn| < |c1|).

Theorem 1 shows that the discovery of interesting max-
imal real-Gpatterns can be performed without any post-
processing step. Figure 4 gives the search space for Clus-
terGrowth on our running example.

4. EXPERIMENTAL RESULTS

A comprehensive performance study has been conducted
on real and synthetic datasets. All the algorithms are im-
plemented in C++, and all the experiments are carried out
on a 2.8GHz Intel Core i7 system with 4GB Memory. The
system runs Ubuntu 11.10 and g++ version 4.6.1.
The implementation of our proposed algorithm is also in-

tegrated in a demonstration system available online2. As in
[6], Swainsoni dataset3(i.e. 43 objects, 764 timestamps) has
been used during experiments. In the comparison, we em-
ploy the latest pattern mining algorithms such as CuTS

⇤4

[3] (convoy mining) and ObjectGrowth [6] (closed swarm
mining). Similarly to [3, 6], we first use linear interpola-
tion to fill in the missing data. Furthermore, DBScan [5]
(MinPts = 2, Eps = 0.001) is applied to generate clusters
at each timestamp. To make fair comparison, we adapt all
the algorithms to accommodate clusters as input but their
time complexity will remain the same. Additionally, the
default (resp. hardest) value of mint is 1, mino = 1 (i.e.
for ObjectGrowth and CuTS*). In this paper, w is set to
10%|TDB | for each dataset. It means that w = 76 days for
Swainsoni dataset, w = 1,000 days for Synthetic dataset.
E↵ectiveness and Pattern Meaning. The e↵ective-

ness of interesting maximal real-Gpatterns can be demon-
strated through our online demo system. One of the ex-
tracted patterns from Swainsoni dataset is illustrated in Fig-
ure 5. Each color represents a Swainsoni trajectory segment
involved in the pattern. Additionally, each place mark is a
cluster center with the number of objects information and
we only report the locations where the #objects changes.
Distinguish from previous work, by proposing interesting

maximal real-Gpattern, we are able to capture the moving
behavior of the class of Swainsonies in a graduality point
of view. Looking at the illustrated pattern in Figure 5, we
can consider that they start with 8 objects from the north
of America and then they group together to be 11, 14, 16,
20 and 23 objects before flying over the sea. Moreover, dur-
ing the fly, they continue getting closed each other and at
the Colombia, we can observe a total of 27 objects flying
together. Interestingly, we also can say that ”from 1996-10-
01 to 1996-10-25, the more time passes, the more objects are
following the trajectory {Oregoni Nevadai Utahi Arizonai
Mexicoi Colombia}”. Moreover, on 1996-10-14, they group
almost together at some important places such as Mexico
where they begin to fly along a narrow corridor through
Central America and down to South America. Furthermore,

2http://www.lirmm.fr/ phan/realgp.jsp
3http://www.movebank.org
4The source code of CuTS

⇤ is available at
http://lsirpeople.epfl.ch/jeung/source codes.htm



Figure 3: A running

example of Cluster-

Growth algorithm.

Figure 4: ClusterGrowth search space of the running

example in Figure 3 with ⇤ = ’�’, mint = 1 and w = 3.
Figure 5: One of extracted

real-Gpatterns C
�
.

Panama is also important since all objects are together be-
fore arriving Colombia, South America.

Parameter Sensitiveness. To show the parameter sen-
sitiveness and e�ciency of the proposed algorithm, we also
generate a large synthetic dataset using Brinkho↵’s net-
work5-based generator of moving objects. We generate 500
objects (|ODB | = 500) for 104 timestamps (|TDB | = 104)
using the generator’s default map. There are 5⇥ 106 points
in total. DBScan (MinPts = 3, Eps = 300) is applied to
obtain clusters at each timestamp.

Sensitiveness w.r.t w. See Figure 6a, we can consider
that ClusterGrowth is linear in terms of sliding window size
w. The reason is that, the higher window sizes w the more
patterns are extracted. This is because, for any cluster c,
c can combine with an additional number of other clusters
corresponding to the increase of w. Consequently, there are
more number of candidates and patterns.

Sensitiveness w.r.t mint. Figure 6b shows that Ob-
jectGrowth is the most sensitive algorithm in mint. This is
because ObjectGrowth applies a mint-based pruning rule,
called Apriori Pruning, which is very sensitive in mint.
Since, it is used to limit approximately 2|TDB | candidates
in total. Furthermore, with di↵erent values of mint, there
are great di↵erences in terms of the number of extracted
closed swarms. Meanwhile, ClusterGrowth and CuTS* only
use mint at the pattern reporting step without any prun-
ing rule for mint. Therefore, similar to CuTS*, the Clus-
terGrowth sensitiveness in mint is minimized and it is less
sensitive than ObjectGrowth.

Sensitiveness w.r.t ODB, TDB. Once again, Object-
Growth is the most sensitive algorithm (see Figures 6c-d).
The reason is that the number of candidates is greatly in-
creased due to the size increase of |ODB |, |TDB | (i.e. approxi-
mately 2|ODB |⇥2|TDB | candidates). As the results, the num-
ber of closed swarms is significantly increased. Meanwhile,
ClusterGrowth and CuTS* do not generate much more can-
didates as ObjectGrowth does. This is because: 1) the num-
ber of clusters at a certain timestamp is not exponentially
increased due to the |ODB | and |TDB | increases, 2) for any
cluster c, c can combine with the clusters at the next times-
tamp (i.e. for CuTS*) or the clusters within a sliding win-
dow (i.e. for ClusterGrowth). Obviously, ClusterGrowth is
similar to CuTS* and less sensitive than ObjectGrowth in
terms of |ODB | and |TDB |.

5. CONCLUSION

In this paper, we propose the concepts of real-Gpattern
and interesting maximal real-Gpattern. These concepts en-
able the discovery of interesting movement patterns which

5http://iapg.jade-hs.de/personen/brinkho↵/generator/

(a) w (b) mint

(c) |ODB | (d) |TDB |
Figure 6: Running time on Synthetic Dataset.

capture the object moving trends. A novel method, Clus-
terGrowth is proposed to e�ciently discover a complete set
of interesting maximal real-Gpatterns. The proposed algo-
rithm e↵ectiveness, e�ciency and parameter sensitiveness
are demonstrated using real and large synthetic datasets.
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