, Une deuxième perspective réside dans l'intégration de cette modélisation dans un outil d'aide à la conception pour permettre un retour sur l'utilisabilité, la compréhensibilité, l'expressivité, etc. du modèle. Ceci implique également de s'intéresser à la validation automatique du modèle à travers la vérification des liens de contextualisation

. Références,

R. Agrawal, A. Gupta, and E. S. Sarawagi, Modeling multidimensional databases, 13th International Conference on Data Engineering (ICDE'97), pp.232-243, 1997.

M. Boehnlein and A. U. Vom-ende, Business Process Oriented Development of Data Warehouse Structures, Data Warehousing 2000 -Methoden Anwendungen, 2000.

A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, and E. S. Paraboschi, Designing Data Marts for Data Warehouses, ACM Transactions on Software Engineering and Methodology, vol.10, issue.4, pp.452-483, 2001.

M. Chen, J. Han, and P. S. Yu, Data mining : An overview from a database perspective, IEEE Transactions on Knowledge and Data Engineering : TKDE, vol.8, issue.6, pp.866-883, 1996.

J. S. Einbinder, K. W. Scully, R. D. Pates, J. R. Schubart, and R. E. Reynolds, Case study : a data warehouse for an academic medical center, Journal of Healthcare Information Management : JHIM, vol.15, issue.2, pp.165-175, 2001.

F. Ghozzi, F. Ravat, O. Teste, and G. Zurfluh, Constraints and Multidimensional Databases, Vth International Conference on Enterprise Information Systems (ICEIS'03), vol.1, pp.104-111, 2003.

M. Golfarelli, D. Maio, and E. S. Rizzi, Conceptual Design of Data Warehouses from E/R Schemes, XXXIst Annual Hawaii International Conference on System Sciences (HICSS'98), vol.7, pp.334-343, 1998.

M. Golfarelli, D. Maio, and E. S. Rizzi, The Dimensional Fact Model : A Conceptual Model for Data Warehouses, International Journal of Cooperative Information Systems, vol.7, issue.2-3, pp.215-247, 1998.

J. Han, OLAP mining : An integration of OLAP with data mining, pp.1-9, 1997.

W. H. Inmon, Building the Data Warehouse, 1996.

R. Kimball, The Data Warehouse Toolkit, 1996.

B. List, R. Bruckner, K. Machaczek, and J. Schiefer, A Comparison of Data Warehouse Development Methodologies Case Study of the Process Warehouse, XIIIth International Conference on Database and Expert Systems Applications (DEXA'02), vol.2453, pp.203-215, 2002.

E. E. Malinowski and . Zimányi, OLAP Hierarchies : A Conceptual Perspective, XVIth International Conference on Advanced Information Systems Engineering (CAiSE'04), vol.3084, pp.477-491, 2004.

E. G. Mallach, Decision Support and Data Warehouse Systems, 2000.

D. L. Moody and G. G. Shanks, What Makes a Good Data Model ? Evaluating the Quality of Entity Relationship Models, 13th International Conference on the Entity-Relationship Approach (ER'94), vol.881, pp.94-111, 1994.

V. Peralta, A. Illarze, and R. Ruggia, On the Applicability of Rules to Automate Data Warehouse Logical Design, Ist International Workshop on Decision Systems Engineering (DSE'03), in conjunction with the XVth International Conference on Advanced Information Systems Engineering (CAiSE'03), vol.75, 2003.

C. Phipps and K. C. Davis, Automating Data Warehouse Conceptual Schema Design and Evaluation, IVth International Workshop on Design and Management of Data Warehouses (DMDW'02), vol.58, pp.23-32, 2002.

Y. Pitarch, C. Favre, A. Laurent, and P. Poncelet, Analyse flexible dans les entrepôts de données : quand les contextes s'en mêlent, 6èmes journées francophones sur les Entrepôts de Données et l'Analyse en ligne (EDA'10), pp.191-205, 2010.

Y. Pitarch, C. Favre, A. Laurent, and P. Poncelet, Context-aware generalization for cube measures, ACM 13th International Workshop on Data Warehousing and OLAP (DOLAP'10), pp.99-104, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00798821

Y. Pitarch, A. Laurent, and P. Poncelet, A conceptual model for handling personalized hierarchies in multidimensional databases, Proceedings of the International Conference on Management of Emergent Digital EcoSystems, pp.107-111, 2009.
URL : https://hal.archives-ouvertes.fr/lirmm-00426501

V. Poe, Building a Data Warehouse for Decision Support, 1996.

N. Prat, J. Akoka, and I. Comyn-wattiau, A uml-based data warehouse design method, Decision Support System, vol.42, pp.1449-1473, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01125274

F. Ravat, R. O.-teste, G. Tournier, and . Zurfluh, A Conceptual Model for Multidimensional Analysis of Documents, International Conference on Conceptual Modeling (ER'07), pp.550-565, 2007.

F. Ravat, R. O.-teste, G. Tournier, and . Zurfluh, Graphical querying of multidimensional databases, 11th East European Conference on Advances in Databases and Information Systems (ADBIS'07), vol.4690, pp.298-313, 2007.

O. Romero and A. Abelló, A Survey of Multidimensional Modeling Methodologies, International Journal of Data Warehousing and Mining : IJDWM, vol.5, issue.2, pp.1-23, 2009.

O. Romero and A. Abelló, Automatic validation of requirements to support multidimensional design, Data Knowledge Engineering, vol.69, pp.917-942, 2010.

A. Soussi, J. Feki, and F. Gargouri, Approche semi-automatisée de conception de schémas multidimensionnels valides. In Ière journée sur les Entrepôts de Données et l'Analyse en ligne (EDA'05), Lyon, Volume B-1 of Revue des Nouvelles Technologies de l'Information, pp.71-90, 2005.

, This is necessary in a context where multi-dimensional modeling should be confronted with the decision makers. In previous work, we have highlighted a certain lack of expressiveness of these models. For example, in the case of a medical data warehouse, it was not possible to model the fact that the blood pressure of a patient is "low", "normal" or "high" (measure hierarchy) depends on his/her age and if he/she smokes or not. We developped a formalization of hierarchies called "contextual, Classical data warehouse models (star schema, etc.) have emerged and have been very successful in business because of their graphic presentation easy to read