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Abstract. Microblogging is a modern communication paradigm in
which users post bits of information, or “memes” as we call them, that
are brief text updates or micromedia such as photos, video or audio clips.
Once a user post a meme, it become visible to the user community. When
a user finds a meme of another user interesting, she can eventually repost
it, thus allowing memes to propagate virally trough the social network.

In this paper we introduce the meme ranking problem, as the problem
of selecting which k memes (among the ones posted by their contacts)
to show to users when they log into the system. The objective is to
maximize the overall activity of the network, that is, the total number
of reposts that occur.

We deeply characterize the problem showing that not only exact solutions
are unfeasible, but also approximated solutions are prohibitive to be
adopted in an on-line setting. Therefore we devise a set of heuristics and
we compare them trough an extensive simulation based on the real-world
Yahoo! Meme social graph, using parameters learnt from real logs of
meme propagations. Our experimentation demonstrates the effectiveness
and feasibility of these methods.

1 Introduction

Microblogging is a well-established social communication medium in which users
share short snippets of text, images, sounds or videos (memes in this paper) with
other users. Currently most major social networking platforms including Twitter,
Facebook, Tumblr, LinkedIn, Yahoo! Meme, etc., offer microblogging features,
although there are minor differences among them, e.g., in the types of meme
that can be posted, and major differences in the way people provide feedback to
each other (comments, votes, favorites, etc.) and in the way social connections
are established (one-way or two-way, with users opting-in or opting-out to being
followed by another user). However, the basic mechanics are the same for all of
them: a user posts a meme, if other users like it, they repost it, and by a process
of virality, a large number of users can be potentially reached by a particular
meme.
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Fig. 1. Above: a meme about sustainable transportation. Below: depiction of the prop-
agation history of this meme. Nodes are users with darker colors indicating nodes with
more followers. Each edge indicates a repost, with the length of the edge proportional
to the elapsed time; same-day reposts are short, thick lines. The entire history (top-to-
bottom) is 60 days long.
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Figure 1 shows one specific meme from the microblogging service Ya-
hoo! Meme.3 In this particular case, it is a photo posted by a user that shows the
space required to transport a number of people by car, bus, or bicycle. We depict
the propagation history4 of this meme along time, similarly to [1]. Each node is
a user: the darker a node is, the more followers the user has in the social graph.
In this particular case, we can observe that the meme was not so popular until
it was reposted by an influential user (very dark node), which then spawned a
large number of reposts.

In this paper we devise methods to select, for each user, a set of k memes to
show her when she logs into the system. We call this task meme ranking.

In selecting the k memes to show to a user, the objective function that we
adopt is not simply to maximize the number of these memes that the user is
likely to repost, but instead to maximize the global “virality” of the selected
memes. This means that we do not focus only on the immediate user’s satisfac-
tion, favoring the memes which are more likely to interest her. Instead, we also
consider the likelihood of her followers of being in turn interested and possibly
reposting a given meme, thus recursively propagating it.

Suppose a user receives $1 for each repost of her memes done by her followers,
by the followers of her followers, and so on recursively. The objective of the meme
ranking problem is to maximize users’ profit. Stated a bit more formally, what
we want to maximize is the size of the meme propagation trees.

The rationale for this objective function is twofold. By the general perspective
of the network, maximizing the virality of memes and thus the total number of
reposts, means keeping high the total level of activity of the network, i.e., its
vitality. From the user perspective instead, receiving many reposts might be
gratifying, thus enhancing the user’s sense of belonging to a community and her
engagement with the microblogging network.

In this paper we formally introduce the meme ranking problem, which to the
best of our knowledge has never been described before in the literature, and
we deeply characterize it, highlighting its complexity. In particular, we show
that computing the expected spread of a meme is #P-complete and we provide
a theoretical bound on the number of samples needed to approximate it by
means of Monte Carlo sampling. It is worth noting that the computation of
the expected spread is also the base operation in all the literature on influence
spread maximization [21]: hence our theoretical contribution goes beyond the
present paper. The conclusion of our analysis is that while Monte Carlo sampling
approximation can be afforded in the off-line context of viral marketing [21], it
can not be applied in our on-line recommendation context. Therefore, we develop
a set of computationally inexpensive heuristics, based on information learnt by
analyzing past meme propagations.

3 http://meme.yahoo.com
4 Animations of several meme propagations are available at http://barcelona.

research.yahoo.net/memerank
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Paper contributions and organization

Summarizing the main contributions of the paper are as follows:

– In Section 3 we present an empirical analysis of meme propagations in Ya-
hoo! Meme. The findings of this analysis are important to understand the
mechanism of meme propagations, and to reproduce them in our propagation
model and simulation framework.

– In Section 4 we first define the meme propagation model, then we introduce
and deeply characterize the meme ranking problem. In particular, we show
that computing the expected spread of a meme is #P-complete and we pro-
vide a theoretical bound on the number of samples needed to approximate it
by means of Monte Carlo sampling. Our analysis highlights that, not only ex-
act solutions are unfeasible, but also approximated solutions are prohibitive
to be adopted in an on-line setting.

– In Section 5 we develop a set of computationally inexpensive heuristics,
grounded on a careful analysis of how propagation occurs in a real social
network.

– In Section 6 we present our simulation framework which implements the
meme propagation model based on the actual Yahoo! Meme social graph,
and on parameters learnt from real logs of meme propagations.

– In Section 7 we report the results of our experiments, showing that the
proposed computationally inexpensive methods can increase a network’s vi-
tality.

Related works are discussed in the next section, and the last section of the
paper outlines future research directions opened by this paper and presents con-
cluding remarks.

2 Related Work

In recent years the whole area of analysis of social network systems has branched
out in several sub-disciplines which focus on different aspects. These include the
characterization and prediction of links, the detection of communities, and the
study of influence propagation, among others. We focus on the latter outlining
key results related to our work.

2.1 Empirical analysis of information propagation

In recent years, there has been tremendous interest in the phenomenon of influ-
ence exerted by users of an online social network on other users and in how it
propagates in the network. The idea is that when a user sees their social contacts
performing an action that user may decide to perform the action themselves. In
truth, when a user performs an action, she may have any one of a number of
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reasons for doing so: she may have heard of it outside of the online social network
and may have decided it is worthwhile; the action may be very popular (e.g.,
watching a blockbuster film may be such an action); or she may be genuinely
influenced by seeing her social contacts perform that action [13]. If there is gen-
uine influence, it can be leveraged for a number of applications, the most famous
among which is viral marketing. Other applications include personalized recom-
mendations [32, 31] and feed ranking in social networks [30]. Besides, patterns of
influence can be taken as a sign of user trust and exploited for computing trust
propagation [17, 38, 14, 33] in large networks and in P2P systems.

Thanks to the richness of available data, one domain in which most of the
analyses have been done is the blogging and microblogging domain. Gruhl et al.
[16] characterize four categories of individuals based on their typical posting be-
havior within the life cycle of a topic, then they develop a model for information
diffusion based on the theory of the spread of infectious diseases, capturing how
a new topic spreads from blog to blog. They also devise an algorithm to learn
the parameters of the model based on real data, and apply the algorithm to blog
data, thus being able to identify particular individuals who are highly effective
at contributing to the spread of infectious topics. In another work [3] it is shown
that bloggers are more likely to join a group that many of their friends joined,
especially if those friends belong to the same clique. Song et. al instead show
that blogs are likely to link to content that other blogs have linked to [31]. In [2]
instead the problem of how to identify influential bloggers is studied.

Adar and Adamic [1] describe how information propagates in the blogo-
sphere, tracking the information “epidemics” of interesting blog postings that
are referenced or copied by other blogs. The authors consider different features
including structural information of the blog network, contents of the blogs, and
temporal information to set up a classification scenario that predicts if two blogs
are likely to be linked, and if one blog is likely to “infect” another blog with a
post. The propagation information available in their case is incomplete, as many
blogs rarely cite their sources. However there are ways of inferring the sources
of a posting.

Leskovec et al. [23] study the propagation of distinctive snippets of text (typ-
ically related to news events) in a corpus of news articles and blogs postings.
They develop a scalable clustering algorithm to trace the sources of these frag-
ments of text across the network. Using this algorithm, they are able to infer
the structure of the propagation network and use it to determine, for instance,
that with respect to new items, blogs lag behind news sources by a few hours.

Wu et al. [36] study the propagation of information in e-mail networks, show-
ing that the transmissibility of a piece of information decays with network dis-
tance. For instance, users that are close together in the organizational hierarchy
of a large company, are more likely to share common interests and thus are more
likely to “infect” each other with new information.

Bakshy et al. [5] describe how information propagates in the on-line game
Second Life, tracking the propagation of in-game “gestures” which are informa-
tion assets that can be copied by other players. Using a simulation model they
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find that it is more easy that the transfer happens between two friends instead
that two strangers. They also find that some users are more central in the pro-
cess of information diffusion and more susceptible to obtain new content than
normal users. They define this kind of user an early adopter. They also notice
that information passed among contacts produce deeper propagation trees for
non-popular (niche) assets.

Cha et al. [7] present a data analysis of how picture popularity is distributed
across the Flickr social network, and characterize the role played by social links
in information propagation. Their analysis provides empirical evidence that the
social links are the dominant method of information propagation, accounting
for more than 50% of the spread of favorite-marked pictures. Moreover, they
show that information spreading is limited to individuals who are within close
proximity of the uploaders, and that spreading takes a long time at each hop,
oppositely to the common expectations about the quick and wide spread of word-
of-mouth effect. [22] also shows that the photos users view in Flickr are often
the ones they can observe their friends consuming too.

Crandall et al. [11] describe a framework for using data from large online
communities to analyze the interactions between social influence and users simi-
larity. Their empirical analysis over the social network of Wikipedia editors and
LiveJournal users confirms that there exists a feedback effect between users’
similarity and social influence, and that combining features based on social ties
and similarity is more predictive of future behavior than either social influence
or similarity features alone, showing that both social influence and ones own
interests are drivers of future behavior and that they operate in relatively inde-
pendent ways.

2.2 Maximizing information propagation

Suppose we are given a social network together with the estimates of reciprocal
influence between individuals in the network. Suppose we want to push a new
product in the market. The problem of influence maximization is the following:
given such a network, how to select the set of initial users, up to a given num-
ber, so that they eventually influence the largest number of users in the social
network.

Domingos and Richardson [12, 29] were the first to consider the propagation
of influence and the problem of identification of influential users as an optimiza-
tion problem: they developed a probabilistic model of interaction, and provided
heuristics for choosing the influential users.

Later Kempe et al. [21] analyzed influence maximization as a problem of dis-
crete optimization. In particular their work focuses on two fundamental propa-
gation models: the Linear Threshold Model and the Independent Cascade Model.
In both of these models, at a given timestamp, each node is either active (an
adopter of the innovation, or a customer which already purchased the product)
or inactive, and each node’s tendency to become active increases monotonically
as more of its neighbors become active. Time unfolds deterministically in dis-
crete steps. As time unfolds, more and more neighbors of an inactive node u may
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become active, possibly making u become active, and u’s decision may in turn
trigger further activation of nodes to which u is connected.

Under these propagation models, the influence maximization problem was
shown to be NP-hard [21]. Kempe et al. however showed that the influence
spread of a set of nodes is a function with the nice properties of being monotone
and submodular. Thanks to these properties, approximation guarantees can be
achieved through a simple greedy algorithm, whose key step is the computation
of the expected spread. As we show later in Section 4.2, this is a complex compu-
tation, therefore they rely on running simulations of the propagation model for
sufficiently many times to obtain an accurate estimate. While Kempe et al. only
report empirical observations on how many simulations are sufficient to obtain
a reasonable approximation, in Section 4.2 we provide a theoretical bound.

Following [21] a recent line of research [25, 9, 8, 10] has started developing
methods for improving the efficiency of influence maximization algorithms.

Leskovec et al. [25] study the propagation problem by a different perspective
namely outbreak detection: how to select nodes in a network in order to detect
the spread of a virus as fast as possible? They present a general methodology for
near optimal sensor placement in these and related problems. They also prove
that the influence maximization problem of [21] is a special case of their more
general problem definition. By exploiting submodularity they develop an effi-
cient algorithm based on a “lazy-forward” optimization in selecting new seeds,
achieving near optimal placements, while being 700 times faster than the simple
greedy algorithm. Regardless this big improvement over the basic greedy algo-
rithm, their method still face serious scalability problems as shown in [9]. In that
paper, Chen et al. improve the efficiency of the greedy algorithm and propose
new degree discount heuristics that produce influence spread close to that of the
greedy algorithm but much more efficiently.

Tang et al. introduce the novel problem of topic-based social influence anal-
ysis [34]. They propose a Topical Affinity Propagation (TAP) approach to de-
scribe the problem using a graphical probabilistic model. They also deal with
the efficiency problem by devising a distributed learning algorithm under the
map-reduce paradigm. They also discuss the applicability of their approach to
the problem of expert finding.

How influential a user is, can also be considered as a domain-specific char-
acteristic, in the sense that a user may be influential in certain topics and not
influential in others. Weng et al. [20] study a subset of the Twitter network
and compute from network-based and content-based features to measure how
influential are users for each topic.

Cha et al. [6] study different measures of user influence in Twitter. They
perform an in-depth analysis on three different measures of a user influence,
namely in-degree, re-tweets and mentions. The first is the number of people
that follow the given user, the second is the number of times other users repost
her content, and the last is the number of times other users mention her name.
Among various findings, they empirically show that having a million followers is
not necessarily an indication of influence.
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3 Analysis of Propagations in Yahoo! Meme

In this section, we describe the Yahoo! Meme dataset and present key obser-
vations about how propagations occur. We describe our dataset pre-processing,
the model we use to understand the data, some statistical properties of users,
memes, and propagation histories, and a summary of empirical findings.

The dataset that we analyze contains all of the publicly-available information
visible on the Web site (e.g., users, followed-follower relationship, posted memes,
“via” links indicating meme reposts, etc.), at the end of November 2009, roughly
corresponding to the first 8 months of operation of the system.

3.1 Social network

We define a social directed graph based on the followed-follower relationship.
That is a graph G = (V,E), where V is the set of all the users and for a given
pair of users, u, v ∈ V we say that they are connected if: (i) v has added herself
explicitly as a follower of u; or (ii) v has reposted a meme by u. In these cases, we
draw an arc (u, v) ∈ E. In this representation, the direction of the arc goes from
the followed to the follower as that is the direction in which memes eventually
propagate.

We discarded from our sample users who were disconnected from the rest
of the network according to the relationship described above. The result is a
sample with the characteristics described in Table 1.

Table 1. Summary of properties of our sample

Number of nodes (users) 57K
Number of connections: 1.48M 100%

Follows explicitly, but does not repost 1.14M 77%
Follows explicitly and reposts 233K 16%
Reposts, but does not follow explicitly 103K 7%

For the 16% of edges that are both following explicitly and reposted, in
roughly 4/5 of the cases the users are first connected by an explicit relationship,
and then a re-post occurs, in the remaining 1/5 of the cases, it is first a re-post
and then a follow relationship.

In the rest of this paper, we make no distinction between a user v declaring
explicitly to be a follower of another user u, or simply reposting a meme posted
by u. In both cases, we say that v follows u. Figure 2 explains our notation.

The clustering coefficient of the (undirected) graph is 0.25, which is similar
to what has been observed in other social networks such as Flickr (0.31) and
LiveJournal (0.33) [27]. The fraction of pairs who are reciprocally connected
is around 29%, which is relatively low compared to Flickr (62%), LiveJournal
(74%), or Twitter (58%) [19], perhaps because this network is directly oriented
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Fig. 2. Example of the follows relation and the notation we use in the rest of the paper.
Arcs are always drawn in the direction of the possible propagation of memes.
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Fig. 3. Distributions of in-degree and out-degree in the social network.

to the propagation of interesting or amusing information, instead of having a
more conversational nature.

With respect to the number of followers dout(·), the distribution is unsurpris-
ingly very skewed, with an average of 31 and a median of 5. In the case of the
number of users being followed din(·), the distribution is also skewed with an
average of 31 and a median of 3. The two distributions are shown in Figure 3.

3.2 Memes and propagation dynamics

The sample covers 948K memes, which belong to different types: short snippets
of text, photos, audio, or videos. On average each meme generates 2.5 posts (the
original post + 1.5 reposts). Not surprisingly, the number of reposts per meme
seems to follow a power law distribution, as shown in Figure 4(left). The fraction
of memes that are never reposted is 77%, and most memes have very few reposts.

Since each user can only repost the same meme once, a meme propagation is
a tree (as the one in Figure 1). It might happen that two or more users start a
propagation of the same picture of piece of news independently and concurrently.
However, we treat these cases as different memes.

As we are interested in understanding highly viral memes, in the rest of this
section we focus our analysis on a sample of popular memes posted in the last 3
months of our observation period, and having more than 25 reposts. Our sample
contains 1,100 such memes. Statistics on size (total number of reposts), depth
(length of longest repost chain), and branching factors (number of reposts per
node) of the corresponding propagation trees are reported in Table 2.
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Table 2. Statistic of the propagation trees of the sample of highly viral memes.

min max avg median
size 26 823 52.8 40

depth 2 33 8.5 8
branching factor 1 216 2.4 1

branching factor at the root 1 216 11.7 7

We can observe that the branching factor at the root is generally much larger
than the branching factor at the other nodes (11.7 in average, against 2.4 of
overall average). This may be due to the effect of time, as re-posts are more
likely to occur shortly after the item is posted for the first time.

Temporal dependency. We observe that most reposts occur shortly after a
meme is posted for the first time. Figure 4(right) shows that in most cases over
80% of the reposts of a meme are done in the first 10 days. Examining this fact
closer, we find that there are two ways, not necessarily independent, in which
repost probability depends from time.

First, as already said, the reposts probability depends on the age of a meme,
this is the time passed since it was first posted by any user and the present:
in Figure 5(left) we can observe an exponential decay in the repost probability
during the first few days.

Second, if we consider the time between a particular re-post by a user u (not
necessarily the first one) and a repost from one of the followers of u, we observe
that this is often in a quite narrow interval, as shown in Figure 5(right). This
can be explained by constraints in the screen space of the user interface: after
some time all memes are eventually moved to the second page, which is rarely
visited.

Similarity dependency. We represent memes as bags of words (containing
text, tokens in their URLs, etc.) and each user as the concatenation of all the
memes she has ever posted or reposted. Next we compute similarity between
users and between memes and users using cosine similarity as detailed in Sec-
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tion 6.1. In each case (user-user or user-meme), we discretize the similarity into
bins containing the same number of pairs per bin.

Finally, for all the user-user pairs in each s, we compute the probability
that a meme posted by one user is re-posted by the other user (when both are
connected and their similarity is s); and in the same way, for all the user-meme
pairs in each bin s, we compute the probability that a meme posted by one user
is re-posted by one of her followers whose similarity with the meme is s.

The result in Figure 6 matches the intuition: the more similar a user is to
one of her followers, the more likely that the follower will re-post a meme posted
by the followed, and similarly the more similar a meme is to a user, the more
likely she is to repost it.
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Fig. 6. Probability of a repost vs user-user similarity (left) and vs user-post similarity
(right).

Other factors. We also tested how much the popularity (number of follow-
ers in the social graph) of the user starting a meme, affects the extent of the
propagation of the meme: the two factors seem not to be correlated. Similarly,
the branching factor at the root of a propagation tree (number of re-posts by
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followers of the original poster) does not seem to be correlated with the size of
the propagation tree.

3.3 Patterns of propagation

As we stated earlier, each meme propagation is a tree where the root is the user
that started the meme and all the internal nodes are the users that reposted
the meme. As we have a dataset of many propagations (a bag of trees) it is
natural to analyze which common subtrees structure we can find frequently in
our Yahoo! Meme propagations. Therefore we apply a frequent pattern mining
approach [37] to our dataset, where the pattern extracted are subtrees.

The study of frequent patterns might uncover sub-structures in the network
interaction. In [26] the authors also adopted frequent patterns to understand
influence dynamic in a recommendation network. In their work patterns are
directed subgraphs.

In our analysis we focus on patterns which are subtrees whose nodes are
labelled w.r.t. two different aspects. The first one is related to the relative elapsed
time of repost. This means that we label each node using the time it took to
repost. We discretize the time in six bins as reported in Table 3. We name the
resulting dataset Relative Time.

Table 3. Discretized time as node labels in Relative Time dataset.

class elapsed time

0 the root node
H no more than 1 hour
D more than 1 hour but no more than 1 day
W more than 1 day but no more than 1 week
M more than 1 week but no more than 1 month
Y more than 1 month

The second aspect that we want to analyze is the impact of the popularity
of users, that is their number of followers, or in other terms, their out-degree
in the social graph. Therefore we label each node with its number of followers.
Also in this case we discretize in three bins: 0 represents nodes with less than
50 followers, 1 represents nodes with at least 50 but less than 100 followers and
2 represents users with at least 100 followers. We name this dataset Followers.

We run frequent subtrees mining algorithm [37] on these two datasets using
a minimum support threshold of 70% for the Relative time dataset and 40% for
the Follower dataset. In both datasets we use a very high threshold because we
are interested in the very frequent propagation patterns. For the first dataset
we use a threshold of 70% because with a lower threshold the algorithm crashes
due to memory requirements.

Using these parameters we extract 555 frequent patterns from the Relative
Time dataset and 56 frequent patterns from the Follower dataset. Example of
obtained patterns are reported in Figure 7 and Figure 8 respectively.
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The patterns reported in Figure 7 are a selection of representative frequent
patterns among the 555 found in the Relative Time dataset. Each pattern is
reported with its absolute support, that is the number of propagations that
contain the pattern, among all the 1,100 propagations in our dataset. It is worth
noting that many patterns can be contained in the same propagation: as an
extreme example, a single propagation might actually contain all the patterns
in Figure 7.

A first worth observation is that all the reported patterns have very high
absolute support, all appearing in at least 800 of the 1,100 propagations. The
second observation is that at the root node we can observe a mixture of quick
reposts (the most) and few late reposts. In particular quick, early reposts create
patterns of propagation both in depth and in width, thus confirming that they
are the driving force behind the successful viral spread of information. This is
confirmed also by our previous findings that the recency of a meme increases the
propagation probability.

The patterns extracted from the Follower dataset (Figure 8) are mostly done
of nodes of degree class 0. This is a consequence of the power law of the out-degree
of the social network, that makes the vast majority of the nodes belong to class
0. It is interesting to observe that the popularity of users does not necessarily
dictate the direction of the propagation of a meme. In Figure 8 indeed we can
observe both a pattern of propagation from a class-7-degree node to a class-0-
degree node, and a pattern of propagation in the reverse direction, i.e., a pattern
of propagation from a class-0-degree node to a class-5-degree node.
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Fig. 7. Some representative patterns extracted from the Relative Time dataset, with
their absolute support. Letters in nodes indicate elapsed time discretized as less than
one Hour, Day, Week, Month, or Year.
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Fig. 8. Some representative patterns extracted from the Follower dataset, with their
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3.4 Summary of findings

The findings of our preliminary inspections of Yahoo!Meme data, which drive the
propagation modeling and simulation we discuss in this paper, are the following:

– The number of reposts per meme is very skewed and follows a power law.

– A user v is more likely to repost a meme of user u, shortly after u’s post.
Repost probability also depends on the absolute age of the meme.

– Reposts are more likely between two users who have posted similar memes
in the past.

– Reposting a meme m is more likely for users who have posted memes similar
to m in the past.

Based on these finding in the next section we formally define a meme prop-
agation model, which is a variant of the Independent Cascade model [21].

4 The meme ranking problem

In this section, we introduce the meme propagation model that we adopt, then
we formally define and characterize the meme ranking problem.
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Table 4. Notation used in the following sections.

G = (V,E) the followed-follower social graph

post(u,m, t) user u posted meme m at time t

repost(v, u,m, t) user v reposted meme m at time t via u

in(v, t) set of incoming memes for user v at time t

cand(v, t) ⊆ in(v, t) the set of candidate memes for user v at time t

φ(v, t) ⊆ cand(v, t) the meme rank for user v at time t, i.e., the selected k memes

σ(m,v) the expected spread of meme m from user v

interest(m,v) a similarity value between a meme m and a user v

influence(u, v) extent of influence exerted by user u on user v

Ω super-user

num clock number of timestamps of the simulation process

SUPER USER LIV E the number of timestamps Ω can propose new memes

4.1 Meme propagation model

We have a social network modeled as a followed-follower graph, i.e., a directed
graph G = (V,E), where an arc (u, v) ∈ E represents the fact that user v is
a follower of user u. We represent by M the set of all memes. In our meme
propagation model time unfolds deterministically in discrete steps. If a user u

posts a meme m at time t, whether a new post or a repost, we denote this event
by the predicate post(u,m, t). Similarly we use the predicate repost(v, u,m, t)
to denote that v reposted m “via” u.

We assume (for the moment) that we are able to define the probability of
the event repost(v, u,m, t). In other terms, denoting by T the temporal domain,
we assume we have a computable function p : M × V × V × T → [0, 1], that
might be defined, for instance, by inference from historic data. We expect this
probability to depend on factors such as the influence exerted by user u on her
follower v, the topic-interestingness of meme m for v, and elapsed time.

Since in this paper our goal is to devise meme ranking strategies, we focus
only two types of posts: initial posts and reposts that are due to the meme
rank itself. In other terms we do not consider repost of memes which were not
presented to the user by the meme ranking system: even if these are obviously
possible in a real system, we are not interested in studying them here. Finally,
we assume that a user can not post the same meme twice.

The meme rank is a function φ that at each timestamp t selects the top-k
memes to show to v from a set of candidates memes cand(v, t). We denote the
set of selected memes as φ(v, t). The set of candidates memes is the union of all
memes previously posted by users in V that are followed by v, i.e.,

in(v, t) = {m ∈ M | post(u,m, t′) ∧ (u, v) ∈ E ∧ t′ < t}.

From in(v, t) we must subtract the memes previously presented to v, or previ-
ously posted by v. That is:

cand(v, t) = in(v, t) \ {m ∈ M | post(v,m, t′) ∨ φ(v, t′)}.
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We have now all the ingredients to define the meme propagation model. At
each timestamp t, a user v “decides” for each meme presented to her by the
meme ranking function whether to reposts it or not. In our propagation model
this decision is probabilistic, i.e., it is determined by flipping a coin of bias
p(repost(v, u,m, t)).

Note that the same meme can enter the candidate set for v, “via” two different
users that v follows. In this case the two instances are considered independently
and both can be selected by the meme ranking. If both are selected, the user
will flip a coin for both of them independently. The only constraint is that the
user can only post a meme once.

We have described how reposts happen. We still have to say how we model
initial posts. For sake of uniformity (and later also to implement our propagations
simulator) we model initial posts by augmenting our graph G with a special
node Ω, which is followed by all the users in V . Essentially Ω is a super-user,
the environment, which feeds the system with new ideas that the other users can
eventually adopt. Node Ω posts at each timestamp some new memes from an
infinite queue: these memes are environmental inputs that the users in V might
decide to post or not, following the same mechanism of reposting described
above.

4.2 Problem characterization and complexity

The meme ranking problem requires to select at each timestamp t and for each
user v, the set of k memes whose propagation subtrees rooted in v are expected
to be the largest (in number of nodes) among the memes in cand(v, t).

Problem 1 (The Meme Ranking Problem). Given a followers graph G = (V,E)
and a k ∈ N, and assuming the meme propagation model described in Section
4.1, the Meme Ranking Problem requires to define a function φ : V × T → 2M

that for each user v and a timestamp t, selects a set of memes φ(v, t) ⊆ cand(v, t),
|φ(v, t)| = k, to present to user v. As the propagation model is probabilistic, the
function φ must maximize the expected number of reposts:

E[
∑

m∈M

|{w ∈ V | ∃t ∈ T : post(w,m, t)}|].

The complexity of the problem derives from the fact that the decisions made
by the meme ranking function at one node are not independent from the decisions
made by the same function at all the other nodes. Consider a node w which is
a follower of v. The meme ranking for v must take into account the likelihood
that a meme m will be reposted by w if posted by v. But this likelihood strongly
depends on the probability that m will be selected by the meme ranking for w
once that v posted w. This probability in turn depends on what is posted by all
the users that w follows, but also on the likelihood of all the other users following
w of being interested in a given post, and recursively on all the network.
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Another level of hardness is brought in the picture by the probabilistic frame-
work. Indeed any meme m ∈ M induces on the social graph G = (V,E) a differ-
ent probabilistic graph Gm = (V,E, p), where p is the function described above
that associates to each arc (u, v) ∈ E the probability that m will “travel” over
the arc (i.e., p(repost(v, u,m, t))). Those probabilistic graphs are all different
because different memes have different chances of being interesting to a given
user.

Even removing all the dependencies previously described the problem re-
mains hard. Consider the simpler, local version of the problem, in which we
execute the meme rank for a single node v and we assume that whatever posted
by v will also be shown to all the other users. In other words, the meme rank
only applies to our node v, while we assume that any other node w can see and
repost any meme m ∈ cand(w, t).

Definition 1 (Expected spread of a meme).
Given a meme m ∈ M , its corresponding probabilistic graph Gm = (V,E, p), and
a node v ∈ V , consider the probability space in which each sample point specifies
one possible set of outcomes for all the coin flips on the arcs in E. Let X denote
one sample point in this probability space. That is, X is a deterministic subgraph
of Gm containing all the arcs for which the coin flip has given a positive outcome
(m can travel on that arc). Given another node w ∈ V,w 6= v, let path(v, w) be
an indicator random variable that is 1 if there exists a directed path from v to w

and 0 otherwise. Moreover let pathX(v, w) denote the outcome of such variable
in X.

We define the spread of m from v in X as the number of nodes reachable
from v in X:

σX(m, v) =
∑

w∈V

pathX(v, w).

We denote the expected spread of a meme m from a node v as σ(m, v):

σ(m, v) =
∑

X

Pr[X ] · σX(m, v).

Problem 2 (Local Meme Ranking). 5Given a user v, a timestamp t, and k ∈ N,
the problem requires to compute φ(v, t) ⊆ cand(v, t), |φ(v, t)| = k, such that:
∄m1 ∈ cand(v, t) \ φ(v, t), m2 ∈ φ(v, t) : σ(m1, v) > σ(m2, v).

The hardness of this simpler problem derives from the fact that computing
the expected spread requires to sum over all possible worlds X (using the jargon
of probabilistic/uncertain data management), and these worlds are 2|E|.

5 This problem is in a sense the converse of the Influence Maximization problem,
defined in [21] in the context of Viral Marketing. In their problem it is given a single
piece of information and the problem is that of identifying k users from which to start
the propagations so to maximize the expected spread. Oppositely in our problem we
are given a single user and we want to select k memes to propagate.
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To further characterize the complexity of this computation, consider the fol-
lowing. By linearity of expectation we have that:

σ(m, v) = E[
∑

w∈V

path(v, w)] =
∑

w∈V

E[path(v, w)].

The expected value of an indicator random variable for an event is just the prob-
ability of that event. Thus to compute σ(m, v) we can just sum the probability
of each node w to be reachable from v:

σ(m, v) =
∑

w∈V

Pr[path(v, w) = 1]

The problem of computing the probability that two nodes are connected in a
probabilistic graph is called reliability problem, that is known to be #P-complete
problem [35]. It is very unlikely that there exists a polynomial time exact algo-
rithm for a #P-complete problem as this would imply thatP = NP, thus usually
problems in this class are approximated by means of Monte Carlo sampling (see,
e.g. [28], Chapter 10). In our context this would mean: for a meme m and a
user v, sample r possible worlds X according to their probability distribution,
and compute the spread in these deterministic graphs. The average spread is an
unbiased estimator of the expected spread of m from v.

In order to establish a bound on the number of sampled graphs (or possible
worlds) needed to provide a good approximation of the expected spread σ(m, v)
we exploit Hoeffding Inequality [18].

Theorem 1 (Hoeffding Inequality).
Let X1, X2, . . ., Xr be independent and identically distributed random variables.
Assume that Xi are almost surely bounded, that is ∀i, P r(Xi ∈ [ai, bi]) = 1. Then
for the sum of the variables S = X1 + ...+Xr we have

Pr(|S − E[S]| ≥ ǫ) ≤ 2 exp(−
2ǫ2

∑r

i=1(bi − ai)2
).

�

The next lemma, proving the approximation of the sampling, is a direct
application of Hoeffding Inequality.

Lemma 1. Given a node v ∈ V , a meme m ∈ M , and its corresponding prob-
abilistic graph Gm = (V,E, p). Consider accuracy parameters ǫ and δ, and a
number of samples r. Let Xi, 1 ≤ i ≤ r, be a set of r graphs sampled according
to their probability distribution6. The random variables σXi

(m, v) are indepen-
dent identically distributed and they are bounded in the range [0, |V | − 1]. They
also have the same expectation E[σXi

(m, v)] = σ(m, v).

6 The probability of a possible world X is given by

Pr[X] =
∏

e∈EX

p(e)
∏

e∈E\EX

(1− p(e)) ,

where EX ⊆ E denotes the set of arcs for which the coin flip has given a positive
outcome in X.
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By selecting r ≥ (|V |−1)2

2ǫ2 ln(2
δ
), we have:

Pr(|
1

r

r
∑

i=1

σXi
(m, v)− σ(m, v)| ≥ ǫ) ≤ δ;

i.e., r samples provide an (ǫ, δ)-approximation for σ(m, v).

4.3 Discussion

Notice that even though the number of samples is polynomial, and not expo-
nential as the exact counting, due to the factor (|V | − 1)2 it is still prohibitively
large. In their paper on the influence maximization problem [21], Kempe et al.
need to compute the expected spread in the key step of the greedy algorithm.
They find empirically that simulating the propagation 10K times brings a rea-
sonably good approximation in a network with approximately 10K nodes and
50K arcs. This is still very costly, but acceptable in their context as: (1) they
must perform it only k× |V | times (where k is the number of step of the greedy
algorithm, that is also the desired size of the set of users to target in a direct
marketing campaign); (2) their algorithm runs off-line, as it is in the context of
a marketing decision making process, and not an on-line recommendation.

Instead in our context the meme rank must be performed on-line, at each
timestamp t, for each user v of the network, and for each candidate meme m ∈
cand(v, t), where |cand(v, t)| ≫ k. This makes it prohibitive to adopt simulation
based approximation as an actual meme ranking strategy.

We also considered to apply simulation only to a bounded extent. In concrete,
we tried as meme rank strategy to select the top-k memes w.r.t. their spread up
to a distance-2 neighborhood of the node v. However, even this light simulation
turned out to be computationally prohibitive, or better, unfeasible in a real-world
on-line system.

Following these theoretical and empirical considerations, we can only rely
on simple and efficient heuristics that can be adopted in a real-world on-line
setting, as we do next. However, efficiently computing or approximating the top-
k memes w.r.t. their expected spread, is an interesting open problem deserving
further investigation.

5 Heuristic Methods

In this section we describe several heuristics for solving the meme ranking prob-
lem. In devising these heuristics, the main design goals are simplicity and com-
putational feasibility, as the meme ranking needs to be executed for all the users
and at each timestamp while they are logged into the microblogging system.

Let v be the user for which we are computing the meme rank. We intro-
duce four groups of methods: baseline methods for comparison purposes; user-
centered methods, i.e., heuristics geared only on v; followers-centered methods
i.e., heuristics geared on the immediate followers of v; and methods combining
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the best method from each of the previous three groups. These heuristics will
be then evaluated in Section 7.

5.1 Baseline methods

As baselines for the meme ranking function we consider the Random and Re-

cency heuristics.
The Random heuristic simply chooses k memes at random (from the ones in

the set of candidate memes for user v at time t). The Recency heuristic chooses
the k most recent memes from the candidates. This method is justified by the
temporal analysis we presented in Section 3.2, but more importantly, by the
fact that it is the de facto standard in most microblogging platforms including
Yahoo! Meme.

5.2 User-centered methods

The methods in the second group only focus on the user v to define the meme
ranking function φ(v, t), without considering her followers.

The first method in this group is the Interest heuristic. This strategy
chooses the k memes which are more likely to interest user v. In other terms,
Interest selects the k memes which have the highest topic similarity with user
v (that we denote interest(m, v)), without considering the influence exerted on
v by those users that she follows and that posted the memes.

The second method, named Influence, instead considers as the score of the
meme the influence exerted on v by the user which posted the meme, that we
denote influence(u, v), without considering topic similarity.

The method combining topic similarity and user influence is named Re-

postProbability. This is essentially p(repost(v, u,m, t)), the probability of
reposting introduced in Section 4. This method considers both influence(u, v)
and interest(m, v), and it is a function of time.

The details on how interest(m, v), influence(u, v) and p(repost(v, u,m, t))
are learnt from a log of historical propagation data will be provided in Section
6.1.

In our simulation framework all the values of interest(m, v), influence(u, v)
and p(repost(v, u,m, t)) are precomputed, for this reason the complexity of these
approaches is the ranking step base on the different measure involved. Also in
this case, given the number of average memes per user equals to q, the complexity
is O(q log q).

5.3 Followers-centered methods

The methods in the third group are based on the set of followers of our user
v. The idea is that the meme ranking function should select k memes that are
more likely to be reposted by the followers of v. For this purpose we adopt
the measures of interest and probability described above: note that in this case
influence(v, w) is not appropriate as it is independent from the meme.
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In order to make the heuristics computationally lightweight, we select a fixed
number n of followers of v and we aggregate the interest and probability measures
over the set of selected followers. In our experiments, except where explicitly
stated, we always sample at most n = 10, and we aggregate the score by taking
the average and the maximum.

As methods to select the n followers to aggregate on, we tried different strate-
gies: random selection, popularity or out-degree (i.e., select the top-n followers
that have the largest number of followers), and spread (i.e., select the top-n
followers that in the past have received the largest number of reposts). We em-
pirically found that considering the top-n followers w.r.t. spread yields better
performance than popularity. This confirms the finding on Twitter by Cha et
al. [6]: the out-degree of a user is not the best metric of her future influence.

Therefore, in what follows, we adopt the spread (computed off-line on a past
log of propagations) as criterium to select the n “most important” followers, on
which to compute our on-line, lightweight heuristics.

To obtain the complexity for this group of heuristics we consider that the
cost of both aggregation functions is linear in the number of followers n and the
values of the functions interest(m, v) and p(repost(v, u,m, t)) are precomputed.
For each meme we perform n operations to obtain the aggregate value. If we
always assume q as the average number of memes per user, we perform O(qn)
operations. When we have computed all the aggregation values for each meme,
we need to sort them. This operation costs O(q log q) operations. For this reason
the complexity of this group of heuristics is equal to O(qn+ q log q).

6 Simulation framework

In this section we describe the simulation environment that we developed to
compare different meme ranking strategies. One of the main features of this
simulation framework is that it is based on real-world information, and the pa-
rameters are learnt from actual logs. This feature distinguishes our empirical
evaluation from most previous works on influence propagation, where the pa-
rameters (e.g., the influence probabilities) of the propagation simulations are
usually sampled at random from a uniform distribution.

Essentially our simulator is a software that takes in input (1) a social net-
work graph, (2) a set of memes, (3) a function to compute the repost probabil-
ity p(repost(v, u,m, t)). Then, it simulates meme propagations according to the
propagation model described in Section 4.1. In our experiments, all these pieces
of input come from the Yahoo! Meme dataset described in Section 3.

In order to map from the real data to the propagation model (and thus to
the simulator), we have to decide how to discretize time. We assume an hourly
granularity: that is each timestamp in our discrete time model corresponds to
an hour. This also implicitly implies that we compute a new meme rank for each
user every hour.

Other input parameters of the simulator are the number of memes which will
feed the network during the simulation, the number of memes which will enter
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in the network at each new timestamp, and the total temporal extension of the
simulation. Last but not least, the number of simulation rounds that we perform
due to the intrinsic probabilistic nature of the propagation model.

Algorithm 1 FeedRankingSim(k,num clock,Users,SUPER USER LIFE)

1: repost counter = 0
2: t = 1
3: while t ≤ num clock do

4: if t ≤ SUPER USER LIV E then

5: for all v ∈ Users do

6: for all m ∈ Ω do

7: r = random Number (flips a coin)
8: if prob(v,Ω,m, t) > r then

9: addPost(u, post, clock)
10: for all v ∈ Users do

11: recSet = φ(v, t)
12: for all m ∈ recSet do

13: r = random Number (flips a coin)
14: selected = false

15: if (prob(v, u,m, t) > r) then

16: repost counter ++
17: selected = true

18: addPost(u,m, t)
19: t++
20: RETURN repost counter

The general loop of the simulator is presented in algorithm 1. The proce-
dure takes as parameters the number of top memes selected from the heuristic
(k),the number of timestamps of simulation to perform (num clock), the users
set (Users), and the duration (in timestamps) of the period during which Ω

can propose new memes (SUPER USER LIFE). For each timestamp t the
simulator first shows to all the users the set of new memes currently posted by
the super-user Ω, then for each user v it computes the meme rank φ(v, t) for the
given heuristic. For all the memes in φ(v, t) and the new memes coming from Ω,
the user flips a coin to decide which to post and which not to post according to
the associated repost probability (as described in Section 4.1).

6.1 Learning the repost probabilities

An important input for our simulator are the repost probabilities, which we
compute as a function of time, interest and influence. We next describe how we
learn these probabilities from a log of past meme propagations.

Interest We first discuss how we compute interest(m, v) for each meme m and
each user v. We represent m as a bag-of-words – considering all the words in its
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text, or, in the case of images or multimedia files, all the tokens in the URL of
the meme. We represent a user v as a concatenation of the bags-of-words of all
the memes she has ever posted.

Next we compute the similarity between a user and a meme, or between two
memes, using cosine similarity of their bags-of-words [4].

Finally, we also consider an extended representation of a meme, in which we
concatenate all the bags-of-words representing the users who first re-posted that
meme. This extended representation turns out to be necessary in practice as
most memes are images, and we do not attempt to process the images to extract
visual features from them. Of course any other reasonable meme-representation
can be adopted within our framework.

Influence Following [15] we define the influence exerted by u on v by considering
that each meme posted by u has a fixed probability of being reposted by v. When
a repost occurs, we consider this a successful case of influence. Each attempt,
that is each meme posted by u, can be viewed as a Bernoulli trial.

The Maximum Likelihood Estimator (MLE) of success probability is the ratio
of number of successful attempts over the total number of trials. Hence, influence
probability of v on u is estimated as:

influence(u, v) =
|{m ∈ M | ∃t ∈ T : repost(v, u,m, t)}|

|{m ∈ M | ∃t ∈ T : post(u,m, t)}|
.

Repost probability First, we learn a time independent repost probability from
interest(m, v) and influence(u, v). This is done by means of logistic regression
on a training dataset made of positive and negative instances (reposts happened
or not) from Yahoo! Meme data. We denote this learnt probability pmu,v.

Then, inspired by Figure 5(right) and following [15], we incorporate time
by means of a step function. That is, the repost probability p(repost(v, u,m, t))
remains equals to pmu,v for an interval of time τv, then it drops to a non-null but
very small ǫ (in all our experiments we used ǫ = 10−6).

The time interval length τv is defined as the ceiling of the average elapsed
time, observed in the data, between a post by a user u that is followed by v, and
its repost by v.

More precisely, let tu the time in which u posted m, we define the time-
dependent repost probability as follows:

p(repost(v, u,m, t)) =

{

max(pmu,v, ǫ) if t− tu ≤ τv;
ǫ otherwise.

The distributions of the learnt parameters pmu,v and τv are reported in Figure
9. We can observe that most of the users have a very short average elapsed time:
more than half of the users have τv = 1 hour.

In the case of the memes “posted” by the super-user Ω we compute the
probabilities p(repost(Ω, v,m, t)) in the same way as we do for all the other
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Fig. 9. Left: distribution of pmu,v. Right: distribution of τv.

users. In this case the probability will represent the likelihood for the user v to
start a new meme.

The only difference between the theoretical propagation model and the im-
plementation in the simulator, is that for each meme m posted by Ω we make
the user v that has the maximal p(repost(Ω, v,m, t)) post the meme determin-
istically: this way we force all the input memes to enter in the network at least
once. All the other users will flip the coin as usual. The effect is that all the
memes will have at least one initiator, and sometimes (rarely) more than one.

7 Meme ranking experiments

This section presents our experimental results. They were obtained by running
simulations of the behavior of the network during one simulated month (720
hours). We “seed” the network by making Ω offer 10 memes (real memes from
Yahoo! Meme) per hour during the first 100 simulated hours, for a total of 1,000
memes. As described in Section 3 the social network contains 57K users. At each
timestamp, the meme rank presents up to k = 5 posts to each user.

We tested all the strategies described above, and executed 50 independent
runs of the simulator for each strategy. It should be noted that at the present time
we can not compare with any previously proposed method, as we are the first
to introduce and study the meme ranking problem. Moreover comparison with
simulation-based estimation of memes spread is also unfeasible as we reported
in Section 4.3.

The experimental results in terms of total network activity (number of re-
posts), averaged across all the runs of each experiment, is shown in Table 5.

A first observation is that all methods perform much better than Random,
with Recency generating more than the double of global activity.

The good performance of Recency is consistent with the dependency of
repost probability from time. The importance of time is also confirmed by the
fact that RepostProbability performs much better than Interest and In-

fluence (recall that RepostProbability is a combination of Interest and
Influence to which we incorporate the time dependency).
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Table 5. Final network activity for each meme ranking strategy, expressed in thousands
of posts. Boldface indicate the best in each group. The last column is the wallclock
time of one run of the simulator.

Method Activity [K] Time [H:M]

Random 29 ±1 0:03
Recency 59 ±1 0:16

Interest 49 ±2 0:29
Influence 47 ±1 0:26
RepostProbability 58 ±1 0:36

Followers10MaxProb 53 ±1 0:29
Followers10AvgProb 55 ±1 0:36
Followers10MaxInt 47 ±1 0:26
Followers10AvgInt 48 ±1 0:26

Combo-PR 61 ±3 0:51
Combo-PF 64 ±1 0:53
Combo-PRF 63 ±2 1:25

The methods based on the followers of the user suffer from the fact that taken
alone, they do not consider at all the probability that a meme will pass the first
obstacle, that is, the likelihood that our user will post it when presented by the
meme rank. This is obviously an important limit, but it can be overcome when
combining with methods that keep in consideration such first and main hurdle.

Finally, even in this group of methods, the ones that are time-dependent out-
perform those that are not, with average outperforming maximum as aggregation
method.

Combined methods. Table 5 also contains results of heuristics obtained by
combining the best methods from each group. Specifically: Combo-PR aggre-
gates RepostProbability and Recency, Combo-PF aggregates Repost-

Probability and Followers10AvgProb, finally Combo-PRF combines all
the three methods. The aggregation of the ranks in each case is done by simple
Borda counting.7

As expected all the combined methods work well, outperforming all the base
heuristics. It is interesting to note that Combo-PF performs slightly better
than Combo-PRF this can be explained by the fact that the temporal depen-
dency is already considered by RepostProbability, thus making Recency

superfluous.
Figure 10 provides more details about how network activity evolves over time

under the different heuristics. Overall, these experiments demonstrate that the
particular set of memes selected and shown to users every time they log in, has
a strong influence in the level of activity of the entire system.

Efficiency. Our straightforward implementation is quite efficient. We ran it on
a quad-processor Intel Xeon 3GHz with 16GB of RAM. The most expensive

7 http://en.wikipedia.org/wiki/Borda_count
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Fig. 10. Results of the meme ranking simulation. Top: network activity over time.
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heuristic to simulate is Combo-PRF which takes about one hour and a half to
simulate one month of network activity, as shown in the last column of Table 5.
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The running times are also indicative of the time computational requirements of
the different strategies in practice.

The conclusion we can draw from these experiments is that the best trade-
off between efficacy and efficiency is achieved by Combo-PF which essentially
combines the probability of reposts of the given user with that of its immediate
followers. Therefore, we can conclude that considering the followers of a user
induces improvements in the performance achievable by only considering the
user herself, or the recency of the meme.

Finally, since this method is quite efficient, a natural question to ask is to
which extent we can improve the performance by paying a little bit larger price
in terms of computation time. This is what we investigate next.

Varying sample size. We focus on the followers-based heuristics assessing how
the size of the sample of followers selected to perform the computation affects the
meme rank performance and its run time. Results for Followers10AvgProb

are reported in Figure 11. As expected, sampling more neighbors makes the
strategy perform better at the expense of a longer running time. The number
of neighbors to sample is a parameter to be fine-tuned according to the desired
trade-off and the target response time of the system to which the meme ranking
solution is applied.
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Fig. 11. Results of followers-based heuristics when varying the number of followers
sampled. Left: in terms of network activity. Right: in terms of wallclock time of the
simulation.

8 Conclusions

In this paper we introduced the Meme Ranking Problem, as the problem of
selecting k memes to show to a user when she logs into a microblogging system.
The objective is to maximize the overall activity of the network, that is, the
total number of reposts that occur. We proposed a meme propagation model,
which is valid in general, beyond the specific objective function that we tackled.
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The proposed model is based on empirical observations drawn from an analysis
of meme propagations in Yahoo! Meme.

We choose Yahoo! Meme as the basis of our analysis, because this microblog-
ging platform is more explicitly oriented towards creating information cascades8

than other platforms that have a more conversational design. However, we are
already working to reproduce our analysis in other platforms, such as, e.g., Twit-
ter.

In the theoretical part of our investigation, we deeply characterized the com-
putational hardness of the meme ranking problem and we showed that, even for
a simpler formulation, we need to compute the expected spread of a meme from
a user, that we proved being #P-complete. We discussed theoretical bounds
for sampling, thus showing that even approximate solutions for this problem
are prohibitively costly for our on-line recommendation context. Therefore, we
turned our attention to efficient yet effective heuristic methods. In particular,
we devised heuristics based on estimating the probability of reposts. Such prob-
ability is learnt from a real log of past propagations and it takes into account
the influence existing among users, the topical similarity, or interest, of a meme
to a user, and the intrinsic decay of the repost probability along time.

We compared our methods to two baselines, namely random selection, and a
recency-based heuristic. The latter is the de facto standard for most microblog-
ging platforms including Yahoo!Meme. The results of our experiments confirmed
that (1) the proposed methods are feasible and can be adopted as an on-line
meme ranking method, and (2) they induce a total level of network activity
larger than what is achieved with the baseline methods.

The main limitation of our work is the simulation-based evaluation, which is
by its nature a simplification of the real process. For instance, we assume many
things are constant during the simulation such as the users’ connections, the
rate of arrival of external posts, etc. The only possible way to overcome these
limitations is to conduct a real-world human-based assessment.

As online social networks continue becoming not only larger, but also more
densely connected [24], the problem of selecting what to show to users about
their contacts’ activities will become an even more pressing issue. Presumably,
the meme ranking problem will increase in practical importance, and thus finding
more effective solutions to the meme ranking problem will be part of our future
investigations.

Reproducibility: our simulator and instructions to access publicly-available
meme data through YQL, are available at http://barcelona.research.

yahoo.net/memerank
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8 Yahoo! Meme slogan is CREATE-FOLLOW-REPOST.
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