
HAL Id: lirmm-00798308
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798308

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Approximate Frequent Closed Flows over Packet
Streams

Imen Brahmi, Sadok Ben Yahia, Pascal Poncelet

To cite this version:
Imen Brahmi, Sadok Ben Yahia, Pascal Poncelet. Mining Approximate Frequent Closed Flows over
Packet Streams. DaWaK: Data Warehousing and Knowledge Discovery, Aug 2011, Toulouse, France.
pp.419-431, �10.1007/978-3-642-23544-3_32�. �lirmm-00798308�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798308
https://hal.archives-ouvertes.fr

Mining Approximate Frequent Closed Flows
over Packet Streams

Imen Brahmi1, Sadok Ben Yahia1, and Pascal Poncelet2

1 Faculty of Sciences of Tunis, Tunisia
imen.brahmi@gmail.com, sadok.benyahia@fst.rnu.tn

2 LIRMM UMR CNRS 5506,161 Rue Ada, 34392 Montpellier Cedex 5, France
poncelet@lirmm.fr

Abstract. Due to the varying and dynamic characteristics of network
traffic, the analysis of traffic flows is of paramount importance for net-
work security, accounting and traffic engineering. The problem of ex-
tracting knowledge from the traffic flows is known as the heavy-hitter
issue. In this context, the main challenge consists in mining the traffic
flows with high accuracy and limited memory consumption. In the aim
of improving the accuracy of heavy-hitters identification while having a
reasonable memory usage, we introduce a novel algorithm called ACL-
Stream. The latter mines the approximate closed frequent patterns over
a stream of packets. Carried out experiments showed that our proposed
algorithm presents better performances compared to those of the pioneer
known algorithms for heavy-hitters extraction over real network traffic
traces.

Keywords: Network Traffic Analysis; Heavy-Hitters; Traffic Flow; Ap-
proximate.

1 Introduction

Recently, data streams possess interesting computational characteristics, such
as unknown or unbounded length, possibly very fast arrival rate, inability to
backtrack over previously arrived items (only one sequential pass over the data
is allowed), and a lack of system control over the order in which the data ar-
rive [1]. In this context, the analysis of network traffic has been one of the primary
applications of data streams. Generally, the main objectives in network monitor-
ing can be summarized under two aspects as follows: (i) understanding traffic
features specially the most frequent ones; and (ii) detecting outburst network
anomalies [11].

For example, given a large-scale campus network or enterprise network, there
always exist a huge amount of network flows which have similar traffic features.
Flows are usually considered to be sequences of packets with a five-tuple of
common values (i.e., protocol, source and destination of IP addresses and port
numbers), and ending after a fixed timeout interval when no packets are ob-
served. In this case, many research works considered that the network traffic

2 Brahmi et al.

pattern obey a heavy-tailed distribution [7, 14, 15], implying a small percentage
of flows consuming a large percentage of bandwidth. The flows which are re-
sponsible for a huge amount of packets are baptized as heavy-hitters [7, 15]. The
latter have been shown useful for many applications, such as detecting Denial of
Service (DoS) attacks, warning heavy network users, monitoring traffic trends
and balancing traffic load [15], to cite but a few.

A straightforward approach to detect the heavy-hitters consists of mining
the frequent flows with their corresponding frequency count. Nevertheless, this
simple approach is not applicable for high-speed traffic streams. In fact, the
traffic streams have often a very large number of distinct network packets, which
results in overwhelming and unpredictable memory requirements for flow mining.
As an example, we consider the case of a small enterprise network and a NetFlow
collector that computes the generated traffic flows.The number of flows over a
period of a month is close to 100 million, which corresponds to 2.5 GBytes of
memory for storing 136-bit flow identifiers and 64-bit counters. Consequently,
the large memory requirements hampers the computation of heavy-hitters over
packet streams. In addition, the use of a disk to store a subset of the flow
identifiers and counters severely impacts performances and is unsuitable when
fast processing is required.

In this paper, we investigate another way of computing the heavy-hitters
using limited memory resources. Thus, we introduce a single-pass algorithm,
called ACL-Stream (Approximate CLosed frequent pattern mining over packet
Streams) that provides a condensed representation of heavy-hitters. In this re-
spect, ACL-Stream allows the incremental maintenance of frequent closed pat-
terns as well as the estimation of their frequency counts over a packet stream.
Clearly, it has been shown in [7, 14] that, it is unfeasible to find the exact fre-
quency of heavy-hitters using memory resources sub-linear to the number of
distinct traffic patterns. Consequently, memory-efficient algorithms approximate
the heavy-hitters over a packet stream. Through extensive carried out experi-
ments on a real network traffic traces, we show the effectiveness of our proposal
on accuracy, detection ability and memory usage performances.

The remainder of the paper is organized as follows. We scrutinize, in Section
2, the related work. We define the background used to propose our approach in
Section 3. In Section 4, we introduce the ACL-Stream algorithm. We also re-
port the encouraging results of the carried out experiments in Section 5. Finally,
we conclude by resuming the strengths of our contribution and sketching future
research issues.

2 Related work

Due to its high practical relevance, the topic of flow mining has grasped a lot
of attention in recent years. Generally, within literature, the algorithms, aiming
at the identification of heavy-hitters, are the algorithms of frequent pattern ex-
traction over a stream of packets [15]. Indeed, these algorithms can be roughly

ACL-Stream algorithm 3

divided into three categories: sampling-based, hash-based and counter-based al-
gorithms.

Sampling-based algorithms [2, 8–10] exploit cyclical sampling to reduce mem-
ory footprint and processing overhead, but their accuracy is limited by a low
sampling rate required to make the sampling operation affordable.

Hash-based algorithms [3–5, 16] can substantially reduce the storage space
for flow recording and accelerate processing speed. However, they need to find a
balance between compression ratio and accuracy. Moreover, hash functions need
to be carefully chosen in order to avoid collisions.

Counter-based algorithms [6, 7, 12, 14] hold a fixed (or bounded) number of
counters for tracking the size of heavy-hitters. In this context, one of the well
known examples is the LossyCounting (LC) algorithm [12]. In this respect,
it divides the incoming traffic stream into a fixed-size window w = [1/ε], where
ε is an error parameter such that ε ∈ (0,ms) and ms is a user-specified mini-
mum support threshold such that ms ∈ [0, 1]. Querying heavy-hitters consists
of mining patterns whose estimated frequencies exceed (ms− ε) over each win-
dow. Moreover, LC guarantees that the obtained results does not include false
negatives1. Although, the smaller value of ε is the more accurate approximation
is. Thus, it leads to requiring both more memory space and more CPU process-
ing power. In addition, if ε approaches ms, then more false positives2 will be
outputted.

Aiming at improving the LC algorithm in computing network traffic heavy-
hitters, Dimitropoulos et al. [7] proposed the ProbabilisticLossyCounting
(PLC) algorithm. PLC uses a tighter error bound on the estimated sizes of traffic
flows. Consequently, it drastically reduces the required memory and improves the
accuracy of heavy-hitters identification. However, PLC needs to emulate heavy-
tailed distribution at the end of each window, causing a high computational
complexity.

Recently, Zhang et al. introduced an algorithm called WeightedLossy-
Counting (WLC) [15]. WLC is able to identify heavy hitters in a high-speed
weighted data stream with constant update time. Moreover, it employs an or-
dered data structure which is able to provide a fast per-item update speed while
keeping the memory cost relatively low.

Due to its usability and importance, reducing the memory space of frequent
flows still present a thriving and a compelling issue. In this respect, the main
thrust of this paper is to propose a new algorithm, called ACL-Stream, to
mine approximate closed frequent patterns from flows, which can be seen as an
extension of a concise representation of flows to the heavy-hitters identification
search space. The main idea behind our approach comes from the conclusion
drawn from the Data Mining community that focused on the closed frequent
pattern mining over a data stream. In fact, the extraction of the latter requires

1 The false negatives are the patterns considered as frequent on the entire traffic data
and infrequent in window.

2 The false positives are the patterns considered as frequent in the window and infre-
quent on the entire traffic data

4 Brahmi et al.

less memory. Thus, this fact has been shown to be much suitable for the mining
stream, since it presents the best compactness rates.

3 Approximate closed patterns

One of the most known condensed representation of patterns is based on the
concept of closure [13].

Definition 1. A pattern X is a closed pattern if there exists no pattern X’ such
that: (i) X’ is a proper superset of X; and (ii) every packet in a network traffic3

containing X also contains X’. The closure of a the maximal superset of X having
the same support value as that of X.

Table 1. A snapshot of network traffic data.

Packet ID Packets

p1 src IP1,protocol

p2 src port,dst port

p3 src port,dst port,src IP1

p4 src port,dst port,src IP1

p5 src port,src IP1,protocol

Example 1. Let Table 1 sketching a set of packets. The set of closed patterns with
their corresponding frequency counts (i.e., supports) is as follows: { (src port:
4); (src IP1: 4); (src port dst port: 3); (src port src IP1: 3); (src IP1 protocol:
2); (src port dst port src IP1: 2); (src port src IP1 protocol: 1)}.

Due to the dynamically characteristic of traffic stream, a pattern may be
infrequent at some point in a stream but becomes frequent later. Since there are
exponentially many infrequent patterns at any point in a stream, it is infeasible
to keep all infrequent patterns. Suppose we have a pattern X which becomes
frequent after time t. Since X is infrequent before t, its support in the stream
before t is lost. In this respect, to estimate X’s support before t, the counter-
based algorithm for heavy-hitters mining [7, 12, 14, 15] uses an error parameter,
ε. X is maintained in the window as long as its support is at least ε×N , where N
is the number of packets within the current window. Thus, if X is kept only after
t, then its support before t is at most ε×N . However, the use of small ε results
in a large number of patterns to be processed and maintained. Consequently,
this fact drastically increases the memory consumption and severely degrades
the processing efficiency.

To palliate this drawback, we consider ε as a relaxed minimum support thresh-
old and propose to progressively increase the value of ε for a pattern as it is
retained longer in the window.

Definition 2. The relaxed minimum support threshold is equal to r×ms, where
r(0 ≤ r ≤ 1) is the relaxation rate.

3 Network traffic is data in network.

ACL-Stream algorithm 5

Since all patterns whose support is lower than r ×ms are discarded, we define
the approximate support of a pattern as follows.

Definition 3. The approximate support of a pattern X over a time unit t is
defined as

˜SUP (X, t) =
{

0, if sup(X, t) < r × ms;
sup(X, t), otherwise.

4 The ACL-Stream algorithm

To effectively mine the closed frequent patterns within a packet stream environ-
ment, we propose a novel algorithm, called ACL-Stream, for maintaining the
frequent closed patterns. The main idea behind their extraction is to ensure an
efficient computation of heavy-hitters that reduces the memory requirements.

With the consideration of time and space limitation, the proposed algorithm
uses two in-memory data structures which are called CITable (Closed Incre-
mental Table) and CIList (Closed Identifier List) respectively. In addition, it
employs a hash table, called TempNew, to put the patterns that have to be
updated whenever a new packet arrives. In fact, the rationales behind such in-
memory data structures are: (i) saving storage space; and (ii) reducing the cost
of the incremental maintenance of patterns.
Table 2. Example of
CITable.

Cid Clos Count

0 {0} 0

1 {src IP1 protocol} 2

2 {src port dst port} 3

3 {src port dst port src IP1} 2

4 {src IP1} 4

5 {src port src IP1 protocol} 1

6 {src port} 4

7 {src port src IP1} 3

Table 3. Example of the CIList.

Item cidset

src port {2, 3, 5, 6, 7}
dst port {2, 3}
src IP1 {1, 3, 4, 5, 7}
protocol {1, 5}

The CITable is used to keep track of the evolution of closed patterns. Each
record of the CITable represents the information of a closed pattern. It consists
of three fields: Cid, Clos and Count. Each closed pattern was assigned a unique
closed identifier, called Cid. The Cid field is used to identify closed patterns.
Given a Cid, the ACL-Stream algorithm gets corresponding closed patterns in
the Clos field. The support counts are stores in the Count field.

Example 2. According to the database shown by Table 1, the CITable is sketched
by Table 2.

The CIList is used to maintain the items and their cidsets. It consists of
two fields: the Item field and the cidset field. The cidset of an item X, denoted
as cidset(X), is a set which contains all cids of X’s super closed patterns.

6 Brahmi et al.

Algorithm 1: The ACL-Stream algorithm

Input: T , r, ms
Output: Updated CITable

Begin1

w := [1/r ×ms];2

//Phase 13

TempNew := (pNew, 0);4

SET({pNew}) = cidset(i1) ∪...∪ cidset(ik);5

Foreach Cid(i) ∈ SET ({pNew}) do6

IR := Null;7

IR := pNew ∩ Clos[i];8

If IR ∈ TempNew then9

If ˜SUP (Clos[i]) > ˜SUP (Clos[z]) then10

replace (IR, i) with (IR, z) in TempNew11

Else12

TempNew := TempNew ∪ (IR, i)13

//Phase 214

Foreach (X, c) ∈ TempNew do15

If X == Clos[c] then16

˜SUP (Clos[c]) := ˜SUP (Clos[c]) + 1;17

Else18

j := j+1;19

CITable := CITable ∪(j, X, ˜SUP (Clos[c]) + 1);20

Foreach i ∈ pNew do21

cidset(i) := cidset(i) ∪ j22

End23

Example 3. According to Table 1 and the CITable shown by Table 2, {src port
dst port} is closed and its Cid is equal to 2. Thus, 2 will be added into cid-
set(src port) and cidset(dst port) respectively. Table 3 illustrates a CIList. It
maintains the items and their corresponding superset cids shown by Table 2.

The pseudo-code of the ACL-Stream algorithm is shown by Algorithm 1. In
this respect, the ACL-Stream algorithm attempts to mine a concise representa-
tion of heavy-hitters that delivers approximate closed frequent flows. Indeed, the
algorithm takes on input a network traffic trace T , a minimum support threshold
ms and a relaxation rate r. It starts by reading a fixed window of packets, w,
such as w = [1/r×ms] (line 2). The window facilitates the continuous monitor-
ing of changes in the stream. Moreover, it can be used to palliate the drawback of
unbounded memory over the packet streams. In addition, whenever a new packet
pNew arrives, the ACL-Stream algorithm consists of two phases. During the
first one, the algorithm finds all patterns that need to be updated with their clo-
sures, and puts them into TempNew (lines 4−13). Within the second phase, the
ACL-Stream algorithm updates their supports, CITable and CIList (lines

ACL-Stream algorithm 7

15−22). Consequently, the updated closed patterns can be obtained without
multiple scans of whole search spaces, i.e., by scanning the CITable once.

4.1 Incremental maintenance over packet streams

We assume that pNew denotes a new incoming packet. Torig the original network
traffic, i.e., the network traffic before adding pNew. Tup = Torig∪ pNew is the up-
dated network traffic after adding pNew. ClosTorig(X) and ClosTup(X) represent
the closure of X within Torig and Tup respectively.

Property 1. Whenever pNew arrives to Torig, then the patterns of pNew ∈ ClosTorig.

Property 2. Whenever pNew arrives to Torig, if a pattern Y is not a subset of

pNew, then the status of Y will not be changed, i.e., ˜SUP (Y) remains such as
it is and ClosTorig(Y) = ClosTup(Y).

Property 3. Suppose a pattern IR = pNew ∩ X, IR ∈ Torig. If IR 6= ∅, then
IR is a closed pattern in Tup.

In the following, we thoroughly discuss the two phases of the ACL-Stream
algorithm according to the pseudo-code shown by Algorithm 1.

Phase 1: According to Property 1, whenever a pNew arrives it is considered
as closed in Torig. The ACL-Stream algorithm puts pNew into TempNew. The
table TempNew takes the TI field as a key, and the Closure Id field as value.
Initially, ACL-Stream sets the Closure Id of pNew to 0, since its closure is un-
known (line 4). Besides, the ACL-Stream algorithm intersects pNew with its
associated closed patterns. The set of cids of associated closed patterns is defined
as SET({pNew}) = cidset(i1) ∪...∪ cidset(ik). Consequently, the algorithm finds
the patterns of pNew that need to be updated (line 5). According to Property
3, the results of the intersection are closed patterns within the updated network
traffic Tup. Suppose IR is the intersection result of pNew and a closed pattern
C having a Cid i ∈ SET({pNew}) (lines 7−8). If IR is not in TempNew, then
ACL-Stream puts (IR, i) into TempNew (lines 12−13). Otherwise, if IR is
already in TempNew with its current Closure Id t, then ACL-Stream compares
˜SUP (C) and ˜SUP (Q) such that Q is a closed pattern having a Cid z in the

CITable, i.e., Clos[z] =Q (line 9−10). If ˜SUP (C) is greater than ˜SUP (Q),
then ACL-Stream replaces (IR, z), already in TempNew with (IR, i) (line
11). The reason is that the closure of IR has a support greater than any of
its superset’s support (Properties 2 and 3). The intersections of pNew with C
iterates till all cids in SET({pNew}) are processed (line 6). Consequently, the
phase 1 allows the identification of patterns that need to be updated and finds
their closure before the new incoming packet arrives.

Phase 2: The ACL-Stream algorithm gets patterns X with their Closure Id
c from TempNew, and checks that whether X is already in the CITable. If X

8 Brahmi et al.

is already in the CITable with Cid c, then X is originally a closed in Torig.

In this case, ACL-Stream directly increases ˜SUP (X) by 1. Otherwise, X is a

new closed pattern after the TempNew arrival. In this case, ˜SUP (X) is equal to
the support of its closure increased by 1 (line 16−17). At the same time, ACL-
Stream assigns to X a new Cid n, puts X into the CITable, and updates
the CIList (lines 19−20). The phase 2 is repeated till all records in TempNew

are processed (line 15). Finally, ACL-Stream comes to end and outputs the
updated CITable. The obtained CITable captures all the information enclosed
in a packet stream.

Example 4. According to Table 1, before that p1 arrives, we have Torig = ∅. The
first record of the CITable is set to (0, 0, 0). Each cidsets in the CIList is set to
∅. As p1 = {src IP1 protocol} arrives, Tup = Torig ∪ p1. The ACL-Stream algo-
rithm puts {src IP1 protocol} into TempNew and sets its Closure Id to 0. Then,
ACL-Stream merges cidset(src IP1) and cidset(protocol) to get SET({src IP1
protocol}), i.e., SET({src IP1 protocol}) = cidset(src IP1) ∩ cidset(protocol) =
∅. Since SET({src IP1 protocol}) is empty, p1 does not need to intersect with
any closed patterns. Therefore, the phase 1 was completed. ACL-Stream goes
to phase 2. Within phase 2, ACL-Stream updates patterns within TempNew by
their Closure Id. Only ({src IP1 protocol}, 0) in TempNew. ACL-Stream finds
a closed pattern whose Cid is 0 from the CITable, Clos[0] ={0}. Since {0} is
not equal to {src IP1 protocol}, then {src IP1 protocol} is a new closed pattern
after the p1 arrival. Hence, ACL-Stream assigns {src IP1 protocol} a new Cid

equal to 1. Then, ACL-Stream determines ˜SUP ({src IP1 protocol}), which

is equal to ˜SUP (Clos[0]) increased by 1. Therefore, ˜SUP ({src IP1 protocol})
is 1. Finally, ACL-Stream updates the CITable and the CIList respectively.
Thus, it inserts (1, {src IP1 protocol}, 1) into the CITable and inserts 1 into
the CIList. Then, it handles p2, p3, p4 and p5 in the same manner. After the
insertion of the packets shown by Table 1, the obtained CITable and CIList
are shown by Table 2 and Table 3, respectively.

Table 4. Example of TempNew whenever p6 arrives.

TI Closure id

{src IP1} {4}
{dst port} {2}

{dst port src IP1} {3}

Assume that a new packet p6 = {dst port src IP1} arrives, then ACL-
Stream puts {dst port src IP1} into TempNew, and sets its Closure Id to 0.
Moreover, SET({dst port src IP1}) = cidset(dst port) ∩ cidset(src IP1) = {2,
3} ∩ {1, 3, 4, 5, 7} = {1, 2, 3, 4, 5, 7}, according to Table 3. Thus, ACL-Stream
intersects p6 with the closed patterns whose cids belongs to SET({dst port
src IP1}). Clearly, the first is Clos[1] = {src IP1 protocol} and {dst port src IP1}
∪ {src IP1 protocol} = {src IP1}. Hence, it puts {src IP1} into TempNew and
sets its Closure Id to 1. Then, it deals with 2, Clos[2] = {src port dst port}
and {dst port src IP1} ∪ {src port dst port} = {dst port}. Consequently, ACL-

ACL-Stream algorithm 9

Stream puts ({dst port}, 2) into TempNew. It deals with Clos[3] = {src port
dst port src IP1}, i.e., {dst port src IP1} ∪ {src port dst port src IP1}= {dst port
src IP1}. However, {dst port src IP1} is already in TempNew and its current Clo-

sure Id is 0. Additionally, ˜SUP (Clos[3]) is greater than ˜SUP (Clos[0]). There-
fore, ACL-Stream replaces ({dst port src IP1}, 0) with ({dst port src IP1},
3). After dealing with the remaining closed patterns with the same processing
steps, the result of TempNew is shown by Table 4.

5 Experiments

To evaluate the effectiveness and efficiency of our algorithm ACL-Stream, we
carried out extensive experiments. Indeed, we compare our approach with the
pioneering algorithms falling within the detection of heavy-hitters trend, namely,
LC [12], PLC [7] and WLC [15]. All experiments were carried out on a PC
equipped with a 3GHz Pentium IV and 4GB of main memory running under
Linux Fedora Core 6.

During the carried out experiments, we used a real network traffic trace. The
latter is collected from the gateway of a campus network with 1500 users in
China4. Table 5 sketches dataset characteristics used during our experiments.

Table 5. The considered real traffic traces at a glance.

Traffic traces

Source Campus network

Date 2009-08-24
16:20-16:35

Packets 49,999,860

Unique flows 4,136,226

During the experiments, we set r = 0.1 and vary ms from 0.1 to 1 such that
ε = 0.1 × ms within LC, PLC and WLC.

5.1 Accuracy assessment

(a) Precision (b) Recall

 90

 92

 94

 96

 98

 100

 0.05 0.06 0.07 0.08 0.09 0.1

P
re

ci
si

on
 (

%
)

The minimum support threshold (%)

ACL-STREAM
LC

PLC
WLC

 90

 92

 94

 96

 98

 100

 0.05 0.06 0.07 0.08 0.09 0.1

R
ec

al
l (

%
)

The minimum support threshold (%)

ACL-STREAM
LC

PLC
WLC

Fig. 1. Precision and Recall of ACL-Stream vs. LC, PLC and WLC.

The accuracy of mining results are measured by the use of two metrics,
Precision and Recall.
4 We thank Mr. Q. Rong [14] for providing us with the real network traffic trace.

10 Brahmi et al.

Since the approximate algorithms, falling within the detection of heavy-
hitters trend, possibly return false positives, the precision indicates the num-
ber of false positive results [15]. In fact, Figure 1(a) illustrates the precision of
ACL-Stream vs. those respectively of LC, PLC and WLC. We remark that
the ACL-Stream algorithm achieves 100% precision. Although, there is no clear
difference between the three algorithms LC, PLC and WLC, such that ε = 0.1 ×
ms. They attain high precision whenever ms is small. Whereas, their precision
drops linearly to be less than 95% as far as ms increases (i.e., the increase in the
error parameter ε). Thus, the increase of ε, associated to ms, results in worsen-
ing the precision for the three algorithms. On the contrary, Figure 1(b) shows
that whenever ms increases, all algorithms (i.e., ACL-Stream, LC, PLC and
WLC) have 100% recall. This is can be explained by the fact that all algorithms
guarantee to retrieval of all frequent patterns over the packet stream.

The experimental results reveal that the estimation mechanism of the LC,
PLC and WLC algorithms relies on the error parameter ε to control the accuracy.
Compared with these three algorithms, ACL-Stream is much less sensitive to
ε and is able to significantly achieves high accurate approximation results by
increasing ε.

5.2 The detection ability

Generally, to evaluate the algorithm’s ability to detect the heavy-hitters, two
interesting metrics are usually of use [14]: the False Positive Ratio (FPR) and
the False Negative Ratio (FPR). Figures 2(a) and 2(b) respectively plot the FPR
and FNR against the minimum support threshold ms, for ACL-Stream, LC,
PLC and WLC.

(a) False Positive Ratio (b) False Negative Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.05 0.06 0.07 0.08 0.09 0.1

F
al

se
 P

os
iti

ve
 R

at
io

The minimum support threshold (%)

ACL-STREAM
LC

PLC
WLC

 0

 0.5

 1

 1.5

 2

 0.05 0.06 0.07 0.08 0.09 0.1

F
al

se
 N

eg
at

iv
e

R
at

io

The minimum support threshold (%)

ACL-STREAM
LC

PLC
WLC

Fig. 2. Detection ability of ACL-Stream vs. LC, PLC and WLC.

On the one hand, we remark that both PLC and LC generate many false
positives along with the decrease of ms. Therefore, they are not suitable for
accurate mining of heavy-hitters within high-speed network. For example, if the
minimum support threshold is equal to 0.09%, the FPR of LC can reach values
as high as 1.8. On the other hand, among the four investigated algorithms, PLC
is the most generator of false negatives. Whenever ACL-Stream, LC and WLC
have 0 FNR, PLC has 0.9 FNR. This is due to the probabilistic nature of PLC.
Generally, ACL-Stream exhibits a lower FNR and a lower FPR than the other
algorithms. Thus, we conclude that our algorithm is able to correctly detect
heavy-hitters with few FPR and FNR.

ACL-Stream algorithm 11

5.3 Memory consumption and Throughput

Figure 3(a) shows the throughput, in a logarithmic scale, of ACL-Stream vs.
LC, PLC and WLC. The throughput is measured by the number of packets
processed per second by the algorithms. Indeed, we remark that the result points
out the ability of ACL-Stream to handle high-speed packet streams as it can
process up to 45,000 packets per second. For all minimum support thresholds,
the throughput of ACL-Stream is over two orders of magnitude higher than
that of both LC and WLC and three orders of magnitude higher than that of
PLC.

(a)Throughput (b) Memory consumption

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t (

of

 p
ac

ke
ts

/s
ec

)

The minimum support threshold (%)

ACL-STREAM
LC

PLC
WLC

 0

 100

 200

 300

 400

 500

 600

 0.05 0.06 0.07 0.08 0.09 0.1

M
em

or
y

us
ag

e
(M

B
)

The minimum support threshold (%)

ACL-STREAM
LC

PLC
WLC

Fig. 3. Throughput and Memory consumption of ACL-Stream vs. LC, PLC and
WLC.

Moreover, Figure 3(b) shows that ACL-Stream achieves a roughly constant
memory consumption of no more than 150MB. Considering the four algorithms,
the memory consumption of ACL-Stream is considerably lower than that of
WLC and substantially lower than that of both LC and PLC.

6 Conclusion

In this paper, we focused on the condensed representation of heavy-hitters al-
gorithms to tackle the mentioned above challenges, i.e., large memory require-
ment for heavy-hitters computation. Thus, we introduced a novel stream mining
algorithm called ACL-Stream. The carried out experimental results showed
the effectiveness of the introduced algorithm and highlighted that the ACL-
Stream presents better performance as well as a good detection ability than
the pioneering algorithm in heavy-hitters identification. The approximate but
high-quality online results, provided by ACL-Stream, are well-suited to detect
heavy-hitters, where the main goal is to identify generic, interesting or unex-
pected patterns.

Future issues for the present work mainly concern: (i) The consideration
of the intrusion detection over on-line packet streams and the mining of closed
frequent patterns from flows for network monitoring; (ii) Study of the extraction
of “generic streaming” association rules based on the ACL-Stream algorithm
for heavy-hitters analysis.

12 Brahmi et al.

References

1. C.C Aggrawal. Data Streams: Models and Algorithms. Springer, 2007.
2. C. Barakat, G. Iannaccone, and C. Diot. Ranking Flows From Sampled Traffic.

In Proceedings of the 2005 ACM conference on Emerging network experiment and
technology, Toulouse, France, pages 188–199, 2005.

3. S. Bhattacharyya, A. Madeira, S. Muthukrishnan, and T. Ye. How To Scalably
and Accurately Skip Past Streams. In Proceedings of the IEEE 23rd International
Conference on Data Engineeringg, Istanbul, Turkey, pages 654–663, 2007.

4. T. Bu, J. Cao, A. Chen, and P.P.C. Lee. Sequential Hashing: A Flexible Approach
for Unveiling Significant Patterns in High Speed Networks. Computer Network,
54(18):3309–3326, 2010.

5. G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-Min Sketch and its Applications. Journal of Algorithms, 55(1):58–75, 2005.

6. E.D. Demaine, A. López-Ortiz, and J.I. Munro. Frequency Estimation of Internet
Packet Streams with Limited Space. In Proceedings of the 10th Annual European
Symposium on Algorithms, Rome, Italy, pages 348–360, 2002.

7. X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic Lossy Counting: An
Efficient Algorithm for Finding Heavy-hitters. ACM SIGCOMM Computer Com-
munications Review, 38(1):5–5, 2008.

8. N. Duffeld, C. Lund, and M. Thorup. Flow Sampling Under Hard Resource
Constraints. In Proceedings of the Joint International Conference on Measure-
ment and Modeling of Computer Systems, ACM Press, New York, NY, USA, pages
85–96, 2004.

9. N. Kamiyama and T. Mori. Simple and Accurate Identification of High-rate Flows
by Packet Sampling. In Proceedings of the 25th IEEE International Conference on
Computer Communications, Barcelona, Spain, pages 2836–2848, 2006.

10. M. Kodialam, T.V. Lakshman, and S. Monhanty. Runs Based Traffic Estimator
(RATE): A Simple, Memory Efficient Scheme for Per-Flow Rate Estimation.
In Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies, Hong Kong, China, pages 1808–1818, 2004.

11. X. Li and Z.H. Deng. Mining Frequent Patterns from Network Flows for
Monitoring Network. Expert System with Applications, 37(12):8850–8860, 2010.

12. G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams.
In Proceedings of the 28th International Conference on Very Large Data Bases,
Hong Kong, China, pages 346–357, 2002.

13. N. Pasquier, Y. Bastide, R. Touil, and L. Lakhal. Discovering Frequent Closed
Itemsets. In Proceedings of the 7th International Conference on Database Theory,
Jerusalem, Israel, pages 398–416, 1999.

14. Q. Rong, G. Zhang, G. Xie, and K. Salamatian. Mnemonic Lossy Counting: An
Efficient and Accurate Heavy-hitters Identification Algorithm. In Proceedings of
the 29th IEEE International Performance Computing and Communications Con-
ference, Albuquerque, United States, 2010.

15. Y. Zhang, B.X. Fang, and Y.Z. Zhang. Identifying Heavy-hitters in High-speed
Network Monitoring. Science China, 53(3):659–676, 2010.

16. Z. Zhang, B. Wang, S. Chen, and K. Zhu. Mining Frequent Flows Based on
Adaptive Threshold with a Sliding Window over Online Packet Stream. In Pro-
ceedings of the International Conference on Communication Software and Net-
works, Macau, China, pages 210–214, 2009.

