
HAL Id: lirmm-00798161
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798161v1

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hierarchical Co-Clustering: Off-line and Incremental
Approaches

Ruggero Pensa, Dino Ienco, Rosa Meo

To cite this version:
Ruggero Pensa, Dino Ienco, Rosa Meo. Hierarchical Co-Clustering: Off-line and Incremental Ap-
proaches. Data Mining and Knowledge Discovery, 2014, 28 (1), pp.31-64. �10.1007/s10618-012-0292-
8�. �lirmm-00798161�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798161v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

29 January 2020

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Hierarchical Co-Clustering: Off-line and Incremental Approaches / R. G. Pensa; D. Ienco; R. Meo. - In: DATA MINING
AND KNOWLEDGE DISCOVERY. - ISSN 1384-5810. - ELETTRONICO. - 28:1(2014), pp. 31-64.

Original Citation:

Hierarchical Co-Clustering: Off-line and Incremental Approaches

Published version:

DOI:10.1007/s10618-012-0292-8

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/121946 since 2016-06-28T15:22:35Z

This is an author version of the contribution published on:

R. G. Pensa, D. Ienco, R. Meo
Hierarchical Co-Clustering: Off-line and Incremental Approaches
DATA MINING AND KNOWLEDGE DISCOVERY (2014) 28

DOI: 10.1007/s10618-012-0292-8

The definitive version is available at:
http://link.springer.com/content/pdf/10.1007/s10618-012-0292-8

http://link.springer.com/content/pdf/10.1007/s10618-012-0292-8

Noname manuscript No.
(will be inserted by the editor)

Hierarchical Co-Clustering: Off-line and Incremental

Approaches

Ruggero G. Pensa · Dino Ienco · Rosa
Meo

Received: date / Accepted: date

Abstract Clustering data is challenging especially for two reasons. The di-
mensionality of the data is often very high which makes the cluster interpre-
tation hard. Moreover, with high-dimensional data the classic metrics fail in
identifying the real similarities between objects. The second challenge is the
evolving nature of the observed phenomena which makes the datasets accu-
mulating over time. In this paper we show how we propose to solve these
problems.

To tackle the high-dimensionality problem, we propose to apply a co-
clustering approach on the dataset that stores the occurrence of features in
the observed objects. Co-clustering computes a partition of objects and a par-
tition of features simultaneously. The novelty of our co-clustering solution is
that it arranges the clusters in a hierarchical fashion, and it consists of two
hierarchies: one on the objects and one on the features. The two hierarchies
are coupled because the clusters at a certain level in one hierarchy are cou-
pled with the clusters at the same level of the other hierarchy and form the
co-clusters. Each cluster of one of the two hierarchies thus provides insights
on the clusters of the other hierarchy.

Another novelty of the proposed solution is that the number of clusters
is possibly unlimited. Nevertheless, the produced hierarchies are still compact
and therefore more readable because our method allows multiple splits of a
cluster at the lower level.

Ruggero G. Pensa · Rosa Meo
Department of Computer Science, University of Torino, 10149 Torino, Italy
E-mail: {pensa,meo}@di.unito.it

Dino Ienco
IRSTEA Montpellier, UMR TETIS, 34093 Montpellier, France
E-mail: dino.ienco@teledetection.fr

Dino Ienco
LIRMM Montpellier, UMR CNRS, 34095 Montpellier, France

2 Ruggero G. Pensa et al.

As regards the second challenge, the accumulating nature of the data makes
the datasets intractably huge over time. In this case, an incremental solution
relieves the issue because it partitions the problem. In this paper we introduce
an incremental version of our algorithm of hierarchical co-clustering. It starts
from an intermediate solution computed on the previous version of the data
and it updates the co-clustering results considering only the added block of
data. This solution has the merit of speeding up the computation with respect
to the original approach that would recompute the result on the overall dataset.
In addition, the incremental algorithm guarantees approximately the same
answer than the original version, but it saves much computational load. We
validate the incremental approach on several high-dimensional datasets and
perform an accurate comparison with both the original version of our algorithm
and with the state of the art competitors as well. The obtained results open the
way to a novel usage of the co-clustering algorithms in which it is advantageous
to partition the data into several blocks and process them incrementally thus
“incorporating” data gradually into an on-going co-clustering solution.

Keywords Co-clustering · Hierarchical clustering · Incremental clustering

1 Introduction

Clustering is a popular data mining technique that partitions data into groups
(called clusters) in such a way that objects inside a group are similar to each
other, while objects belonging to different groups are dissimilar [15]. When
data are represented in a high-dimensional space, traditional clustering algo-
rithms fail in finding an optimal partitioning because of the problem known as
the curse of dimensionality. Some distance metrics have been proposed to deal
with high-dimensional data (e.g., cosine similarity) and feature selection tries
to solve the problem by a reduction in the number of features [26]. However,
novel approaches have emerged in the last years. One of the most appealing
approach is co-clustering [7,16,25] whose solution provides contemporaneously
a clustering of the objects and a clustering of the features. Co-clustering algo-
rithms are powerful because they exploit similarity measures on the clusters in
one dimension of the problem in order to cluster the other dimension: that is,
clusters of objects are evaluated by means of the clusters on the features and
vice versa. In this way objects are clustered on the basis of a reduced space -
the clusters of features - and not clustered on the original features whose high
number is the source of the problem.

One of the classical aims of clustering is to provide a description of the
data by means of an abstraction process. In many applications, the end-user
is used to study natural phenomena by the relative proximity relationships
existing among the analyzed objects. For instance, he/she compares animals by
means of the relative similarity in terms of the common features w.r.t. a same
referential example. Many hierarchical algorithms have the advantage that are
able to produce a dendrogram which stores the history of the merge operations
(or split) between clusters. As a result they produce a hierarchy of clusters

Hierarchical Co-Clustering: Off-line and Incremental Approaches 3

and the relative position of clusters in this hierarchy is meaningful because
it implicitly tells the user about the relative similarity between the cluster
elements. This hierarchy is often immediately understandable: it constitutes a
helpful conceptual tool to understand the inner, existing relationships among
objects in the domain; it provides a visual representation of the clustering
result and explains it. Furthermore, it provides a ready to use tool to organize
the conceptual domain, to browse and search objects, discover their common
features or differences, etc. It is a conceptual tool especially advisable if one
cluster hierarchy - built on one dimension of the problem, the objects - gives
insights to study the other dimension of the problem - the features - and gives
information to produce the feature hierarchy. In this paper we propose a co-
clustering algorithm for co-occurrence data that simultaneously produces a
hierarchical organization in both of the problem dimensions: the objects and
the features. In many applications both of the hierarchies are extremely useful
and are searched for: in text mining, for instance, documents are organized
in categories grouping related documents. The resulting object hierarchy is
useful because it gives a meaningful structure to the collection of documents.
On the other side, keywords are organized in groups of synonyms or words
with related meaning and this hierarchy provides a semantic network with
meaningful insights on the relationships between keywords. In bioinformatics
and in other applications, a similar discussion applies: genes or proteins are
grouped into clusters sharing a similar behavior while biological experiments
by their related, involved functionalities.

In this paper, we tackle the problem of managing an evolving collection of
objects. As a matter of fact, in common applications, repositories of documents
are not static, but they may evolve over time. New documents may be added
to the collection at any moment, and may require to be inserted in the hierar-
chical structure, following the co-clustering schema. The higher is the number
of documents that are added to the collection the more the clustering structure
becomes obsolete. The insertion of new documents in the clustering structure
is not without consequence for both the hierarchies which might need even to
be completely restructured in order to suitably host the new documents. In
this paper we deal with this insertion process that updates the co-clustering
schema and the hierarchies. As re-executing the whole co-clustering process is
computationally expensive, a solution may consist in executing this task less
frequently than needed. However, if the frequency of object arrival is quite
high, the hierarchies may become inconsistent with the new data, and may
lead to erroneous data analysis. Thus, in this paper, we propose an incre-
mental approach which updates existing hierarchical co-clustering structures.
We show that the results obtained by an incremental processing of portions
of the dataset are substantially similar to those obtained by processing the
whole dataset at once. Moreover, the incremental approach is significantly less
time-consuming than the complete hierarchical co-clustering process.

The key contributions of this paper are the following. We present HiCC,
a co-clustering algorithm for co-occurrence data, that are datasets in which
the objects are represented by the occurrence of features. HiCC simultane-

4 Ruggero G. Pensa et al.

ously produces two hierarchies of clusters: one on the objects and the other
one on the features. HiCC employs an unusual cluster association measure in
co-clustering: Goodman-Kruskal τ . It has been considered as a good choice in
a comparative study on several evaluation functions for co-clustering [29,28].
As we have shown also in [20] and will show also here, in the experimental sec-
tion, these hierarchies are meaningful to the end-user and are valid also under
the viewpoint of several objective measures. In fact, HiCC is able to produce
compact hierarchies because it produces n−ary splits in the hierarchy instead
of the usual binary splits. This compactness improves the readability of the
hierarchy. One of the interesting novelties of HiCC is that it is parameter-less:
the user is not asked to provide the number of clusters for the two dimensions,
which is not easy to set and usually requires a pre-processing stage. Last but
not least, in this paper we formulate an incremental version of our algorithm
which requires less computational time, but guarantees almost the same results
than the standard version.

The paper is organized as follows: Section 2 presents an example that
motivates the choice of using Goodman-Kruskal’s association measure for co-
clustering. We present the core of our approach in Section 3, and its incre-
mental version in Section 4. The related experimental validation is detailed
in Section 5. Section 6 analyzes the literature related to co-clustering and to
the hierarchical models. Finally Section 7 concludes and presents some future
perspectives of our work.

2 An introduction to Goodman-Kruskal τ

Goodman-Kruskal τ [13] has been originally proposed as a measure of as-
sociation between two categorical variables: it is a measure of proportional
reduction in the prediction error of a dependent variable given information on
an independent variable. In Figure 1 we present a contingency table storing
the distribution of the values for two categorical variables in a set of observa-
tions. The two categorical variables of the example are Job and Salary whose
values have been categorized into salary levels. In this table, dij denotes the
frequency of observations in database examples having respectively the i-th
value of the row variable (Salary), and the j-th value of the column variable
Job.

Job=Clerk Job=Teacher Job=Manager Job=Journalist

Salary=Low d11 d12 d13 d14
Salary=Medium d21 d22 d23 d24
Salary=High d31 d32 d33 d34

Fig. 1 A contingency table of two categorical variables.

Let us take one of the two variables (e.g., Salary) as the dependent variable
whose values should be predicted from the values of the other variable (Job),

Hierarchical Co-Clustering: Off-line and Incremental Approaches 5

considered as the independent variable. τSalary|Job determines the predictive
power of the variable Job for the prediction of the variable Salary. The predic-
tive power of Job is computed as a function of the error in the classification of
the value of Salary.

The prediction error is first computed when we do not have any knowledge
on the values of Job. ESalary denotes this error here. The reduction of this
error allowed by Job is obtained by subtraction from ESalary of the error in the
prediction of Salary that we make when we have the knowledge of the value
of Job (the independent variable) in any database observation. ESalary|Job

denotes this latter error. The proportional reduction in the prediction error of
Salary given Job, here called τSalary|Job, is computed by:

τSalary|Job =
ESalary − ESalary|Job

ESalary

ESalary and ESalary|Job are computed by a predictor which uses infor-
mation from the cross-classification frequencies (dij) and tries to reduce as
much as possible the prediction error. In the prediction, it also preserves the
dependent variable distribution (relative frequencies of the predicted cate-
gories of Salary) in the following way: when no knowledge is given on Job,
the i-th value of the row variable Salary is predicted by the relative frequency
TSalary=ivalue

/T where by TSalary=ivalue
we denote the total frequency of ob-

servations with the i-th value of Salary and by T the total number of observa-
tions. On the contrary, when Job is known for an example, the value of Salary
is predicted with the relative frequency dij/TJob=jvalue

where by TJob=jvalue

we denote the total number of observations with the value of Job in the j-th
column. Therefore, ESalary and ESalary|Job are determined by:

ESalary =
∑

i

(
(T − TSalary=ivalue

) ·
TSalary=ivalue

T

)

ESalary|Job =
∑

i

∑

j

(
(TJob=jvalue

− dij) ·
dij

TJob=jvalue

)

Analyzing the formulation of τ , we observe that it satisfies many desirable
properties for a measure of association. For instance, it is invariant by rows
and columns permutation. Secondarily, it takes values between (0,1) (it is 0 iff
there is independence between the values of the variables). Finally, it has an
operational meaning: given an observation, it is the relative reduction in the
prediction error of the observation’s dependent variable, given the knowledge
on the observation’s independent variable.

We intend to use τ as measure of validation of a co-clustering solution that
produces an association between the clusters coming from two partitionings:
one on the values of the independent variable, and the other on the values of
the dependent variable. We start our discussion on co-clustering by considering
the contingency table shown in Figure 2.

The contingency table of Figure 2 represents a co-clustering of the original
dataset of Figure 1. Symbol RCi represents i-th cluster on rows while CCj

6 Ruggero G. Pensa et al.

CC1 CC2

RC1 t11 t12 TRC1

RC2 t21 t22 TRC2

TCC1
TCC2

T

Fig. 2 A co-clustering solution.

represents j-th cluster on columns. TRCi
is the total counting of rows in cluster

RCi while TCCj
is the total counting of columns in cluster CCj . T is the global

total. In this example we suppose RC1 has aggregated the rows of the original
table indicated by Salary in {Low, Medium} while RC2 has aggregated rows
indicated by Salary=High.

Similarly, CC1 has aggregated columns indicated by Job in {Clerk, Teacher}
while CC2 contains columns indicated by Job in {Manager, Journalist}. Co-
cluster (RCi, CCj) is represented by the value tij stored in the cell at the
intersection of the i-th row cluster and the j-th column cluster. It has been
computed by application of an aggregating function on the columns and rows
of the original table.

The aggregation that produces the co-cluster (CCi, RCj) is the following:

tij =
∑

Salary=xvalue∈RCi

(
∑

Job=yvalue∈CCj

dxy) (1)

where x ranges over the possible values of the variable Salary and y ranges
over the possible values of the variable Job. In our proposal the aggregation
process is guided by the τ measure. This measure allows to evaluate, at each
step of the algorithm, the association between the two partitions (one over
the rows and one over the columns). As previously shown the τ measure is
asymmetric. To take into account the predictive power of both partitions the
process alternates the optimization of the prediction of the row clusters given
the column clusters τRC|CC and vice versa τCC|RC .

3 Hierarchical Co-Clustering

In this section we present our method, named HiCC (Hierarchical Co-Clustering
by n-ary split). Let us introduce the notation.

3.1 Notations

Before introducing our approach, we specify the notation used in this paper.
Let X = {x1, . . . , xm} denote a set of m objects (rows) and Y = {y1, . . . , yn}
denote a set of n features (columns). Let D denote a m× n data matrix built
over X and Y , each element of D representing a frequency, a count or a binary
(presence/absence) information.

Given the above described matrix D defined on the set of objects X and
on the set of features Y , the goal of our hierarchical co-clustering algorithm

Hierarchical Co-Clustering: Off-line and Incremental Approaches 7

is to find a hierarchy of row clusters R over X , and a hierarchy of column
clusters C over Y . Supposing that R has K levels, and that C has L levels, R
and C are defined as R = {R1, . . . , RK} and C = {C1, . . . , CL} (where R1 and
C1 are the clustering at the roots of the respective hierarchy).

Each Rk ∈ R is a set of disjoint row clusters including all the rows in
X . Formally Rk = {rk1, . . . , rk|Rk |} where |Rk| is the total number of clus-
ters in Rk, rki ⊆ X ,

⋃
i rki = X and ∀i, j s.t. i 6= j rki ∩ rkj = ∅. Similarly,

Cl = {cl1, . . . , cl|Cl|}, and the analogous conditions hold for Cl too. R de-
fines a hierarchy on the row clusters. Each Rk must also satisfy the following
conditions:

1. ∀Rk1
, Rk2

s.t. k1 < k2, |Rk1
| ≤ |Rk2

| ;
2. ∀Rk (k > 1), ∀rki ∈ Rk, ∀Rk0

(k0 < k), ∃!rk0j ∈ Rk0
s.t. rki ⊆ rk0j ;

Two similar conditions must hold for C too.
Moreover, for any pair of levels k ∈ [1,K] and l ∈ [1, L] determining,

respectively, a partition Rk = {rk1, . . . , rk|Rk |} of rows of D and a partition

Cl = {cl1, . . . , cl|Cl|} of columns of D, we define a contingency table T kl, i.e.,

a |Rk| × |Cl| matrix such that each element tklij ∈ T kl (i ∈ 1 . . . |Rk| and
j ∈ 1 . . . |Cl|) is computed as specified in Section 2.

Our approach first computes the first level of the hierarchy (R1 and C1).
Then, it builds R2 by optimization of τR2|C1

, having set C1. In general, given
a generic hierarchy level h, Algorithm HiCC alternates the optimization of
τRh|Ch−1

and τCh|Rh
, finding respectively the appropriate row clusters in Rh

and the column clusters in Ch, constrained by the clusters more recently
formed in the other dimension (respectively, in the partitions Ch−1 and Rh).
To compute each level of the hierarchy, we adopt an iterative algorithmic ap-
proach inspired by τCoClust [28], whose goal is to find a partition of rows
R and a partition of columns C such that Goodman-Kruskal’s τC|R and τR|C

are optimized [29,30]. This choice is motivated by the fact that this algorithm
produces good quality partitions with an arbitrary and non predefined number
of clusters on rows and columns. Before presenting in details our algorithm we
briefly introduce τCoClust.

3.2 Co-clustering with Goodman-Kruskal’s τ

Algorithm τCoClust [28] can be formulated as a bi-objective combinatorial
optimization problem [22] which aims at optimizing two objective functions
based on Goodman-Kruskal’s τ measure. The goal of τCoClust is to find a
partition C over the feature set Y , and a partition R of the object set X such
that

max
R∪C∈P

τ(R ∪ C) =
(
τR|C , τC|R

)
(2)

where P is the discrete set of candidate partitions and τ is a function from P
to Z, where Z = [0, 1]2 is the set of vectors z = 〈z1, z2〉 in the objective space,
with z1 = τR|C and z2 = τC|R.

8 Ruggero G. Pensa et al.

To compare different candidate partitions the algorithm implements a
Pareto-dominance approach. The goal is to identify optimal partitions Popt ⊂
P , where optimality consists in the fact that no solution in P \Popt is superior
to any solution of Popt on every objective function. This set of solutions is
known as Pareto optimal set or non-dominated set. Recently an extension of
this algorithm to multiview clustering has been shown to converge in a finite
number of steps to a Pareto-optimal solution [21]. These concepts are formally
defined below.

Definition 1 (Pareto-dominance) An objective vector z ∈ Z is said to
dominate an objective vector z′ ∈ Z iff z1 ≥ z′1 and z2 > z′2 or vice versa. This
relation is denoted z ≻ z′ hereafter.

Definition 2 (Non-dominated objective vector and Pareto optimal
solution) An objective vector z ∈ Z is said to be non-dominated iff there
does not exist another objective vector z′ ∈ Z such that z′ ≻ z.

A solution p ∈ P is said to be Pareto optimal iff its mapping in the objective
space (τ(p)) results in a non-dominated vector.

Thus, the τCoClust co-clustering problem is to seek for a Pareto optimal
solution of equation (2).

τCoClust is shown as Algorithm 1. This algorithm takes as input the origi-
nal dataset D and the number of iterations Niter . As a first step it initializes R
and C at the discrete partitions respectively over rows and columns. As a sec-
ond step the function ContingencyTable is applied over the dataset D using R
and C. This function applies the equation (1) over D to obtain the initial con-
tingency table w.r.t. the two given partitions. Then the algorithm alternates
the optimization of the Goodman and Kruskal τ over both dimensions.

[30] proposes a heuristic with the aim of finding a local optimum of the
two coefficients τC|R and τR|C . Given two co-clusterings matrices, T and T ′

obtained from the same original data matrix D, the differential τR|C between
T and T ′ is given by:

∆τR|C = τR|C(T)− τR|C(T
′)

Analogously, ∆τC|R is given for τC|R. The algorithm that finds the partitions
on rows or on columns and that optimizes τR|C and τC|R is unique. The algo-
rithm is optimizePartition and it is shown as Algorithm 2. When the partition
on the rows is computed, R is modified and C is fixed. When the partition
on the columns is computed, it is the reverse. Thus, for sake of brevity, we
introduce two parameters of the algorithm: U for the partition to be modified;
and V for the fixed partition. When U = R, V = C and vice versa.

Algorithm 2 adopts a stochastic optimization technique for τU|V . Starting
from a given set of clusters, it allows to obtain another set of clusters that
optimizes the objective function τU|V . As first step, the algorithm randomly
chooses a cluster ub from the set of the initial clusters U . Then it randomly
picks an object o belonging to ub. It tries to move o from the original cluster

Hierarchical Co-Clustering: Off-line and Incremental Approaches 9

ub to another cluster ue, including the possibility of formation of a new cluster
with o.

At the end, among all the possible clusters, it chooses the cluster uemin
that

minimizes the difference ∆τU|V with the following constraints: ue 6= ub and
ue ∈ {U∪∅}. The loop from line 4 to line 9 applies function ∆τU|V

(o, ub, ue, V)
that incorporates object o to cluster ue and computes the improvement in the
objective function τU|V . In [30] the computation of ∆τU|V

is performed in an
efficient way without computing the complete contingency table T ′ but only
considering the effect of incorporation of o to each ue.

Finally, at line 11 it updates the contingency table T and the row/column
cluster partition. To perform this step, it first moves the object o from the
cluster ub (and delete ub if its only member was o) to the cluster uemin

(by
creating it if it contains only o). Then it updates the contingency table T
consequently.

Thanks to this strategy, the number of clusters may grow or decrease at
each step, and their number only depends on the effective optimization of
τU|V . This makes this approach substantially different from the one described
in [7] and in other state-of-the-art co-clustering approaches, where the number
of co-clusters is fixed as a user-defined parameter.

Algorithm 1 τCoClust(D,Niter)

1: Initialize R, C //initialize row and column partitioning
2: T ← ContingencyTable(R,C,D) //initialize the contingency table
3: while (t ≤ Niter) do

4: optimizePartition(R, C, T) //refine row partitioning
5: optimizePartition(C, R, T) //refine column partitioning
6: t← t+ 1
7: end while

8: return (R,C)

Algorithm 2 optimizePartition(U, V, T)
1: min∆τU|V

= 0

2: Randomly choose a cluster ub ∈ U

3: Randomly choose an object o ∈ ub projected on V

4: for all ue ∈ {U ∪ ∅}s.t.ub 6= ue do {scan all other clusters including the empty one}
5: if (∆τU|V

(o, ub, ue, V) < min∆τU|V
) then {only improvements of τU|V are allowed}

6: umin = e {update selected cluster}
7: min∆τU|V

= ∆τU|V
(o, ub, ue, V) {update minimum τU|V }

8: end if

9: end for

10: if min∆τU|V
6= 0 then

11: [U, T]← Update(U, T, o, ub, uemin
) {Update U moving o from ub to uemin

and modify
T consequently}

12: end if

10 Ruggero G. Pensa et al.

3.3 Description of Algorithm HiCC

We can now present the details of our hierarchical co-clustering approach. The
initialization procedure is presented in Algorithm 3 while the whole procedure
of construction of the hierarchies (named buildHier) is presented in Algorithm
4. HiCC adopts a divisive strategy. At line 1, HiCC initializes the partitions by
calling function τCoClust (see Algorithm 1). Thus it builds the first level of
both the hierarchies. Then it starts building the hierarchies by calling function
buildHier. At line 1 BuilHier initializes the indices that represent the levels
for the two hierachies. From line 3 to line 15 it starts building the level k+1 of
the hierarchy on the rows. Then, from line 16 to line 28 it builds the level l+1 of
the hierarchy on the columns. We explain here in detail only the construction
of the hierarchy on the rows since the construction of the hierarchy on the
columns is analogous. At line 4 each row cluster in the partition at level k
of the hierarchy is considered. At line 5 each row cluster rki ∈ Rk, is split
into a new set of row clusters R′

i using RandomSplit function. This function
first sets the cardinality of R′

i randomly; then it randomly assigns each row
in rki to a cluster of R′

i. Subsequently, it initializes a new contingency table
(here denoted by Tki) related to the portion of the contingency table relative
to cluster rki and to the set Cl of column clusters (we keep all the column
clusters found at current level l). Without changing columns partition, the
algorithm optimizes τR′

i
|Cl

using the optimizePartition function. It returns a
new and optimized R′

i. After all rki have been processed, the algorithm adds
the new level of the row hierarchy to R (line 14). Column clusters are then
processed in analogous way, using the row cluster assignment just returned.
In this way the two hierarchies grow until the TERMINATION condition is
reached. The TERMINATION condition is satisfied when all leaves of the
two hierarchies contain only one element. Obviously, a cluster may be split
into singletons at a higher level than other clusters. At the end, HiCC returns
both the hierarchies over rows (R) and columns (C).

Algorithm 3 HiCC(D,Niter)

1: R ← ∅, C ← ∅ {initialize co-cluster hierarchies}
2: (R1, C1)← τCoClust(D,Niter) {compute the first co-cluster hierarchy level}
3: R ← R∪ R1, C ← C ∪ C1 {update the first co-cluster level}
4: (R, C)← buildHier(R, C) {compute lower co-cluster hierarchy level}
5: return (R, C)

3.4 Local convergence of τCoClust

As shown in [30,28], the local search strategy employed to update partitions,
sometimes leads to some degradation of τR|C or τC|R. This is due to the fact
that an improvement on one partition may decrease the quality of the other

Hierarchical Co-Clustering: Off-line and Incremental Approaches 11

Algorithm 4 buildHier(R, C)
1: k ← 1, l← 1
2: while (TERMINATION) do

3: Rk+1 ← ∅ {initialize next row hierarchy level}
4: for all rki ∈ Rk do

5: R′
i ← RandomSplit(rki) {split current cluster level into random sub-clusters}

6: t← 0
7: Tki ← ContingencyTable(R′

i, Cl,D) {compute the related contingency table}
8: while (t ≤ Niter) do

9: optimizePartition(R′
i, Cl, Tki) {refine row partitioning}

10: t← t+ 1
11: end while

12: Rk+1 ← Rk+1 ∪R′
i {add the sub-hierarchy to the new level}

13: end for

14: R ← R∪ Rk+1 {add the new level to the global hierarchy}
15: k ← k + 1
16: Cl+1 ← ∅ {initialize next column hierarchy level}
17: for all clj ∈ Cl do

18: C′
j ← RandomSplit(clj) {split current cluster level into random sub-clusters}

19: t← 0
20: Tlj ← ContingencyTable(Rk, C

′
j ,D) {compute the related contingency table}

21: while (t ≤ Niter) do

22: optimizePartition(C′
j , Rk, Tlj) {refine column partitioning}

23: t← t+ 1
24: end while

25: Cl+1 ← Cl+1 ∪ C′
j {add the sub-hierarchy to the new level}

26: end for

27: C ← C ∪ Cl+1 {add the new level to the global hierarchy}
28: l← l + 1
29: end while

30: return (R, C)

one. However, in [21] it was shown that the solution converges to a Pareto-
local optimal solution in a finite number of steps. Considering iterated local
search algorithms for multi-objective optimization requires to extend the usual
definitions of local optimum to that context [27]. Let N : P → 2P be a neigh-
borhood structure that associates to every solution p ∈ P a set of neighboring
solutions N (p) ⊆ P . A Pareto local optimum with respect to N is defined as
follows.

Definition 3 (Pareto local optimum) A solution p ∈ P is a Pareto local
optimum with respect to the set of solutions N (p) that constitutes the neigh-
borhood of p, if and only if there is no q ∈ N (p) such that τ(q) ≻ τ(p) (see
equation (2)).

Let p = R ∪C be an element of P . In algorithm τCoClust (see Algorithm
1), the neighborhood N of p is defined as the set of all candidate solutions
determined by the movement of the element x from the cluster rb to the cluster
re in R, or by the movement of the element y from the cluster cb to the cluster
ce in C. As proved in [21], the following theorem holds:

12 Ruggero G. Pensa et al.

Theorem 1 The iterated local search algorithm τCoClust terminates in a

finite number of steps and outputs a Pareto local optimum with respect to

N (p).

The complete proof (omitted here) is presented in [21].

In our hierarchical approach (see Algorithm 4), instead of updating a clus-
ter at a time, alternating the dimensions, a whole partition of one of the
dimensions is updated, a single cluster at a time, while keeping the other
partition fixed. Each update is accepted provided that the objective function
increases. Thus, the algorithm ensures that the objective function increases at
each iteration.

3.5 Complexity Discussion

HiCC complexity is influenced by three factors. The first one is the number of
iterations. It influences the convergence of the algorithm. A deep study of the
number of iterations is presented in [28]. The second factor is the number of
row/column clusters in optimizePartition function. This number of clusters
influences the swap step which tries to optimize the internal objective function
moving one object from a cluster identified by b to another cluster identified
by e. The number of possible different clusters that e can identify influences
the speed of the algorithm, but this number varies during the optimization.
The third factor is the depth of the two hierarchies, in particular the deeper
one. This value influences the number of times the main loop of Algorithm
4 is repeated. If we denote by N the number of iterations, by c̃ the mean
number of row/column clusters inside the optimization procedure, and by v
the mean branching factor, we observe that the complexity of a split of rki
and clj is equal as average to O(N × c̃). Each split is performed for each
node of the two hierarchies except for the bottom level. The number of nodes
in a tree with branching factor v is

∑levels

i=0 vi where levels is the number of

levels of the tree. We can expand this summation and we obtain 1−v1+levels

1−v
.

From the previous consideration we estimate the complexity of our approach

O
(
N × c̃× 1−vlevels

1−v

)
. The worst case is verified when any split is binary and

at each level c̃ = n, where n is the number of rows/columns. In this case,
the complexity is O(N × (n − 1) × n), (n − 1) being the number of internal
nodes in the hierarchy. In conclusion, in the worst case, the overall complexity
is O(Nn2). In the experimental section, we show that our algorithm often
splits into more than two clusters, thus reducing the number of internal nodes.
Moreover, assumption c̃ = n is very pessimistic. In general our algorithm runs
in linear time with the number of iterations, and in subquadratic time with
the number of objects/features. Notice also that in this work, the number of
iterations is constant, but it could be adapted to the size of the set of objects,
and then reduced at each split.

Hierarchical Co-Clustering: Off-line and Incremental Approaches 13

4 Incremental hierarchical co-clustering

In this section we tackle the problem of dealing with evolving collections of
data, i.e., datasets that grow with time. As an example, consider a dataset
of documents published by a newsgroup and described by the occurrence of
a set of words. A newsgroup is dynamic and it is updated frequently. A pre-
computed model which takes into account only the first portion of posts (doc-
uments) may become obsolete after that a certain amount of new documents
have been added to the database. Thus, the hierarchical co-clustering model
needs to be updated in order to take into account the new data. This operation
may be performed by re-launching the hierarchical co-clustering process on the
whole updated dataset. However, this may require a high computational time,
and make the analyst’s experience frustrating, since it has to wait for the new
co-clustering to be computed.

To overcome this problem, we introduce an incremental version of HiCC
algorithm that starts from a previously computed hierarchical co-clustering
and updates it. From the results of this paper, we will see that in the revised
version of HiCC, that we will name HiCCincr, less computational resources are
needed than in the traditional one, when the algorithm is re-launched on the
complete dataset. As shown by the experiments in Section 5, computing only
the hierarchical structure (step at line 4 of Algorithm 3) on the whole dataset,
having already initialized the initial partitions, requires significantly less time
than computing also the initial (first level) splitting (that corresponds to the
execution of τCoClust at line 2).

As a consequence, we focus our incremental optimization on this first step,
and let unvaried the remaining part of the algorithm. This is also motivated
by the fact that our algorithm is divisive: variations of the first co-clustering
level may make inconsistent the existent hierarchy.

Another important consideration concerns the way our algorithm handles
the new incoming objects. New objects may be processed one-by-one or in
packets. The choice depends mainly on the application and the data, and on
how an obsolete hierarchical co-clustering model is tolerated by the analyst’s
needs.

4.1 Incremental version of τCoClust

In the remainder of this section, we consider a pre-computed hierarchical co-
clustering on a first portion of the dataset, named D and an updated portion
∆D of arbitrary size. We assume that D is built over the object-set X and the
feature-set Y , and ∆D is built over the object-set ∆X and the feature-set ∆Y .
In the applications we consider here, X ∩∆X = ∅, while Y ∩∆Y is not empty.
For instance, our framework can be applied to document repositories that are
periodically fed by adding new documents, while the existing ones are not
updated. However, new objects may contain new features as well as features
that were already present in the initial portion of the dataset. For instance,

14 Ruggero G. Pensa et al.

part of the terms contained in new documents may appear also in old ones, but
they may probably contain a certain number of new words. We think that our
assumption is quite general and allows us to include many existing application
schemas, typical of online evolving data repositories.

We formulate our incremental approach as follows. Starting from a previous
co-clustering schema (R,C) over ∆D we generate a new result (∆R, ∆C) that
incorporates the information carried by ∆D. The overall incremental hierar-
chical co-clustering approach is described by Algorithm 6. It takes the original
datasetD, the updating dataset∆D and the first level of the co-clustering over
D (given by R and C) as input. It provides a hierarchical co-clustering (R, C)
on D∪∆D. The algorithm is similar to the non-incremental version (see Algo-
rithm 4), except that, instead of partitioning the whole dataset from scratch, it
employs the pre-computed co-clustering (R,C), by calling τCoClustincr (Al-
gorithm 5). Algorithm 5 describes the procedure that extends τCoClust (i.e.
Algorithm 1) to the incremental setting.

The new procedure takes as input the two dataset portions D and ∆D, the
previous co-clustering results over D, i.e., (R,C), and a number of iterations.
At line 1 of Algorithm 5, the row set ∆X of ∆D is initialized by assigning
each row to a singleton cluster. Instead, columns in {∆Y ∩ Y } are assigned
to the corresponding cluster of C, while each column {∆Y \ Y } is assigned to
a singleton cluster. Finally, columns in {Y \∆Y } are zero-filled and assigned
to the corresponding cluster of C. We call the resulting partitioning ∆R and
∆C . The overall partitioning over D ∪ ∆D is now R = R ∪ ∆R and C =
C ∪ ∆R (lines 2 and 3). Given the so computed R and C, the algorithm
initializes the contingency table T over D = D ∪∆D (line 5). In other words,
after these preliminary steps, the contingency table T contains as many row
clusters as R ∪ ∆R, and as many column clusters as C ∪ ∆C . Finally (lines
6-10) the algorithm alternatively optimizes R and C, following the updating
criteria given in Section 3, and described by function optimizePartition (see
Algorithm 2). At the end, the original R and C partitions have been rewritten
and constitute the final optimized output (line 11).

Algorithm 5 τCoClustincr(D,∆D, R, C,Niter)

1: Initialize ∆R and ∆C

2: R← R ∪∆R {set the new row partitioning}
3: C ← C ∪∆C {set the new column partitioning}
4: D← D ∪∆D {concatenate the two dataset portions}
5: T ← ContingencyTable(R,C,D) {compute the new overall contingency table}
6: while (t ≤ Niter) do

7: optimizePartition(R, C, T) {refine row partitioning}
8: optimizePartition(C, R, T) {refine column partitioning}
9: t← t+ 1
10: end while

11: return (R,C)

Hierarchical Co-Clustering: Off-line and Incremental Approaches 15

Algorithm 6 HiCCincr(D,∆D, R, C,Niter)

1: R ← ∅, C ← ∅ {initialize co-cluster hierarchies}
2: (R1, C1) ← τCoClustincr(D,∆D, R, C,Niter) {compute the first co-cluster hierarchy

level}
3: R ← R∪ R1, C ← C ∪ C1 {update the first co-cluster level}
4: (R, C)← buildHier(R, C) {compute lower co-cluster hierarchy level}
5: return (R, C)

In the next section, we provide a comprehensive experimental analysis that
shows that the incremental version provides good hierarchical co-clustering
results, but requires significantly less computational time.

5 Experimental validation

In this section we report on several experiments performed on real, high-
dimensional, multi-class datasets. We compare our approach with Information-
Theoretic Co-Clustering (ITCC) [7], a well-known co-clustering algorithmwhich
minimizes the loss in mutual information. To evaluate our results, we use sev-
eral objective performance parameters that measure the quality of clustering.
Besides the precision of the hierarchical co-clustering we analyze also the hi-
erarchies returned by our approach for both rows and columns. This analysis
allows to emphasize the utility of the hierarchical structure w.r.t. standard flat
co-clustering approaches. Furthermore, we provide an exhaustive set of exper-
iments to point out the differences in computational time and quality of the
results between the off-line approach and the incremental one. All experiments
are performed on a PC with a 2.6GHz Opteron processor, 4GB RAM, running
Linux.

The section is organized as follows. We first introduce the datasets and
the quality indices we adopted in our experimental study. Then, we show
and analyze some examples of co-cluster hierarchies that HiCC is able to
provide and compare them with the partitions found by ITCC. The stability
of HiCC is then assessed both in terms of average depth of the hierarchies and
their content. Finally, the incremental version of our algorithm is evaluated by
considering it in both flat and hierarchical co-clustering settings. The stability
of the results is studied in this case as well.

5.1 Datasets for the evaluation of HiCC and its results

To evaluate our results we use some of the datasets described in [10]. In par-
ticular we use:

– oh0, oh15: two samples from OHSUMED dataset. OHSUMED is a clinically-
oriented MEDLINE subset of abstracts or titles from 270 medical journals
over five-year period (1987-1991).

16 Ruggero G. Pensa et al.

Dataset n. instances n. features n. of classes
oh0 1003 3182 10
oh15 913 3100 10
tr11 414 6429 9
tr21 336 7902 6
re0 1504 2886 13
re1 1657 3758 25

Table 1 Datasets characteristics

– tr11, tr21: two samples from TREC dataset. These data come from the
Text REtrieval Conference archive.

– re0, re1: two samples from Reuters-21578 dataset. This dataset is widely
used as test collection for text categorization research.

All datasets have more than five classes, which usually is a hard context for
text categorization. The characteristics of datasets are shown in Table 1.

5.2 External Evaluation Measures

We evaluate the algorithm performance using two external validation indices.
We denote by C = {C1 . . . CJ} the partition built by the clustering algorithm
on objects at a particular level, and by P = {P1 . . . PI} the partition inferred
by the original classification. J and I are respectively the number of clusters
(|C|) and the number of classes (|P|). We denote by n the total number of
objects.

The first index is the Normalized Mutual Information (NMI). NMI provides
an information that is impartial with respect to the number of clusters [33].
It measures how clustering results share the information with the true class
assignment. NMI is computed as the average mutual information between
every pair of clusters and classes:

NMI =

∑I

i=1

∑J

j=1 xij log
nxij

xixj√∑I

i=1 xi log
xi

n

∑J

j=1 xj log
xj

n

where xij is the cardinality of the set of objects that occur both in cluster Cj

and in class Pi; xj is the number of objects in cluster Cj ; xi is the number of
objects in class Pi. Its values range between 0 and 1.

The second measure is the adjusted Rand index [19]. Let a be the number of
object pairs belonging to the same cluster inC and to the same class in P. This
metric captures the deviation of a from its expected value corresponding to the
hypothetic value of a obtained when C and P are two random, independent
partitions. The expected value of a denoted by E[a] is computed as follows:

E[a] =
π(C) · π(P)

n(n− 1)/2

Hierarchical Co-Clustering: Off-line and Incremental Approaches 17

where π(C) and π(P) denote respectively the number of object pairs from the
same clusters in C and from the same classes in P. The maximum value for a
is known to be:

max(a) =
1

2
(π(C) + π(P))

The agreement between C and P can be estimated by the adjusted rand index
as follows:

AR(C,P) =
a− E[a]

max(a)− E[a]

Notice that this index can take negative values, and when AR(C,P) = 1, we
have identical partitions.

To obtain a quality measure of HiCC, for each level i of the hierarchy on
the rows we select the corresponding level of the hierarchy on the columns.
These levels define a pair of partitions: the first partition comes from the row
cluster hierarchy, and the second one from the columns cluster hierarchy. On
the pair of partitions from level i, an evaluation function EFi is computed on
the basis of Goodman-Kruskal τS [14], which is a symmetrical version of τ [13]
whose aim is to quantify the agreement between the two partitions. In order
to compute an overall measure for the co-clustering we compute the following
weighted mean:

Goodness =

∑
i=1 αi · EFi∑

i=1 αi

(3)

where αi is the weight associated to the i-th level of the hierarchy, and allows
to specify the significance assigned to the i-th level w.r.t. to the other levels
of the hierarchy. Of course, EFi might refer to any other validation index
presented beforehand.

(3) is a general formula for the evaluation of the goodness of a run of our
method. In this work we set αi = 1/i. Indeed, we give a heavy weight to the
top level and the lowest weight to the last level. This choice is motivated by
observation that in a hierarchical solution the clusters on a level depend on
the clusters at previous level. If we start with a good clustering, then next
levels are more likely to produce good results too.

5.3 Inspecting hierarchies

In this section we analyze in a qualitative way two hierarchies built by our
algorithm. In particular we analyze the row hierarchy for oh0 data and the
column hierarchy from re1 data. We chose these two datasets because oh0
has an understandable class description and re1 uses a vocabulary (feature
space) with common words. In Table 2 we report the first three levels of the
row hierarchy produced by HiCC. To obtain this hierarchy we assigned at
each cluster a label. We chose the label of the majority class in the cluster.
Each column in Table 2 represents a level of the hierarchy and each cell of
the table represents a single cluster. We notice that the produced hierarchy is

18 Ruggero G. Pensa et al.

1st level 2nd level 3rd level

Aluminum

Aluminum
Aluminum
Aluminum

Aluminum
Aluminum
Aluminum

Enzyme-Activation
Enzyme-Activation

Enzyme-Activation
Enzyme-Activation

Cell-Movement
Cell-Movement

Leucine

Staphylococcal-Infections
Uremia

Uremia

Staphylococcal-Infections

Staphylococcal-Infections
Staphylococcal-Infections

Memory

Table 2 Row hierarchy of oh15

meaningful to a domain expert. In fact, the first branch is homogenous, since
each node contains a majority of elements coming from the Aluminum class.
Cluster Enzyme-Activation at first level is split into two clusters: the first
one has the same label, the second is Cell-movement, a topic more related to
Enzyme-Activation than to the other cluster labelled Staphylococcal-Infections.
Then Cell-movement is split into two clusters. One of these is Leucine, which
is a fundamental amino acid of the protein cells. In the last branch of the
hierarchy we notice that Uremia cluster is a child of Staphylococcal-Infections
(a renal failure with bacterial infection as one of its causes).

In Table 3 we report instead the first two levels of the column hierarchy
produced by HiCC. In order to assign a label to the clusters, we computed for
each cluster the mutual information between each word and the cluster; then
we ranked the set of words for each cluster, as described in [32]. Finally, we
selected the 10-top words for each cluster and use them in Table 3 to describe
the clusters. In this way we identified the words whose meaning was almost
exclusively connected to each cluster. Again, we can notice that the generated
column hierarchy is meaningful. At the first level of the hierarchy each of
the six clusters is about a well distinct topic: the first one is about coffee and

cocoa. The second one is on agriculture. The third and the forth ones are about
gulf war and oil economy. Finally the fifth and the sixth clusters are about
syndicate and work and Aegean politics. The second level introduces a further
specialization of the top-level clusters. For instance, the first cluster is split
into coffee and cocoa production and agricultural economics. The fourth one is
split into oil industry and finance.

5.4 HiCC vs Partitional Co-Clustering

Here we evaluate HiCC performance w.r.t ITCC [7]. HiCC is non-deterministic
like other well-known clustering algorithms such as K-means or ITCC itself.
At each run we can obtain similar, but not equal, hierarchies. For this reason
we run HiCC 50 times over each dataset. We set the number of iterations for
the first level equal to 10 times the maximum between the number of instances
and the number of attributes. Instead from the second levels of the hierarchy

Hierarchical Co-Clustering: Off-line and Incremental Approaches 19

1st level 2nd level

coffee, buffer, cocoa, deleg,
consum, ico, quota, stock,

produc, icco

coffee, buffer, deleg, cocoa, consum, ico, icco,
council, pact, bag

quota, produc, stock, meet, brazil, intern, talk,
agreem, negoti, organ

tonne, wheate, sugar, grain,
agricultur, usda, crop, corn,
ec, soybean

mln, vexport, market, plant, offer, import,
trade, trader, sale, week
tonne, wheate, sugar, grain, crop, usda, corn,

agricultur, ec, soybean
ship, gulf, iran, missil, tanker,

iranian, attack, ferri, vessel,
load

ship, gulf, vessel, water, load, wait, militari,

hit, war, ice
iran, missil, tanker, iranian, attack, ferri, es-

cort, kuwait, warship, iraq
oil, barrel, opec, compani,
gold, bpd, crude, ga, energi,

ounce

oil, barrel, gold, compani, opec, bpd, crude, ga,
ounce, reserv

dlr, price, product, tax, industri, dollar, con-
tract, pct, increas, dai

strike, seamen, union, port,
worker, miner, employ, disput,
labour, leader

union, port, miner, disput, pai, leader,
spokesman, sector, cargo, protest
strike, seamen, worker, employ, labour, redund,

marin, rotterdam, janeiro, fnv
aegean, greece, greek, turkish,

turkei, papandr, athen, nato,
right, row

aegean, greece, greek, turkei, turkish, papandr,

athen, nato, row, ankara
right, readi, territori

Table 3 Column hierarchy of re1

(where the optimization is independent for each dimension) we run the process
until these two conditions are satisfied: a) the total number of iterations is more
than 50,000 and b) the number of iterations which end with no changes in the
cluster structure is smaller than the number of objects/attributes. These two
conditions are standard criteria adopted in partitional clustering algorithms.
From the set of row/column co-hierarchies obtained in the different runs, we
choose the ones that better optimize an internal evaluation function.

To compare each level of our hierarchies with ITCC results, we need to
fix a number of row/column clusters to set ITCC parameters. We recall that
ITCC is flat and does not produce hierarchies. For this reason we plan our
experiments in the following way. Since HiCC is not deterministic, each run
may produce partitions of different cardinality at each level. For this reason,
we need to select one specific run of HiCC. Using Goodness function with τS as
evaluation function, we choose for each dataset the hierarchy with the highest
Goodness value. This hierarchy is a representative solution whose selection is
not biased by the external index (based on the classes) that will be used for
the final comparison evaluation.

From this hierarchy, we obtain a set of pairs (#numberRowCluster, #num-
berColCluster), where each pair specifies the number of clusters in a level of the
hierarchy. For each of these combinations, we run ITCC 50 times with (#num-
berRowCluster,#numberColCluster) as parameters, and average for each level
the obtained results.

In Table 4 we show the experimental results. To obtain a single index
value for each dataset we compute the previously proposed Goodness having
as evaluation function (EFi) each of the two external validation indices. These
two indices are computed between the partition on the objects given by the

20 Ruggero G. Pensa et al.

HiCC ITCC

Dataset NMI Adj. Rand Index NMI Adj. Rand Index

oh0 0.5301 0.2275 0.4535 0.213
oh15 0.379 0.1317 0.3531 0.1503

tr11 0.4077 0.1438 0.4038 0.1464

tr21 0.1787 0.0305 0.2027 0.0157
re0 0.2568 0.0415 0.3065 0.0803

re1 0.4565 0.1544 0.3922 0.1047

Table 4 Comparison between ITCC and HiCC with the same number of clusters for each
level

HiCC ITCC

RowClust ColClust NMI Adj. Rand NMI Adj. Rand
6 6 0.4149 0.2691 0.2755 ± 0.0403 0.1683 ± 0.0489
13 12 0.3771 0.2488 0.3607 ± 0.0297 0.1897 ± 0.0306
28 29 0.3779 0.1955 0.4345 ± 0.0177 0.167 ± 0.0158
58 81 0.4032 0.1511 0.4433 ± 0.011 0.1144 ± 0.0077
121 184 0.4481 0.092 0.3213 ± 0.0107 0.0262 ± 0.004
250 441 0.4846 0.0504 0.3176 ± 0.0036 0.0034 ± 0.0005
470 855 0.5236 0.0275 0.4013 ± 0.0026 0.0017 ± 0.0002

Table 5 Complete view of performance for the top 8 levels of re1

clusters and the partition on the objects given by the classes. From the results
we can see that our approach is competitive w.r.t. ITCC. Notice however that,
for a given number of desired co-clusters, ITCC tries to optimize globally its
objective function, and each time it starts from scratch. Thus, one would
expect that ITCC provides better results for each pair of number of clusters.

On the contrary, HiCC solution at level i in the hierarchy is constrained
by clusters found at level i− 1 in the same hierarchy. Thus one would expect
that this behaviour would propagate the errors level by level. Instead, we can
notice that ITCC is not more accurate than our algorithm. This phenomenon
has been recently observed in [6], where a hierarchical model selection is used
to help improving results in prediction tasks. To clarify this point we report
the complete behavior of the two algorithms in an example. In Table 5 we
report the value of the two indices for each level of the hierarchy obtained by
HiCC for re1. For the sake of brevity, we can only show here one example,
but in all the other experiments we observe the same trend here described.
In the same table we show also the values obtained by ITCC using the same
number of clusters (#numberRowCluster,#numberColCluster) discovered by
HiCC. We also report the standard deviation for ITCC, since for each pair of
cluster numbers, we run it 50 times. We can see that HiCC outperforms ITCC,
especially at the higher levels (first, second and third) of the row hierarchy.
We notice also that NMI index always increases monotonically in HiCC but
not in ITCC. This experiment shows that, when we explore deeper levels of
the hierarchies of HiCC, the confusion inside each cluster decreases.

Hierarchical Co-Clustering: Off-line and Incremental Approaches 21

Dataset Goodness Goodness Goodness

at 1st level until the 5th level for all the levels

oh0 0.2676 ± 0.0065 0.1824 ± 0.0047 0.1394 ± 0.0034
oh15 0.2783 ± 0.0012 0.1829 ± 0.001 0.1371 ± 0.0022
tr11 0.2301 ± 0.0005 0.1621 ± 0.0006 0.1227 ± 0.0015
tr21 0.3005 ± 0.0 0.1893 ± 0.0028 0.1314 ± 0.0027
re0 0.2409 ± 0.0149 0.1163 ± 0.0044 0.1142 ± 0.0063
re1 0.1728 ± 0.0081 0.1163 ± 0.0044 0.09 ± 0.0029

Table 6 Average Goodness on the basis of τS

Dataset Row Hier. Depth Col. Hier. Depth

oh0 14.9±1.02 17.6±1.28
oh15 15.08±0.93 18.48±1.49
tr11 14.5±1.41 21.38±1.56
tr21 16.23±1.43 27.96±2.43
re0 17.04±1.13 19.98±2.08
re1 15.92±1.01 18.2±1.46

Table 7 Mean depth of hierarchies

5.5 Stability of the induced Hierarchies

The intrinsic nature of HiCC is non-deterministic. As such, two instances of the
algorithm processing the same dataset may provide two different results. Here,
we measure the stability of our approach, in terms of quality and depth of the
hierarchies, and their structure. In Table 6 we report the average Goodness of
τS for each dataset, and the related standard deviation, computed over one,
five and all hierarchy levels respectively. We observe that standard deviation
is very low w.r.t. the average Goodness. From this empirical evaluation we
can conclude that the quality of the hierarchical co-clustering is quite stable.
In Table 7 we show the mean depth of the row hierarchy and of the column
hierarchy for each dataset. We observe that the standard deviation is low.
This points out that our algorithm is stable also from this point of view.
Notice that HiCC generates hierarchies which are not deep, if the number
of levels is compared with the cardinality of the object and attribute sets.
Shorter hierarchies are preferable to hierarchies obtained only by binary splits,
since they allow a compact representation of the data and they improve the
exploration of the results because are easy to browse from a user point of view.

In order to evaluate the stability of the produced hierarchies from a dif-
ferent viewpoint, we adapted the strategy of summarizing and indexing hier-
archies presented in [34,24] namely, by Concept Propagation/Concept Vector
(CP/CV). CP/CV assumes that each cluster node of the hierarchy is projected
into a concept space and represented by a vector with as many dimensions as
the cardinality of the concept space. In our context the concept space is given
by the class labels. The CP/CV approach combines the concept space represen-
tation with the structure of the hierarchy. It adopts a process that propagates
several times the information from the parent nodes to their children and vice
versa, and takes into account the tree structure together with its content. The

22 Ruggero G. Pensa et al.

Cosine Distance

Dataset Avg. std. dev.
oh0 0.0063 ± 0.0124
re0 0.0023 ± 0.0038
re1 0.0207 ± 0.0142
tr21 0.0049 ± 0.0164
oh15 0.0334 ± 0.0328
tr11 0.0001 ± 0.0001

Table 8 Average and Std. Dev. for Cosine distance to evaluate the stability of the induced
hierarchies

authors suggest that, after a sufficient number of propagation steps, a good
summary of the whole concept hierarchy is obtained in the root vector. They
show that using only the root node vector, as a candidate summary, they are
able to perform a high quality indexing of the hierarchy.

We adopt this technique to summarize the content of the hierarchies and
quantify their stability in terms of the class concept space. We represent each
node of the hierarchy by a vector having as many components as the number
of classes. Each vector contains the distribution of the objects classes within
the related node. Thanks to the CP/CV method we obtain for each result of
HiCC one vector summarizing the whole hierarchy. To quantify the stability of
our approach, we employ a simple strategy: we compute the distance between
any pair of summary vectors obtained by different runs of HiCC. Then we
compute the average and the standard deviation of these distances. Here, we
use the cosine distance:

cosDist(X,Y) = 1−

∑
i Xi · Yi

||X || · ||Y ||

where X and Y are two vectors and || · || is the Euclidean norm of a vector.
For each dataset, we run the algorithm 50 times. The average and standard

deviation of the cosine distances are computed over these 50 instances. We
report the results in Table 8.

We observe that the average distance is very low. Even though the standard
deviations are as high as the average, the order of magnitude is still very low.
This means that the stochastic optimization process employed by our approach
does not affect the stability of the final result.

5.6 Evaluation of τCoClustincr

In this section we evaluate the behavior of τCoClustincr (see Algorithm 5 in
Section 4). Before introducing this experimental study, we further motivate
the incremental version providing a brief report on the time performances of
HiCC. In Table 9 we show the average time (with standard deviation) for the
two components of the algorithm. We observe that the step which requires
most of the computational time is the first one (τCoClust). In general the
time employed by the first step is one order of magnitude greater than the

Hierarchical Co-Clustering: Off-line and Incremental Approaches 23

τCoClust buildHier
Dataset Avg std. dev. Avg std. dev.

oh0 386.382 ±329.36 24.77 ±9.05
oh15 301.05 ±206.53 28.54 ±13.65
tr11 309.97 ±126.04 103.16 ±59.72
tr21 266.51 ±111.03 137.50 ±40.32
re0 1018.68 ±637.39 63.32 ±33.43
re1 1405.40 ±765.80 39.83 ±20.18

Table 9 Original Time Performance for each algorithmic component

time employed by the second step (buildHier). This observation has moti-
vated the incremental version presented in this work (see Section 4 for the
details). Now we will show that the use of the incremental approach helps to
decrease the computational time spent by τCoClust. This improvement allows
to speed up the whole procedure and it allows the employment of HiCC in an
incremental/on-line scenario.

To this purpose, using all the datasets described beforehand, we simulate a
simple incremental scenario. We divide each dataset into two blocks. The first
block is supplied to the τCoClust to obtain a first bi-partition. τCoClustincr
starts from the previous result and updates the bi-partition using the second
block. The goal of this first group of experiments is to prove that the results
provided by τCoClustincr are not very dissimilar from those provided by the
off-line version (see Algorithm 1 in Section 3). We let vary the size of the first
block from 5% to 90% of the entire dataset (with a step of 5%). To evaluate
the results we set up two types of comparison: a) using the partition induced
by the class variable as reference; b) using the partition computed by the
off-line version as reference. We average the results over 50 runs of both the
algorithms. Here, we use the same sets of features for the two blocks. If in
the first block some features are not represented, they simply contains zeros
for all the rows. This choice does not influence the final results, since columns
containing only zeros have no impact on the computation of the objective
function.

In Figure 3 we plot the time performances of the incremental version. The
X axis represents, in percentage, the size of the first block. We compute the
sum of the time spent for processing the first block plus the time spent for the
second block.

The various vertical segments (box plots) represent the average time spent
to process the different blocks. The horizontal line represents the average time
spent by the off-line version of the algorithm. We observe that, in general the
time required by the incremental version is always smaller than the time spent
by the off-line version. Notice that all the curves share a similar general trend.
For very small sizes of the initial block, the time employed by τCoClustincr is
similar to that taken by τCoClust. The rationale is that the initial sample is
not that representative of the entire dataset and thus the arrival of a new big

24 Ruggero G. Pensa et al.

block arises the whole re-computation of the co-clustering. Similarly, high sizes
of the initial block require almost the same time needed by the computation
of the entire dataset. The computational time of the two versions is, again,
similar. In the middle, for

small block sizes (20% to 40%) the incremental algorithm employs from 2
times up to 10 times less than the off-line algorithm to complete co-clustering.
The only exception is tr21. This may be partly due to the fact that this
dataset contains very few documents (about 300), but a huge number of fea-
tures (about 8000).

We consider now the quality of the results provided by τCoClustincr and
compare them with the results provided by τCoClust. The first comparison
takes into consideration the NMI and ARI indexes computed w.r.t. the class
variable (see Figures 4 and 5). We observe that the results are always close to
those provided by the off-line version (the horizontal line in the plots). With
20% to 30% of initial block size, the performance are already reasonably good
and the computational time is kept at its lowest level (see Figure 3). How-
ever these experiments only show that the agreement between the discovered
partitions and the class partitions are maintained.

To evaluate the distortion introduced by the incremental partitioning, we
measure the NMI and ARI indexes w.r.t. the original partitioning. In Figure 6
and 7, we plotted the average values of the two indexes together with the
standard deviation. The average values are computed by considering each of
the 50 runs of the incremental algorithm with each of the 50 runs of the off-
line version. The horizontal line represents the average of the index values
computed by the off-line version only. First, notice that all the indexes are
significantly high. In general, the NMI and ARI computed for the incremental
results are close to the average results which consider only the off-line version.
This confirms that, the distortion introduced by the incremental version is
comparable to the amount of natural unstability of the algorithm, due to its
stochastic optimization approach. These empirical evidences confirm that this
strategy can be adopted also to manage standard datasets, since it enables to
speed up the entire co-clustering process.

Finally, we analyze the incremental algorithm from another point of view.
Due to the stochastic nature of our optimization solution, we cannot assure
that similar clusters belonging to two different blocks will always merge in
the final partition. This may lead to uncorrect interpretations of the results
as a negative side-effect. In practice, however, this condition never happens.
In Table 10, we report the number of clusters found by our algorithm given
different dimensions of the initial block. In almost all the datasets, these values
are stable and are not correlated to the percentage of the block size. We may
notice significant variations only for very low percentages (10%), which may
be explained by the poor representativity of the initial sample. In re1 the
variation (still low), seems stronger than in the other datasets, but it is within
the typical tolerance range for this particular dataset. As a side observation,
we might notice that the standard deviation of the values is in general quite

Hierarchical Co-Clustering: Off-line and Incremental Approaches 25

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

percentage first block

D
∆D

D + ∆D

(a)

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

percentage first block

D
∆D

D + ∆D

(b)

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

percentage first block

D
∆D

D + ∆D

(c)

 100

 150

 200

 250

 300

 350

 400

 450

 500

10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

percentage first block

D
∆D

D + ∆D

(d)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

percentage first block

D
∆D

D + ∆D

(e)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 20 30 40 50 60 70 80 90

tim
e

(s
ec

)

percentage first block

D
∆D

D + ∆D

(f)

Fig. 3 Time performance w.r.t. the percentage of the first block for (a) oh0 (b) oh15 (c)
tr11 (d) tr21 (e) re0 (f) re1.

low: this means that, given a dataset, our approach converges always to very
similar solutions, in spite of its stochasticity.

5.7 Evaluation of HiCCincr

We showed that the results of the co-clustering algorithm on an initial portion
of the data, can be used as the initial splitting function for an incremental
approach. This strategy can be more generally be applied to an incremental
framework without loss of quality. Now we focus on the overall hierarchical

26 Ruggero G. Pensa et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

N
M

I

percentage first block

oh0

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

N
M

I

percentage first block

oh15

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

N
M

I

percentage first block

tr11

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

N
M

I

percentage first block

tr21

(d)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

N
M

I

percentage first block

re0

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

N
M

I

percentage first block

re1

(f)

Fig. 4 Normalized Mutual Information w.r.t. the percentage of the first block (using class
labels) for (a) oh0 (b) oh15 (c) tr11 (d) tr21 (e) re0 (f) re1.

co-clustering procedure, and show that the resulting hierarchies are close to
those obtained by the off-line version. To quantify the quality of the produced
hierarchies we use the method of CP/CV (described in Section 5.5). Here, we
compare the hierarchies generated by HiCCincr with the hierarchies generated
by HiCC. To perform this analysis, we split the original dataset into multiple
blocks (we let vary the number of blocks, from 5 to 20 per dataset).

Each dataset is handled as follows: 1) the first block is processed by HiCC;
2) the following block is processed by HiCCincr using the result on the first
block as starting point; 3) the process is iterated incrementally for each of the
remaining blocks. To obtain statistically relevant results we launch each algo-

Hierarchical Co-Clustering: Off-line and Incremental Approaches 27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

A
R

I

percentage first block

oh0

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

A
R

I

percentage first block

oh15

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

A
R

I

percentage first block

tr11

(c)

-0.04

-0.02

 0

 0.02

 0.04

 0 20 40 60 80 100

A
R

I

percentage first block

tr21

(d)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100

A
R

I

percentage first block

re0

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

re1

(f)

Fig. 5 Adjusted Rand Index w.r.t. the percentage of the first block (using class labels) for
(a) oh0 (b) oh15 (c) tr11 (d) tr21 (e) re0 (f) re1.

rithm 50 times. Afterwards we compute the cosine distance between the root
vectors representing the hierarchies obtained by HiCC and the root vectors of
the hierarchies obtained from HiCCincr. In Figure 8 we report the average and
the standard deviation of the cosine distance over the 50 runs. We can notice
that all the distances are below 0.1. However, in two cases, they are really very
low (below 0.01; we recall here that the cosine distance takes values between
0 and 1). This means that the incremental version of our algorithm does not
change substantially the returned hierarchies.

28 Ruggero G. Pensa et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
M

I

percentage first block

oh0

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
M

I

percentage first block

oh15

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
M

I

percentage first block

tr11

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
M

I

percentage first block

tr21

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
M

I

percentage first block

re0

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

N
M

I

percentage first block

re1

(f)

Fig. 6 Normalized Mutual Information w.r.t. the percentage of the first block (using off-line
results as reference) for (a) oh0 (b) oh15 (c) tr11 (d) tr21 (e) re0 (f) re1.

6 Related work

One of the earliest co-clustering formulations was introduced by Hartigan [16].
This algorithm begins with the entire data in a single block and then at each
stage finds the row or column split of every block into two pieces, choosing the
one that produces the largest reduction in the total within block variance. The
splitting is continued till the reduction of within block variance due to further
splitting is less than a given threshold. This approach is clearly hierarchical,
but it does not build any cluster hierarchy. Moreover, it does not optimize any
global objective function. Kluger et al. [25] propose a spectral co-clustering

Hierarchical Co-Clustering: Off-line and Incremental Approaches 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

oh0

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

oh15

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

tr11

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

tr21

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

re0

(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
R

I

percentage first block

re1

(f)

Fig. 7 Adjusted Rand Index w.r.t. the percentage of the first block (using off-line results
as reference) for (a) oh0 (b) oh15 (c) tr11 (d) tr21 (e) re0 (f) re1.

method. First, they perform an adequate normalization of the data set to
accentuate co-clusters if they exist. Then, they consider that the correlation
between two columns is better estimated by the expression level mean of each
column w.r.t. a partition of the rows. The bipartition is computed by the
algebraic eigenvalue decomposition of the normalized matrix. Their algorithm
critically depends on the normalization procedure.

Dhillon et al. [7] and Robardet et al. [30] have considered the two searched
partitions as discrete random variables whose association must be maximized.
Different measures can be used. Whereas ITCC [7] uses the loss in mutual
information, τCoClust [30] uses Goodman-Kruskal’s τ coefficient to evaluate

30 Ruggero G. Pensa et al.

size(D) oh0 oh15 tr11 tr21 re0 re1
10% 3.1±0.3 2.8±0.4 2.0±0.0 3.0±0.0 2.0±0.2 5.5±1.0
20% 3.7±0.5 2.2±0.4 2.0±0.0 2.0±0.0 2.2±0.4 6.1±1.0
30% 4.0±0.2 2.7±0.5 2.0±0.0 2.0±0.2 2.1±0.3 6.6±1.4
40% 4.0±0.0 2.6±0.5 2.0±0.0 2.0±0.1 2.5±0.5 5.8±1.2
50% 4.0±0.2 2.7±0.5 2.0±0.0 2.1±0.3 2.7±0.5 6.1±1.3
60% 4.0±0.2 2.5±0.6 2.0±0.0 2.0±0.1 2.5±0.5 5.8±1.3
70% 4.2±0.4 2.1±0.2 2.0±0.0 2.1±0.2 2.3±0.5 6.6±0.9
80% 4.1±0.4 2.1±0.2 2.0±0.0 2.0±0.2 2.3±0.5 7.4±1.0
90% 4.1±0.3 2.6±0.5 2.0±0.0 2.0±0.2 2.5±0.6 7.8±1.2
100% 4.1±0.3 2.4±0.5 2.0±0.0 2.0±0.2 2.2±0.5 7.9±1.1

Table 10 Mean number of clusters for various initial block sizes

the link strength between the two variables. In both algorithms, a local opti-
mization method is used to optimize the measure by alternatively changing a
partition when the other one is fixed. The main difference between these two
approaches is that the τ measure is independent of the number of co-clusters
and thus τCoClust can automatically determine the number of co-clusters.

Another co-clustering formulation was presented in [4]. Authors propose
two different residue measures, and introduce their co-clustering algorithm
which optimizes the sum-squared residues function. Contrary to the above
mentioned approaches, the data addressed by this work is not limited to co-
occurrences data. However, both residue measures require the number of de-
sired clusters to be specified as a parameter. In [3] the authors propose a
fully automatic cross-association framework. The proposed algorithm consists
in optimizing an entropy-based objective function. Like τCoClust, their ap-
proach is parameter free and it determines automatically the number of row
clusters and column clusters. However, it is strongly limited by the fact that
it can manage only binary matrices, while our proposed technique is designed
to deal with both binary and counting/frequency data. In this paper, among
other innovations, we have also considered a possible extension of τCoClust
to generate hierarchies.

Recently, Banerjee et al. have proposed in [2] a co-clustering setting based
on matrix approximation. The approximation error is measured using a large
class of loss functions called Bregman divergences. They introduce a meta-
algorithm whose special cases include the algorithms from [7] and [4]. Another
recent and significant theoretical result has been presented in [1]. The authors
show that the co-clustering problem is NP-hard, and propose a constant-factor
approximation algorithm for any norm-based objective function.

[6] presents SCOAL, a different co-clustering approach aiming at learning a
regression model dedicated to collaborative filtering applications. In this work
a hierarchical clustering is associated to the co-clustering method. However
hierarchies are only used to guide the model selection step. In particular, the
improved version of SCOAL (M-SCOAL) uses a model selection technique,

Hierarchical Co-Clustering: Off-line and Incremental Approaches 31

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

C
os

in
e

D
is

ta
nc

e

of Blocks

oh0

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

C
os

in
e

D
is

ta
nc

e

of Blocks

oh15

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

C
os

in
e

D
is

ta
nc

e

of Blocks

tr11

(c)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

C
os

in
e

D
is

ta
nc

e

of Blocks

tr21

(d)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

C
os

in
e

D
is

ta
nc

e

of Blocks

re0

(e)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25

C
os

in
e

D
is

ta
nc

e

of Blocks

re1

(f)

Fig. 8 Cosine distance to assess hierarchies varying the number of incremental blocks (a)
oh0 (b) oh15 (c) tr11 (d) tr21 (e) re0 (f) re1.

based on a divisive hierarchical clustering, to choose an adequate number of
clusters for rows and columns. In our work, instead, we force the algorithm to
produce the whole hierarchy, until each leaf cluster is a singleton. Our final
goal, in fact, is to provide a complete taxonomy that can be browsed by any
expert. Any common model selection approaches [12,35] can be applied as
post-processing to cut or reduce the depth of the hierarchy for visualization
purposes. Another significant difference between the two approaches is that
our hierarchy is n-ary, while M-SCOAL always splits each cluster into two
sub-clusters.

32 Ruggero G. Pensa et al.

To the best of our knowledge, our approach is the first one that performs a
simultaneous hierarchical co-clustering on both dimensions, and that returns
two coupled hierarchies. However, in recent literature, several approaches have
been proposed that could be related to our work, even though they do not pro-
duce the same type of results. In [18] a hierarchical co-clustering for queries
and URLs of a search engine log is introduced. This method first constructs a
bipartite graph for queries and visited URLs, and then all queries and related
URLs are projected in a reduced dimensional space by applying singular value
decomposition. Finally, all connected components are iteratively clustered us-
ing k-means for constructing a hierarchical categorization. In [5], the authors
propose a hierarchical, model-based co-clustering framework that views a bi-
nary dataset as a joint probability distribution over row and column variables.
Their approach starts by clustering tuples in a dataset, where each cluster is
characterized by a different probability distribution. Then, the conditional dis-
tribution of attributes over tuples is exploited to discover natural co-clusters
in the data. This method does not construct any coupled hierarchy; moreover,
co-clusters are identified in a separate step, only after the set of tuples has
been partitioned. In [17], the proposed method constructs two hierarchies on
gene expression data, but they are not generated simultaneously. In our ap-
proach, levels of the two hierarchies are alternately generated, so that each
level of both hierarchies identifies a strongly related set of co-clusters of the
matrix.

Incremental clustering is an old and well studied problem in data mining
[8]. However, only few works address the problem of incremental co-clustering.
In [11] the authors extend the co-clustering approach described in [2] in a
straightforward way: they add the new object to a temporary cluster and
then update the clustering statistics by assigning the new objects to existing
clusters. The assumption here is that the number of co-clusters is always fixed,
while our approach can possibly determine a different number of clusters.
This work has been recently improved by [23] in which the authors suggest to
estimate the clusters of the new incoming objects as soon as they arrive. They
also propose an ensemble method for combining multiple local co-clustering
results (with different number of clusters). Using this setting, however, the
difference in term of computational time is not that marked between the off-
line and the on-line method. Both works have been applied to the area of
collaborative filtering methods for recommender systems, where the matrix
encodes users that rate some items. In this case, the incremental version may
be also useful when existing users add new ratings for existing or new items.
However, none of these two methods deals with hierarchies. An attempt of
hierarchical clustering for text documents is [31], where the authors extends
COBWEB [9], to deal with probability distribution of word occurrences in
text documents. The authors first show that COBWEB is not suitable for
this kind of data, and propose a variant which takes into account the word
occurrence distribution. This algorithm, however, does not build hierarchies
over the feature space.

Hierarchical Co-Clustering: Off-line and Incremental Approaches 33

7 Conclusion

Quality of flat clustering solutions in high-dimensional data results often de-
graded. In this paper we have proposed both a hierarchical co-clustering ap-
proach and its extension to an incremental setting. HiCC is a novel hierarchical
algorithm, which builds two coupled hierarchies, one on the objects and one
on features thus providing insights on both them. Hierarchies are high quality.
We have validated them by objectives evaluation measures like NMI and Ad-
justed Rand Index on many high-dimensional datasets. In addition, HiCC has
other benefits: it is parameter-less; it does not require a pre-specified number
of clusters; it produces compact hierarchies because it makes n−ary splits,
with n automatically determined. We empirically demonstrate that the con-
cept hierarchies produced by our approach are stable w.r.t. the space given by
the original class labels. As a second important result we have extended HiCC

to an incremental setting. We have shown that the incremental variant pro-
duces good hierarchical co-clusterings, similar to those provided by the off-line
approach, but requires significantly less computational time. This observation
opens the way to a novel usage of our algorithms, in an incremental setting,
in which the data are partitioned into several blocks and they are incremen-
tally processed. Here, we conducted many experiments on text data. However
our algorithm could be applied to other kind of data as well. For instance, in
gene expression data analysis, biologists usually employ hierarchical clustering
techniques for exploring data in both senses, but they usually cluster genes
and samples separately, often leading to uncorrelated results. In the future, we
will investigate new applications of our hierarchical co-clustering techniques
in life science domains, such as genomics, proteomics and phylogenetics. Fur-
thermore, we will study alternative measures that can be applied directly on
data other than co-occurrence tables.

Acknowledgements We thank Céline Robardet for her advice on the Pareto dominance
criterium for the local convergence of the algorithms.

References

1. Anagnostopoulos, A., Dasgupta, A., Kumar, R.: Approximation algorithms for co-
clustering. In: Proceedings of PODS 2008, pp. 201–210. ACM Press, Vancouver, BC,
Canada (2008)

2. Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., Modha, D.: A generalized maximum en-
tropy approach to bregman co-clustering and matrix approximation. Journal of Machine
Learning Research 8, 1919–1986 (2007)

3. Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully automatic cross-
associations. In: Proc. ACM SIGKDD 2004, pp. 79–88. ACM Press, Seattle, USA (2004)

4. Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum-squared residue co-clustering
of gene expression data. In: Proceedings of SIAM SDM 2004. Lake Buena Vista, USA
(2004)

5. Costa, G., Manco, G., Ortale, R.: A hierarchical model-based approach to co-clustering
high-dimensional data. In: Proceedings of ACM SAC 2008, pp. 886–890. ACM Press,
Fortaleza, Ceara, Brazil (2008)

34 Ruggero G. Pensa et al.

6. Deodhar, M., Ghosh, J.: SCOAL: A framework for simultaneous co-clustering and learn-
ing from complex data. Trans. Knowl. Discov. Data 4(3), 11:1–11:31 (2010)

7. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceed-
ings of ACM SIGKDD 2003, pp. 89–98. ACM Press, Washington, USA (2003)

8. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for
mining in a data warehousing environment. In: Proceedings of VLDB 1998, pp. 323–333.
Morgan Kaufmann, New York City, New York, USA (1998)

9. Fisher, D.: Knowledge acquisition via incremental conceptual clustering. Machine Learn-
ing 2(2), 139–172 (1987)

10. Forman, G.: An extensive empirical study of feature selection metrics for text classifi-
cation. Journal of Machine Learning Research 3, 1289–1305 (2003)

11. George, T., Merugu, S.: A scalable collaborative filtering framework based on co-
clustering. In: Proceedings of ICDM 2005, pp. 625–628. IEEE Computer Society, Hous-
ton, Texas, USA (2005)

12. Gong, J., Oard, D.: Selecting hierarchical clustering cut points for web person-name
disambiguation. In: Proceedings of ACM SIGIR 2009, pp. 778–779. ACM Press, Boston,
MA, USA (2009)

13. Goodman, L.A., Kruskal, W.H.: Measures of association for cross classification. Journal
of the American Statistical Association 49, 732–764 (1954)

14. Goodman, L.A., Kruskal, W.H.: Measure of association for cross classification ii: further
discussion and references. Journal of the American Statistical Association 54, 123–163
(1959)

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems. Morgan Kaufmann (2000)

16. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical
Association 67(337), 123–129 (1972)

17. Heard, N.A., Holmes, C.C., Stephens, D.A., Hand, D.J., Dimopoulos, G.: Bayesian
coclustering of anopheles gene expression time series: Study of immune defense response
to multiple experimental challenges. Proc. Natl. Acad. Sci. 102(47), 16,939–16,944
(2005)

18. Hosseini, M., Abolhassani, H.: Hierarchical co-clustering for web queries and selected
urls. In: Proceedings of WISE 2007, LNCS, vol. 4831, pp. 653–662. Springer, Nancy,
France (2007)

19. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–218
(1985)

20. Ienco, D., Pensa, R., Meo, R.: Parameter-free hierarchical co-clustering by n-ary splits.
In: Proceedings of ECML PKDD 2009, Part I, Lecture Notes in Computer Science, vol.
5781, pp. 580–595. Springer, Bled, Slovenia (2009)

21. Ienco, D., Robardet, C., Pensa, R., Meo, R.: Parameter-less co-clustering for star-
structured heterogeneous data. Data Mining and Knowledge Discovery pp. 1–38 (2012).
Published online

22. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization.
European Journal of Operational Research 137(1), 50–71 (2002)

23. Khoshneshin, M., Street, W.: Incremental collaborative filtering via evolutionary co-
clustering. In: Proceedings of ACM RecSys 2010, pp. 325–328. ACM Press, Barcelona,
Spain (2010)

24. Kim, J., Candan, K.: CP/CV: concept similarity mining without frequency information
from domain describing taxonomies. In: Proceedings of ACM CIKM 2006, pp. 483–492.
ACM Press, Arlington, Virginia, USA (2006)

25. Kluger, Y., Basri, R., Chang, J., Gerstein, M.: Spectral biclustering of microarray data:
coclustering genes and conditions. Genome Research 13, 703–716 (2003)

26. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on
subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans.
Knowl. Disc. Data 3(1), 1:1–1:58 (2009)

27. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective
qap with correlated flow matrices. European Journal of Operational Research 169(3),
943 – 959 (2006)

28. Robardet, C.: Contribution à la classification non supervisée: proposition d’une methode
de bi-partitionnement. Ph.D. thesis, Université Claude Bernard - Lyon 1 (2002)

Hierarchical Co-Clustering: Off-line and Incremental Approaches 35

29. Robardet, C., Feschet, F.: Comparison of three objective functions for conceptual clus-
tering. In: Proceedings of PKDD 2001, LNCS, vol. 2168, pp. 399–410. Springer, Freiburg,
Germany (2001)

30. Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Proceedings
of DS 2001, LNCS, vol. 2226, pp. 323–335. Springer, Washington, DC, USA (2001)

31. Sahoo, N., Callan, J., Krishnan, R., Duncan, G., Padman, R.: Incremental hierarchical
clustering of text documents. In: Proceedings of ACM CIKM 2006, pp. 357–366. ACM
Press, Arlington, Virginia, USA (2006)

32. Slonim, N., Tishby, N.: Document clustering using word clusters via the information
bottleneck method. In: Proceedings of ACM SIGIR 2000, pp. 208–215. ACM Press,
Athens, Greece (2000)

33. Strehl, A., Ghosh, J.: Cluster ensembles — a knowledge reuse framework for combining
multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

34. V.S.Cherukuri, Candan, K.: Propagation-vectors for trees (pvt): concise yet effective
summaries for hierarchical data and trees. In: Proceeding of LSDS-IR 2008, pp. 3–10.
ACM Press, Napa Valley, California, USA (2008)

35. Zhang, Y., Li, T.: Extending consensus clustering to explore multiple clustering views.
In: Proceedings of SIAM SDM 2011, pp. 920–931 (2011)

