T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake shakes Twitter users, Proceedings of the 19th international conference on World wide web, WWW '10, pp.851-860, 2010.
DOI : 10.1145/1772690.1772777

M. Mathioudakis and N. Koudas, TwitterMonitor, Proceedings of the 2010 international conference on Management of data, SIGMOD '10, pp.1155-1158, 2010.
DOI : 10.1145/1807167.1807306

C. Li, A. Sun, and A. Datta, Twevent, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, 2012.
DOI : 10.1145/2396761.2396785

C. Li, J. Weng, Q. He, Y. Yao, A. Datta et al., TwiNER, Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, SIGIR '12, 2012.
DOI : 10.1145/2348283.2348380

B. Tsolmon, A. Kwon, and K. S. Lee, Extracting Social Events Based on Timeline and Sentiment Analysis in Twitter Corpus, Proceedings of NLDB, 2012.
DOI : 10.1007/978-3-642-31178-9_32

L. Barbosa and J. Feng, Robust sentiment detection on twitter from biased and noisy data, Proceedings of COLING, 2010.

S. Bringay, N. Béchet, F. Bouillot, P. Poncelet, M. Roche et al., Towards an On-Line Analysis of Tweets Processing, Proceedings of DEXA, 2011.
DOI : 10.1145/361219.361220

URL : https://hal.archives-ouvertes.fr/hal-00636285

E. Codd, S. Codd, and C. Salley, Providing olap (on-line analytical processing) to user-analysts: An it mandate, pp.3-5, 1993.

J. M. Pérez-martínez, R. B. Llavori, M. J. Cabo, and T. B. Pedersen, Contextualizing data warehouses with documents, Decision Support Systems, vol.45, issue.1, pp.77-94, 2008.
DOI : 10.1016/j.dss.2006.12.005

G. Salton, A. Wong, and C. S. Yang, A vector space model for automatic indexing, Communications of the ACM, vol.18, issue.11, pp.613-620, 1975.
DOI : 10.1145/361219.361220

M. Vieira, P. Bakalov, and V. Tsotras, On-line discovery of flock patterns in spatiotemporal data, Proceedings of SIGSPATIAL, 2009.

H. Jeung, M. Yiu, X. Zhou, C. J. Cs, and H. Shen, Discovery of convoys in trajectory databases, Proceedings of the VLDB Endowment, vol.1, issue.1, 2008.
DOI : 10.14778/1453856.1453971

Z. Li, M. Ji, J. G. Lee, L. Tang, Y. Yu et al., MoveMine, Proceedings of the 2010 international conference on Management of data, SIGMOD '10, 2010.
DOI : 10.1145/1807167.1807319

C. Jensen, D. Lin, and B. Ooi, Continuous Clustering of Moving Objects, IEEE Transactions on Knowledge and Data Engineering, vol.19, issue.9, 2007.
DOI : 10.1109/TKDE.2007.1054

Y. Wang, E. P. Lim, and S. Y. Hwang, Efficient mining of group patterns from user movement data, Data & Knowledge Engineering, vol.57, issue.3, 2006.
DOI : 10.1016/j.datak.2005.04.006

H. P. Nhan, P. Poncelet, and M. Teisseire, Get move: An efficient and unifying spatiotemporal pattern mining algorithm for moving objects, Proceedings of IDA, 2012.

H. P. Nhat, D. Ienco, P. Poncelet, and M. Teisseire, Mining time relaxed gradual moving object clusters, Proceedings of SIGSPATIAL, 2012.

T. K. Landauer, P. W. Foltz, and D. Laham, An introduction to latent semantic analysis, Discourse Processes, vol.1, issue.2-3, 1998.
DOI : 10.1080/01638539809545030

P. Turney, Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL, Proceedings of ECML, 2001.
DOI : 10.1007/3-540-44795-4_42

J. Tang, R. Jin, and J. Zhang, A Topic Modeling Approach and Its Integration into the Random Walk Framework for Academic Search, 2008 Eighth IEEE International Conference on Data Mining, 2008.
DOI : 10.1109/ICDM.2008.71