A. Anagnostopoulos, A. Dasgupta, and R. Kumar, Approximation algorithms for coclustering, Proceedings of PODS 2008, pp.201-210, 2008.

A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha, A generalized maximum entropy approach to bregman co-clustering and matrix approximation, Journal of Machine Learning Research, vol.8, pp.1919-1986, 2007.

D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos, Fully automatic crossassociations, Proc. ACM SIGKDD, pp.79-88, 2004.

H. Cho, I. S. Dhillon, Y. Guan, and S. Sra, Minimum sum-squared residue co-clustering of gene expression data, Proceedings of SIAM SDM, 2004.

G. Costa, G. Manco, and R. Ortale, A hierarchical model-based approach to co-clustering high-dimensional data, Proceedings of ACM SAC, pp.886-890, 2008.

M. Deodhar and J. Ghosh, SCOAL: A framework for simultaneous co-clustering and learning from complex data, Trans. Knowl. Discov. Data, vol.4, issue.3, p.31, 2010.

I. S. Dhillon, S. Mallela, and D. S. Modha, Information-theoretic co-clustering, Proceedings of ACM SIGKDD 2003, pp.89-98, 2003.

M. Ester, H. P. Kriegel, J. Sander, M. Wimmer, and X. Xu, Incremental clustering for mining in a data warehousing environment, Proceedings of VLDB 1998, pp.323-333

M. Kaufmann, , 1998.

D. Fisher, Knowledge acquisition via incremental conceptual clustering, Machine Learning, vol.2, issue.2, pp.139-172, 1987.

G. Forman, An extensive empirical study of feature selection metrics for text classification, Journal of Machine Learning Research, vol.3, pp.1289-1305, 2003.

T. George and S. Merugu, A scalable collaborative filtering framework based on coclustering, Proceedings of ICDM 2005, pp.625-628, 2005.

J. Gong and D. Oard, Selecting hierarchical clustering cut points for web person-name disambiguation, Proceedings of ACM SIGIR 2009, pp.778-779, 2009.

L. A. Goodman and W. H. Kruskal, Measures of association for cross classification, Journal of the American Statistical Association, vol.49, pp.732-764, 1954.

L. A. Goodman and W. H. Kruskal, Measure of association for cross classification ii: further discussion and references, Journal of the American Statistical Association, vol.54, pp.123-163, 1959.

J. Han and M. Kamber, Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems, 2000.

J. A. Hartigan, Direct clustering of a data matrix, Journal of the American Statistical Association, vol.67, issue.337, pp.123-129, 1972.

N. A. Heard, C. C. Holmes, D. A. Stephens, D. J. Hand, and G. Dimopoulos, Bayesian coclustering of anopheles gene expression time series: Study of immune defense response to multiple experimental challenges, Proc. Natl. Acad. Sci, vol.102, issue.47, pp.939-955, 2005.

M. Hosseini and H. Abolhassani, Hierarchical co-clustering for web queries and selected urls, Proceedings of WISE 2007, vol.4831, pp.653-662, 2007.

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.2, issue.1, pp.193-218, 1985.

D. Ienco, R. Pensa, and R. Meo, Parameter-free hierarchical co-clustering by n-ary splits, Proceedings of ECML PKDD 2009, Part I, vol.5781, pp.580-595, 2009.

D. Ienco, C. Robardet, R. Pensa, and R. Meo, Parameter-less co-clustering for starstructured heterogeneous data, Data Mining and Knowledge Discovery, pp.1-38, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00794744

A. Jaszkiewicz, Genetic local search for multi-objective combinatorial optimization, European Journal of Operational Research, vol.137, issue.1, pp.50-71, 2002.

M. Khoshneshin and W. Street, Incremental collaborative filtering via evolutionary coclustering, Proceedings of ACM RecSys, pp.325-328, 2010.

J. Kim and K. Candan, CP/CV: concept similarity mining without frequency information from domain describing taxonomies, Proceedings of ACM CIKM, pp.483-492, 2006.

Y. Kluger, R. Basri, J. Chang, and M. Gerstein, Spectral biclustering of microarray data: coclustering genes and conditions, Genome Research, vol.13, pp.703-716, 2003.

H. P. Kriegel, P. Kröger, and A. Zimek, Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering, ACM Trans. Knowl. Disc. Data, vol.3, issue.1, pp.1-1, 2009.

L. Paquete and T. Stützle, A study of stochastic local search algorithms for the biobjective qap with correlated flow matrices, European Journal of Operational Research, vol.169, issue.3, pp.943-959, 2006.

C. Robardet, Contributionà la classification non supervisée: proposition d'une methode de bi-partitionnement, vol.1, 2002.

C. Robardet and F. Feschet, Comparison of three objective functions for conceptual clustering, Proceedings of PKDD 2001, vol.2168, pp.399-410, 2001.

C. Robardet and F. Feschet, Efficient local search in conceptual clustering, Proceedings of DS 2001, vol.2226, pp.323-335, 2001.

N. Sahoo, J. Callan, R. Krishnan, G. Duncan, and R. Padman, Incremental hierarchical clustering of text documents, Proceedings of ACM CIKM, pp.357-366, 2006.

N. Slonim and N. Tishby, Document clustering using word clusters via the information bottleneck method, Proceedings of ACM SIGIR, pp.208-215, 2000.

A. Strehl and J. Ghosh, Cluster ensembles -a knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research, vol.3, pp.583-617, 2002.

V. S. Cherukuri and K. Candan, Propagation-vectors for trees (pvt): concise yet effective summaries for hierarchical data and trees, Proceeding of LSDS-IR, pp.3-10, 2008.

Y. Zhang and T. Li, Extending consensus clustering to explore multiple clustering views, Proceedings of SIAM SDM 2011, pp.920-931, 2011.