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The discovery of unexpected behaviors in databases is an interesting problem for many real-world applications. In previous studies, unexpected behaviors are primarily addressed within the context of patterns, association rules, or sequences. In this paper, we study the unexpectedness with respect to the fuzzy recurrence behaviors contained in sequence databases. We first propose the notion of fuzzy recurrence rule, and then present the problem of mining unexpected sequences that contradict prior fuzzy recurrence rules. We also develop, UFR, an algorithm for discovering the sequences containing unexpected recurrence behaviors. The proposed approach is evaluated with Web access log data.

I. Introduction

During the past years, as very important models of data mining, association rules (frequent patterns) [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF] and sequential patterns [START_REF] Agrawal | Mining sequential patterns[END_REF] have received much attention, such as the work addressed in [START_REF] Calders | Computational complexity of itemset frequency satisfiability[END_REF][START_REF] Gunopulos | Discovering all most specific sentences[END_REF][START_REF] Han | Mining frequent patterns without candidate generation: a frequent-pattern tree approach[END_REF] and [START_REF] Ayres | Sequential PAttern Mining using a bitmap representation[END_REF][START_REF] Masseglia | The PSP approach for mining sequential patterns[END_REF][START_REF] Pei | Mining sequential patterns by pattern-growth: the prefixspan approach[END_REF][START_REF] Srikant | Mining sequential patterns: generalizations and performance improvements[END_REF][START_REF] Yan | CloSpan: Mining closed sequential patterns in large databases[END_REF][START_REF] Zaki | SPADE: An efficient algorithm for mining frequent sequences[END_REF]. Association rule mining finds the frequent correlations between attribute sets (a.k.a. patterns) as rules in the form "if X then Y", where X and Y are two patterns. An association rule reflects the information typically like "60% of customers who purchase Coca Cola also purchase potato chips (if Coca Cola then potato chips)". Different from association rules, the goal of mining sequential patterns is to find frequent correlations in sequence data, where a sequential pattern is a frequent sequence depicting that "A then B then C then . . . ", where A, B, C, . . . are patterns. A sequential pattern can help interpreting the information typically like "60% of customers purchase beers, then purchase Sci-Fi movies, and then purchase rock music". On the other hand, the discovery of unexpected behaviors [START_REF] Silberschatz | On subjective measures of interestingness in knowledge discovery[END_REF] contradicting prior knowledge (which in general stands for frequent or predefined behaviors) becomes more and more interesting for many real-word applications. In previous studies of discovering unexpected behaviors, unexpectedness is mainly stated in the context of patterns [START_REF] Jaroszewicz | Fast discovery of unexpected patterns in data, relative to a bayesian network[END_REF][START_REF] Liu | Finding interesting patterns using user expectations[END_REF], as-sociation rules [START_REF] Liu | Post-analysis of learned rules[END_REF][START_REF] Padmanabhan | A belief-driven method for discovering unexpected patterns[END_REF][START_REF] Padmanabhan | Small is beautiful: Discovering the minimal set of unexpected patterns[END_REF][START_REF] Padmanabhan | On characterization and discovery of minimal unexpected patterns in rule discovery[END_REF][START_REF] Suzuki | Exceptional knowledge discovery in databases based on information theory[END_REF][START_REF] Suzuki | Autonomous discovery of reliable exception rules[END_REF][START_REF] Suzuki | Unified algorithm for undirected discovery of exception rules[END_REF][START_REF] Wang | Mining unexpected rules by pushing user dynamics[END_REF], or sequences [START_REF] Li | Mining unexpected sequential patterns and rules[END_REF][START_REF] Spiliopoulou | Managing interesting rules in sequence mining[END_REF]. In our previous work [START_REF] Li | Mining unexpected sequential patterns and rules[END_REF], we proposed a semantics based framework of unexpected sequence mining. For instance, according to the behavior "people purchase Sci-Fi movies, and then purchase rock music", the behavior "people purchase Sci-Fi movies, and then purchase classical music" can be considered as unexpected, if the classical music is considered as semantically opposite to the rock music. This work has been extended with fuzzy methods in [START_REF] Li | Discovering fuzzy unexpected sequences with beliefs[END_REF]. In this paper, we are interested in the unexpectedness stated by fuzzy recurrence rule, in the form "if the sequence s α repeatedly occurs, then the sequence s β repeatedly occurs". For instance, a fuzzy recurrence rule can be "60% of customers who often purchase Sci-Fi books then Sci-Fi movies later, also purchase PC games often". This type of rules reflects the associated correlations between repeatedly occurred elements in sequential data. The unexpectedness on recurrence behaviors is determined by the domain-expertdefined semantic oppositions. For instance, if we consider that the classical music is semantically opposite to PC games, then the fact "1% customers who often purchase Sci-Fi books then Sci-Fi movies later, often purchase classical music" stands for an unexpected recurrence behavior in a customer transaction database. In this case, the unexpectedness can also be determined from the description occurrence, such like the consequence "rarely purchase PC games" is opposite to "often purchase PC games". Such unexpected recurrence behaviors can be interesting for many application domains, including marketing analysis, finance fraud detection, DNA segment analysis, Web content personalization, network intrusion detection, weather prediction, and so on. The remainder of the paper is organized as follows. In Section 2, we introduce the related work. In Section 3, we propose the notions of fuzzy recurrence rules and present a belief-driven approach to unexpected recurrence behavior discovery. In Section 4, we develop an effective algorithm UFR for discovering unexpected recurrence behaviors in a sequence database. Finally, we conclude in Section 5.

II. Related Work

In data mining, fuzzy set theory [START_REF] Zadeh | Fuzzy sets[END_REF] have been many employed to change the domain of the attributes, employing granules defined by fuzzy sets instead of precise values. For instance, an association rule X → Y depicts the relation "if X then Y " between patterns X and Y . With fuzzy sets, there is a very extended way of considering fuzzy association rules as "if X is A then Y is B" in considering various information of attributes (mostly quantitative attributes), such as the type "if beer is lot then potato chips is lot" or "if age is old then salary is high" [START_REF] Chan | Mining fuzzy association rules[END_REF][START_REF] Delgado | Fuzzy association rules: general model and applications[END_REF][START_REF] Dubois | A systematic approach to the assessment of fuzzy association rules[END_REF][START_REF] Hong | Fuzzy data mining for interesting generalized association rules[END_REF][START_REF] Kuok | Mining fuzzy association rules in databases[END_REF][START_REF] Lee | An extension of association rules using fuzzy sets[END_REF]. In the same manner, the notion of fuzzy sequential patterns [START_REF] Chen | Discovery of fuzzy sequential patterns for fuzzy partitions in quantitative attributes[END_REF][START_REF] Hu | A fuzzy data mining algorithm for finding sequential patterns[END_REF][START_REF] Chen | A new approach for discovering fuzzy quantitative sequential patterns in sequence databases[END_REF][START_REF] Fiot | From crispness to fuzziness: Three algorithms for soft sequential pattern mining[END_REF][START_REF] Fiot | Gradual trends in fuzzy sequential patterns[END_REF] considers the model sequential patterns like "60% of young people purchase a lot of soft drinks, then purchase few opera movies later, then purchase many PC games", where the sequence represents "people is young, then soft drinks is lot, then opera movie is few, and then PC game is many". Another application of fuzzy set theory is to discovery gradual patterns and rules [START_REF] Hüllermeier | Association rules for expressing gradual dependencies[END_REF][START_REF] Berzal | An alternative approach to discover gradual dependencies[END_REF][START_REF] Di-Jorio | Fast extraction of gradual association rules: A heuristic based method[END_REF][START_REF] Fiot | Gradual trends in fuzzy sequential patterns[END_REF]. In this form of fuzziness in quantitative attributes considers the correlations within the gradual trends of the values of attributes, such as the association rule "if age increases then salary increases", or the sequential pattern "the more visits of search page, the more visits of KB articles later, and at the same time the less visits of question submitting page". Unexpected behaviors are generally considered within the framework of subjective interestingness measure. The discovery of unexpectedness depends on prior knowledge of data that indicates what users expect. Thus, in comparison with the data mining methods based on statistical frequency of data, the methods to discover unexpectedness contained in data can be viewed as a process using user-oriented subjective measures instead of using data-oriented objective measures. The notions of objective measure and subjective measure for finding potentially interesting patterns (and sequential patterns) or rules are addressed in terms of interestingness measures for data mining. McGarry systematically studied the development of interestingness measures in [START_REF] Mcgarry | A survey of interestingness measures for knowledge discovery[END_REF], where objective measures are considered as using the statistical strength (such as support) or structure (such as confidence) of discovered patterns or rules to assess their degree of interestingness however subjective measures are considered as incorporating users subjective knowledge (such as belief) into the assessment. In the past years, unexpectedness measure has been widely studied in various approaches to pattern and rule discoveries. Liu and Hsu studied the unexpected structures of discovered rules in [START_REF] Liu | Post-analysis of learned rules[END_REF]. In the proposed approach, the existing rules (denoted as E) from prior knowledge are regarded as fuzzy rules by using fuzzy set theory and the newly discovered rules (denoted as B) are matched against the existing fuzzy rules in the post-analysis process. A rule consists of the condition and the consequent, so that given two rules B i and E j , if the conditional parts of B i and E j are similar, but the consequents of the two rules are quite different, then it is considered as unexpected consequent; the inverse is considered as unexpected condition. The computation of the similarity in the matching is based on the attribute name and value. The same techniques are extended to find unexpected patterns in [START_REF] Liu | Finding interesting patterns using user expectations[END_REF]. Moreover, in [START_REF] Liu | Discovering unexpected information from your competitors' web sites[END_REF], Liu et al. investigated the problem of finding unexpected information in the context of Web content mining. Suzuki et al. systematically studied exception rules in the context of association rule mining [START_REF] Suzuki | Exceptional knowledge discovery in databases based on information theory[END_REF][START_REF] Suzuki | Autonomous discovery of reliable exception rules[END_REF][START_REF] Suzuki | Unified algorithm for undirected discovery of exception rules[END_REF]. An association rule can be classified into two categories: a common sense rule, which is a description of a regularity for numerous objects, and an exception rule, which represents, for a relatively small number of objects, a different, regularity from a common sense rule. The exception rules are considered with respect to the common sense rules within a rule triplet

(A µ ⇒ c, A µ ∧ B ν ⇒ c ′ , B ν ̸ ⇒ c ′ ),
where (3) the rule A ∧ X ⇒ B holds and the rule A ∧ X ⇒ Y hoes not hold (e.g., the support and confidence of A ∧ X ⇒ B satisfy given minimum support and minimum confidence but those of A ∧ X ⇒ Y do not). An example can be that given a belief professional ⇒ weekend (professionals shopped on weekends), if the rule (professional, December) ⇒ weekday (professionals shopped on weekdays in December) holds but the rule (professional, December) ⇒ weekend (professionals shopped on weekends in December) does not, then the rule December ⇒ weekday is unexpected relative to the belief professional ⇒ weekend. Notice that in this approach, the logically contradiction between patterns is defined by domain experts.

In [START_REF] Spiliopoulou | Managing interesting rules in sequence mining[END_REF], Spiliopoulou proposed an approach for mining unexpectedness with sequence rules transformed from frequent sequences. The sequence rule is built by dividing a sequence into two adjacent parts, which are determined by the support, confidence and improvement from association rule mining.

A belief on sequences is constrained by the frequency of the two parts of a rule, so that if a sequence respects a sequence rule but the frequency constraints are broken, then this sequence is unexpected. Although this work considers the unexpected sequences and rules, it is however very different from our problem in the measure and the notion of unexpectedness contained in data.

In [START_REF] Wang | Mining unexpected rules by pushing user dynamics[END_REF], Wang et al. studied unexpected association rules with respect to the value of attributes. In [START_REF] Jaroszewicz | Fast discovery of unexpected patterns in data, relative to a bayesian network[END_REF], Jaroszewicz and Scheffer proposed a Bayesian network based approach to discover unexpected patterns, that is, to find the patterns with the strongest discrepancies between the network and the database. Therefore, this approach can be regarded as frequency based, where unexpectedness is defined from whether itemsets in the database are much more, or much less frequent than the background knowledge suggests.

In our recent work [START_REF] Li | Discovering fuzzy unexpected sequences with beliefs[END_REF], we proposed a belief-driven approach for recognizing fuzzy unexpected sequences corresponding to sequential implication rules. A sequential implication rule is a rule of the form "if the sequence s α occurs then the sequence s β occurs latter" so that the beliefs are created with respect to (1) the distance between s α and s β ; (2) the semantics of the implication between s α and s β , i.e., s β cannot be replaced by another sequence s γ . The fuzzy sets are considered on the distance between the two sequences.

III. Unexpected Recurrence Behaviors

In this section, we first introduce the data model and formalize the fuzzy recurrence rules, and then we present a belief system based on such fuzzy recurrence rules, with which the unexpected recurrence behaviors are therefore proposed.

A. Data Model

We consider the sequence data that consist in binary-valued attributes. Given a set of a limited number of attributes R = {i 1 , i 2 , . . . , i n }, each attribute is an item. An itemset is an unordered collection of items, denoted as

I = {i 1 , i 2 , . . . , i m }, where i j ∈ R is an item. We have that I ⊆ R. A sequence is an ordered list of itemsets, denoted as s = I 1 I 2 • • • I k , where I j ⊆ R is an itemset. A sequence database is usually a large set of sequences, denoted as D. Given two sequences s = I 1 I 2 . . . I m and s ′ = I ′ 1 I ′ 2 . . . I ′ n , if there exist integers 1 ≤ i 1 < i 2 < . . . < i m ≤ n such that I 1 ⊆ I ′ i1 , I 2 ⊆ I ′ i2 , .
. . , I m ⊆ I ′ im , then the sequence s is a subsequence of the sequence s ′ , denoted as s ⊑ s ′ . If s ⊑ s ′ , we say that s is contained in s ′ , or s ′ supports s. For example, the sequence s 1 = (a)(b) is contained in the sequence s 2 = (a)(b)(c), but not contained in the sequence s 3 = (ab)(c). In addition, we denote the concatenation of n sequences as

s 1 s 2 • • • s n . For example, let s 1 = (a)(b) and s 2 = (c)(d), then we have s 1 s 1 = (a)(b)(a)(b) and s 1 s 2 = (a)(b)(c)(d).
Given a sequence database D, the support of a sequence s is the fraction of the total number of sequences in D that support s, denoted as supp(s, D). Given a user specified threshold of support called minimum support, denoted as supp min , a sequence s is frequent if supp(s, D) ≥ supp min .

B. Fuzzy Recurrence Rules

To study the repeatedly occurred elements in sequences, we first propose the notion of recurrence sequence in the form ⟨s, ψ⟩, where s is a sequence and ψ is a positive integer. If a sequence s ′ supports a recurrence sequence ⟨s, ψ⟩, then the sequence s occurs in s ′ at least ψ times, denoted as ⟨s, ψ⟩ ⊑ s ′ , that is,

(⟨s, ψ⟩ ⊑ s ′ ) ⇐⇒ (s • • • s n ⊑ s ′ ) ∧ (n ≥ ψ).
A recurrence sequence ⟨s, ψ⟩ is also called a ψ-recurrence sequence. We use the wildcard " * " for denoting the general meaning of the support between sequences, that is,

(⟨s, * ⟩ ⊑ s ′ ) ≡ (s ⊑ s ′ ).
In the remainder of this paper, we use the term sequence to describe the notion of recurrence sequence. A recurrence rule is a rule on sequences with form ⟨s α , ψ⟩ → ⟨s β , θ⟩, where s α , s β are two sequences, and ψ, θ are two integers for describing recurrence behaviors in sequence data. A recurrence rule indicates the association relation that given a sequence s, if s α orderly occurs no less than ψ times within s, then orderly s β occurs in s no less than θ times, that is,

(s α • • • s α n ⊑ s) ∧ (n ≥ ψ) ⇒ (s β • • • s β k ⊑ s) ∧ (k ≥ θ).
Given a sequence s and a recurrence rule r = ⟨s α , ψ⟩ → ⟨s β , θ⟩, if ⟨s α , ψ⟩ ⊑ s and ⟨s β , θ⟩ ⊑ s, then we say that s supports r, denoted as s |= r. For instance, the recur-

rence rule r = ⟨(a)(b), 3⟩ → ⟨(c)(d), * ⟩ depicts that given a sequence s, if (a)(b) is contained repeatedly in s no less 3 times, then (c)(d) is contained in s; in other words, if (a)(b)(a)(b)(a)(b) ⊑ s, then (c)(d) ⊑ s.
Notice that the occurrences of s α must be ordered, that is, for example, given a rule

r 1 = ⟨(a)(b), 2⟩ → ⟨(c), * ⟩, the sequence s 1 = ⟨(a)(a)(c)(b)(b)⟩ does not support r 1 , but the sequence s 2 = ⟨(a)(b)(c)(a)(b)⟩ supports r 1 ; however, the sequence s 1 supports the rules r 2 = ⟨(a), 2⟩ → ⟨(c), * ⟩ and r 3 = ⟨(b), 2⟩ → ⟨(c), * ⟩.
Considering the integer ψ, a human-friendly interpretation is more flexible and more relevant to described the recurrence in sequence data. For instance, in market basket analysis, to point out that "the customers who often purchase action movie DVDs often purchase pop music CDs" is more relevant than the conclusion "the customers who purchase at least 7 times of action movie DVDs purchase at least 5 times of pop music CDs". We therefore extend the recurrence rule with fuzzy sets, so called the fuzzy recurrence rule, in the form ⟨s α , ζ α ⟩ → ⟨s β , ζ β ⟩, where ζ α and ζ β are two fuzzy sets for describing s α and s β , and the sequences ⟨s α , ζ α ⟩ and ⟨s β , ζ β ⟩ are two fuzzy recurrence sequences. Given a sequence s ′ and a fuzzy recurrence rule ⟨s, ζ⟩, that s ′ supports ⟨s, ζ⟩ is defined as

(⟨s, ζ⟩ ⊑ s ′ ) ⇐⇒ (s • • • s n ⊑ s) ∧ (µ ζ (n) ≥ recu min ), (1) 
where the fuzzy degree measured by the membership function µ ζ (n) must be superior or equal to a threshold recu min . Let us consider the following example. ′ . We can further define more partitions, such as "always" or "rarely". In this paper, the fuzzy recurrence rules are considered as having been predefined by domain experts, the discovery of fuzzy recurrence rules will be covered in our future research work.

C. Belief System

We now present the belief system on fuzzy recurrence rules with integrating semantic contradiction between sequences. A belief specifies that if a sequence ⟨s The semantic contradiction is symmetric but not transitive. We have that ⟨s 

β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩ is equivalent to ⟨s γ , ζ γ ⟩ ̸ ≃ sem ⟨s β , ζ β ⟩, however ⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩ and ⟨s γ , ζ γ ⟩ ̸ ≃ sem ⟨s α , ζ α ⟩ do not imply that ⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s α , ζ α ⟩. The predicate o(⟨s β , ζ β ⟩ , ⟨s γ , ζ γ ⟩)

Definition 2 (Belief). A belief is a conjunction {⟨s

α , ζ α ⟩ → ⟨s β , ζ β ⟩} ∧ {⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩}, where {⟨s α , ζ α ⟩ → ⟨s β , ζ β ⟩} is a fuzzy recurrence rule and ⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩ is a semantic contradiction. A belief is denoted as [⟨s α , ζ α ⟩ ; ⟨s β , ζ β ⟩ ; ⟨s γ , ζ γ ⟩]. A belief [⟨s α , ζ α ⟩ ; ⟨s β , ζ β ⟩ ; ⟨s γ , ζ γ ⟩] depicts that given a se- quence s, if s supports ⟨s α , ζ α ⟩, then s supports ⟨s β , ζ β ⟩; however s should not support ⟨s γ , ζ γ ⟩, that is, (⟨s α , ζ α ⟩ ⊑ s) ∧ (⟨s β , ζ β ⟩ ⊑ s) ∧ (⟨s γ , ζ γ ⟩ ̸ ⊑ s). (2) 
Example 2. Assume that the customers who purchase movies like to play games. If we consider that games and books semantically contradict each other, where the semantic contradiction can be ⟨(game), often⟩ ̸ ≃ sem ⟨(book), often⟩, then a belief can be defined as

[⟨(movie), often⟩ ; ⟨(game), often⟩ ; ⟨(book), often⟩] .
The fuzzy sets for purchases can also be that shown in Figure 1. The above belief describes that the customers who of ten purchase movies also purchase games of ten, however do not of ten purchase books.

Given a belief b, if a sequence s satisfies Equation ( 2), then we say that the sequence s supports the belief b, denoted as s |= b. A sequence s unexpected to a belief b is denoted as s b.

D. Unexpected Sequences

We are considering to discover the sequences contained in a database those semantically contradict a given set of fuzzy recurrence rules. In order to find such sequences, we construct a belief system from given fuzzy recurrence rules with semantic contradictions between fuzzy recurrence sequences, so that each sequence not respecting the belief base is unexpected.

A sequence s is unexpected if [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF] Respectively, the primary factor of the semanticsunexpectedness in a sequence s is that the semantic contradiction ⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩ is broken because the recurrence sequence ⟨s γ , ζ γ ⟩ occurs in s, so that we also called this form of unexpectedness as γ-unexpectedness.

Considering again the belief b in Example 2, let s be a customer transaction sequence, if we have that ⟨(movie), often⟩ ⊑ s and ⟨(book), often⟩ ̸ ⊑ s, then the sequence s is not unexpected with respect to the semantic contradiction ⟨(game), often⟩ ̸ ≃ sem ⟨(book), often⟩; however, if we have ⟨(book), often⟩ ⊑ s, then s is a γunexpected sequence, i.e., s γ b. Of course, it is not necessary to forbid (book) ⊑ s, for example, according to this belief, the occurrence of ⟨(book), rarely⟩ does not imply the γ-unexpectedness. Now we discuss the coherence in a belief system. The coherence in a belief system consists of fuzzy recurrence rules and semantic contradictions on fuzzy recurrence sequences must be considered in sequence inclusions and covers of the fuzzy sets on recurrence. Let B be a set of beliefs, for any two be-

liefs (b, b ′ ) ∈ B, where b = [⟨s α , ζ α ⟩ ; ⟨s β , ζ β ⟩ ; ⟨s γ , ζ γ ⟩] and b = [⟨s α ′ , ζ α ′ ⟩ ; ⟨s β ′ , ζ β ′ ⟩ ; ⟨s γ ′ , ζ γ ′ ⟩],
the following condition must be satisfied if the belief b is coherent:

(s β ̸ ⊑ s γ ′ ) ∨ (ζ β ̸ = ζ γ ′ )
For example, let us consider two fuzzy recurrence rules r 1 and r 2 . Let if we count the days without purchase as an empty itemset in customer purchase sequences. Given a sequence database D and a belief base B, the problem of discovering unexpected fuzzy recurrence sequences is therefore to find all sequences s ∈ D that contain β-unexpectedness and/or γ-unexpectedness with respect to each belief b ∈ B that consist of recurrence rules and semantic contradictions on recurrence sequences.

IV. Approach UFR

In this section we develop the approach UFR, which stands for mining Unexpected Fuzzy Recurrence behaviors.

A. Belief Tree Representation

In this section, we propose a tree representation of a belief system consisting of a set of beliefs. Before constructing the tree representation, we first propose the notions of premise sequence, conclusion sequence set, and contradiction set of a belief system. 

3.

A s-node contains a recurrence sequence. In our implementation, a s-node is a reference (e.g., a pointer in C/C++, or originally a reference in JAVA) to a sequence stored external to the tree structure. 

γ , ζ γ ⟩ ∈ Θ ⟨s α , ζ α ⟩ | ⟨s β , ζ β ⟩.
Each τ -node is linked by appending order for optimizing the performance of traversal.

5. A τ -link connects a τ -node and each s-node corresponding to each sequence ⟨s γ ,

ζ γ ⟩ ∈ Θ ⟨s α , ζ α ⟩ | ⟨s β , ζ β ⟩. 6. A s-link connects all (⟨s β , ζ β ⟩ , ⟨s β ′ , ζ β ′ ⟩) ∈ ∆ ⟨s α , ζ α ⟩ such that ⟨s β , ζ β ⟩ = ⟨s β ′ , ζ β ′ ⟩
, with respect to the appending order. For instance, in Figure 2

, s β 1 , ζ β 1 = s β 2 , ζ β 2 .
Example 4 shows a tree representation of a belief base with 6 different beliefs, which are shown in Figure 3. The corresponded belief base tree is shown in Figure 3.

B. Algorithms

First, we have the following belief tree construction algorithm BeliefTree (Algorithm 1). Given an input belief set B with all beliefs b having the same premise sequence ⟨s α , ζ α ⟩, the algorithm first creates a belief tree T with the root node ⟨s α , ζ α ⟩. For each conclusion sequence ⟨s β , ζ β ⟩ ∈ ∆ ⟨s α , ζ α ⟩, the algorithm appends the occurrence constraint τ as a τ -node to the root node and appends the conclusion sequence s β as a s-node to the newly appended τ -node. Then, for each contradiction sequence

⟨s γ , ζ γ ⟩ ∈ Θ ⟨s α , ζ α ⟩ | ⟨s β , ζ β ⟩,
the algorithm finds the location of the s-node of ⟨s β , ζ β ⟩ in the tree and appends ⟨s γ , ζ γ ⟩ as a s-node to ⟨s β , ζ β ⟩. Finally, the algorithm outputs the belief tree T for a belief group where all beliefs have the same premise sequence. The fuzzy recurrence sequence matching routine is therefore the core of the approach UFR, so that we develop the algorithm SeqMatchUfr (Algorithm 2), which finds the occurrence of a fuzzy recurrence sequence in a sequence. The algorithm accepts a fuzzy recurrence sequence ⟨s, ζ⟩, a sequence s ′ , and a pair range for bounding the occurrence of ⟨s, ζ⟩ in s ′ as inputs, and outputs the occurrence of ⟨s, ζ⟩ in s ′ , if s ′ supports ⟨s, ζ⟩ with respect to Equation [START_REF] Agrawal | Mining sequential patterns[END_REF]. The subroutine SeqMatchFirst finds the first occurrence of the sequence s in the sequence s ′ . Base on the algorithm SeqMatchUfr, we develop the β-unexpected fuzzy recurrences as the routine UfrMatchBeta, listed in Algorithm 3. where recu min = 0.6. We have that ⟨(a)(ab), often⟩ ⊑ s by calling SeqMatchUfr before matching β-unexpected fuzzy recurrence (i.e., performed in the main routine of the framework MUSE, where SeqMatch is replaced by SeqMatchUfr), which is marked as 1 ⃝ to 6 ⃝ above the sequence shown in Figure 4 and satisfies the minimum fuzzy membership degree recu min = 0.6. Then, ⟨(c)(d), rarely⟩ ⊑ s will be verified, where the recurrence of ⟨(c)(d)⟩ is marked as 1 ⃝ to 5 ⃝ under the sequence shown in Figure 4. According to the fuzzy sets shown in Figure 1, we have that µ ζ (5) = 0.5 for "rarely", so that we have that ⟨(c)(d), rarely⟩ ̸ ⊑ s and the sequence s is β-unexpected.

With the illustration of matching β-unexpected fuzzy recurrence in a sequence, the matching of γ-unexpected fuzzy recurrences UfrMatchGamma is not difficult to understand, which is listed in Algorithm 4.

The algorithm accepts a belief group T , a sequence s, and a pair pos indicating the occurrence of the premise sequence s α contained in the s α -node of T in the sequence s as inputs, and outputs all or the first γ-unexpected fuzzy recurrence(s) in s. 

C. Experiments

The approach UFR is evaluated with Web access record data. The composition of the two data sets are listed in Table 1.

We first apply a sequential pattern mining algorithm to discover frequent sequences for studying the general behaviors of the data sets. The frequent 4-recurrence sequences and 8-recurrence sequences are shown in Figure 5.

The recurrence sequences in the data sets show that the recurrence behaviors depend on the semantic characteristics of data, for instance, in our experimental data sets, the recurrence behaviors in online forum site are more stronger than those in mixed content Web site. We generate 15 beliefs for each data set after examining the discovered sequential patterns, frequent 4-recurrence and 8recurrence sequences, which correspond to 3 groups of 5 beliefs: with "rarely", "often" and "frequently", with respect to the fuzzy sets shown in Figure 1. (for respecting the thesis layout, we trim the prefix /˜li of the path) depicts that the homepage visitors who often access the publications located in /˜li/pub/ rarely access the homepage /˜li/, so that they should not often access the documents located in /˜li/doc/. Figure 6 shows our experimental results. With the decrease of the minimum fuzzy degree threshold, the number of unexpected sequences increases. In Figure 6(a), we find that in the "frequently" fuzzy set, the number of unexpected sequences is much less than those in the other two fuzzy sets, because in the data set the number of long recurrence sequences, such as 8-recurrence sequences, is less. We can also find that the unexpected behaviors focus on the recurrences between "rarely" and "often". In Figure 6(b), there is a sharp increase of the number of unexpected sequences in the "often" fuzzy set when the minimum fuzzy membership degree decreases from 0.6 to 0.4, because in the "often" fuzzy set, the fuzzy degree 0.5 corresponds to 4-recurrence sequences, so that a lot of unexpected sequences in the "rarely" fuzzy set are counted as "often". 

V. Conclusion

In this paper, we introduce the problem of discovering unexpected recurrence behaviors in sequence databases. We propose a novel notion, the fuzzy recurrence rules, for depicting the recurrence behaviors of the data, where fuzzy set theory is applied to describe the recurrence of sequences. We present a belief-driven approach for modeling two types of unexpectedness in recurrence behaviors, where the belief consists in a fuzzy recurrence rule and a semantic constraint on the rule. We also develop an effective algorithm UFR, which discovers all unexpected sequences in a sequence database with respect to domain expert specified belief base and minimum fuzzy degree threshold. The experimental results on Web access logs show the usefulness of our propositions.

Our future research includes the discovery of fuzzy recurrence rules in sequential data, we believe that our proposal of this novel rule model on sequences can be interesting for many real-word application domains.

Figure. 1 :Example 1 . 1 ′

 111 Figure. 1: Fuzzy sets for describing recurrence rules. Example 1. Given a set of distinct events a, b, c, d, . . ., an ordered of events can be represented as the data model of sequence. Assuming that given an event sequence s, if s supports the recurrence sequence ⟨(a)(b), 4⟩, then s supports the subsequence (c)(d); if s supports the recurrence

  α , ζ α ⟩ occurs, then a sequence ⟨s β , ζ β ⟩ occurs; however a sequence ⟨s γ , ζ γ ⟩ should not occur at the occurrence position of the sequence ⟨s β , ζ β ⟩. Definition 1 (Semantic contradiction). Given two sequences ⟨s β , ζ β ⟩ and ⟨s γ , ζ γ ⟩, the semantic contradiction between ⟨s β , ζ β ⟩ and ⟨s γ , ζ γ ⟩ is a boolean value determined by a predicate o(⟨s β , ζ β ⟩ , ⟨s γ , ζ γ ⟩): if ⟨s β , ζ β ⟩ semantically contradicts ⟨s γ , ζ γ ⟩, then o(⟨s β , ζ β ⟩ , ⟨s γ , ζ γ ⟩) returns 1; otherwise o(⟨s β , ζ β ⟩ , ⟨s γ , ζ γ ⟩) returns 0. Given two sequences ⟨s β , ζ β ⟩ and ⟨s γ , ζ γ ⟩, denote by ⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩ when o(⟨s β , ζ β ⟩ , ⟨s γ , ζ γ ⟩) = 1.

  can be designed to compute the semantic contradiction between the elements ⟨s β , ζ β ⟩ and ⟨s γ , ζ γ ⟩ in various manners. For instance, given a set S of sequences, we can build a projection table T of predefined relations on S × S, and then the semantic contradiction between any (⟨sβ , ζ β ⟩ , ⟨s γ , ζ γ ⟩) ∈ S can be returned by o(⟨s β , ζ β ⟩ , ⟨s γ , ζ γ ⟩)with searching the table T ; the semantic contradiction can also be determined by the fuzzy sets of the recurrence, i.e., if ζ β semantically contradicts ζ β ′ (e.g., often v.s. rarely), then o(⟨s β , ζ β ⟩ , ⟨s β , ζ β ′ ⟩) = 1. Let ⟨s α , ζ α ⟩ → ⟨s β , ζ β ⟩ be a fuzzy recurrence rule and ⟨s β , ζ β ⟩ ̸ ≃ sem ⟨s γ , ζ γ ⟩ be a semantic contradiction. The fuzzy recurrence rule implies an association relation between the sequences ⟨s α , ζ α ⟩ and ⟨s β , ζ β ⟩ that if the recurrence of s α is ζ α , then the recurrence of s β is ζ β . The semantic contradiction then implies that the recurrence sequences ⟨s β , ζ β ⟩ and ⟨s γ , ζ γ ⟩ semantically contradict each other.

r 1 =

 1 ⟨(a), often⟩ → ⟨(c)(d), often⟩ and r 2 = ⟨(a), often⟩ → ⟨(e), often⟩ where ⟨(c)(d), often⟩ ̸ ≃ sem ⟨(e)(f ), often⟩ and ⟨(e), often⟩ ̸ ≃ sem ⟨(c), often⟩. Then r 1 and r 2 are in conflict because ⟨(e)(f ), often⟩ implies that ⟨(e), often⟩. Given a belief b = [⟨s α , ζ α ⟩ ; ⟨s β , ζ β ⟩ ; ⟨s γ , ζ γ ⟩], an constraint τ = [min..max] on the occurrence range of the sequences
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 522 Figure. 2: A belief tree example.

4 . 1 ⟨Figure. 3 :

 413 Figure. 3: An example tree presentation of a belief base.

Example 4 .

 4 Given a belief base containing the following 6 beliefs: b 1 = [⟨(e), often⟩ ; ⟨(a)(ab), often⟩ ; ⟨(c)(d), often⟩ ; * ] ; b 2 = [⟨(a)(b), rarely⟩ ; ⟨(c)(d), often⟩ ; ⟨(d)(c), often⟩ ; * ] ; b 3 = [⟨(a), always⟩ ; ⟨(b)(c), rarely⟩ ; ⟨(cd), always⟩ ; 2..5] ; b 4 = [⟨(a), always⟩ ; ⟨(d), often⟩ ; ⟨(cd), always⟩ ; 0..0] ; b 5 = [⟨(a)(c), often⟩ ; ⟨(cd), always⟩ ; ⟨(ab), rarely⟩ ; * ] ; b 6 = [⟨(a)(c), often⟩ ; ⟨(cd), always⟩ ; ⟨(b), rarely⟩ ; * ] .

Algorithm 1 : 3 τ 4 n 6 foreach b ∈ B do 7 ns 8 n 9 T 10 return T ; 11 Algorithm 2 : 5 while

 1346789101125 BeliefTree (b) : Belief tree construction. Input : A set B of beliefs having the same premise sequence. Output : A belief tree T . T := Belief T ree.Create(⟨sα, ζα⟩); 1 foreach b ∈ B do 2 nτ := T.appendT auNode(r.τ ); / * do not create new -node if the same τ exists * / ns := T.appendSeqNode(n, ˙sβ , ζ β ¸); ′ s := T.getLastSeqNode(ns); / * find last s-node having 5 the same sequence with ns * / T.linkSeqNode(n ′ s, ns); := T.getSeqNode( ˙sβ , ζ β ¸); ′ s := T.appendSeqNode(ns, ⟨sγ , ζγ ⟩); .linkT auNode(ns.parent, n ′ s); SeqMatchUfr (⟨s, ζ⟩, s ′ , range) : Matching fuzzy recurrence sequence. Input : A fuzzy recurrence sequence ⟨s, ζ⟩, a sequence s ′ , and a pair range. Output : The occurrence of ⟨s, ζ⟩ in s ′ with respect to range. µ ζ := F uzzyMembershipF unction(ζ); pos.f irst ̸ = -1 do 6 pos := SeqMatchFirst(s, s ′ , ran); irst := pos.second + 1; 10 rec := rec + 1; 11 if ret.f irst = -1 then 12 ret.f irst := pos.f irst; 13 ret.seconf := pos.second; 14 if µ ζ (rec) ≥ recu min then / * recu min is globally accessible * / 15 return ret; 16 return pair(-1 -1);17

Algorithm 3 : 6 while ns β ̸ = null do 7 u 8 1, 15 return uxps; 16 The

 36781516 UfrMatchBeta (T , s, pos) : Matching β-unexpected fuzzy recurrences.Input: A belief T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα contained in the sα-node of T in s. Output : The set of all β-unexpected fuzzy recurrences in s with respect to T . uxps := T upleSet.Create(); 1 nτ := T.firstT auNode(); 2 while nτ ̸ = null and nτ ̸ ∈ N do 3 if nτ .data.min ̸ = -1 then 4 continue; / * recurrence rule is in sequence association 5 rule form * / ns β := nτ .f irstSubN ode(); := SeqMatchFirst(ns β .data, s, pair(pos.second + |s| -1)); if u.f irst ̸ =ns β .data, ns β .ζ E , s, pair(pos.second+ 1, |s| -1)); if u ̸ = -1 then 11 uxps.add(tuple(s.id, u.f irst, u.second)); 12 if options | FIRST UXPS ONLY then / * use the 13 conclusion of Lemma ?? * / return uxps; 14 nτ := T.nextT auNode(nτ ); algorithm accepts a belief group T , a sequence s, and a pair pos indicating the occurrence of the premise sequence ⟨s α , ζ α ⟩ contained in the s α -node of T in the sequence s as inputs, and outputs all or the first β-unexpected fuzzy recurrence(s) in s. The argument pos is specified with respect to the constraint on occurrence range. For each conclusion sequence ⟨s β , ζ β ⟩ contained in the belief of fuzzy recurrence rules, the algorithm verifies whether s β is contained in s by the subroutine SeqMatchFirst. If s β ⊑ s, the subroutine SeqMatchUfr matches whether ⟨s β , ζ β ⟩ ̸ ⊑ s. Thus, finally algorithm returns all βunexpected fuzzy recurrences ⟨s β , ζ β ⟩ ̸ ⊑ s. We illustrate in Figure 4 the matching of β-unexpected fuzzy recurrence in a given sequence s with respect to the fuzzy sets shown in Figure 1 and the belief [⟨(a)(ab), often⟩ ; ⟨(c)(d), rarely⟩ ; ⟨(ef )(g), rarely⟩ ; * ] ,

( 1 ⃝ 1 ⃝ 2 ⃝ 2 ⃝ 3 ⃝ 3 ⃝ 4 ⃝ 4 ⃝ 5 ⃝ 5 ⃝ 6 ⃝ s = Figure. 4 :

 11223344556=4 Figure. 4: Matching β-unexpected fuzzy recurrence.

Algorithm 4 : 6 while ns γ ̸ = null do 7 u := 8

 4678 UfrMatchGamma (T , s, pos) : Matching γ-unexpected fuzzy recurrences.Input: A belief T , a sequence s, and a pair pos indicating the occurrence of the premise sequence sα contained in the sα-node of T in s. Output : The set of all γ-unexpected fuzzy recurrences in s with respect to T . uxps := T upleSet.Create(); 1 nτ := T.firstT auNode(); 2 while nτ ̸ = null and nτ ̸ ∈ N do 3 if nτ .data.min ̸ = -1 then 4 continue; / * recurrence rule is in sequence association 5 rule form * / ns γ := nτ .f irstLinkedN ode(); SeqMatchUfr( ˙nsγ .data, ns γ .ζ ¸, s, pair(pos.second + 1, |s| -1)); if u ̸ = -1 then 9 uxps.add(tuple(s.id, u.f irst, u.second)); 10 if options | FIRST UXPS ONLY then / * first 11 occurrence of γ-unexpectedness * / return uxps; 12 nτ := T.nextT auNode(nτ );

Figure. 5 :

 5 Figure. 5: Number of frequent recurrence sequences.

  Beliefs on "rarely" behaviors Beliefs on "often" behaviors Beliefs on "frequently" behaviors (b) Data set WWW.

Figure. 6 :

 6 Figure. 6: Number of sequences with unexpected fuzzy recurrences.

  A µ , B ν are itemsets and c, c ′ are items. Such a rule triplet can be interpreted as "if A µ then c, however if A µ and B ν then c ′ , and if B ν then not c ′ ".

	Padmanabhan and Tuzhilin proposed a semantics-based
	belief-driven approach [29, 30, 31] to discover unexpected
	patterns in the context of association rules, where a rule
	A ⇒ B is unexpected with respect to a belief X ⇒ Y in
	a given database D if: (1) B ∧ Y |= F ALSE, which means
	that the two patterns B and Y logically contradict each other
	(i.e., R in D such that B ∪ Y ⊆ R); (2) A ∧ X holds on
	a statistically large subset of tuples in D (e.g., with respect
	to a given minimum support, the pattern A ∪ X is frequent
	in the database D);

  The primary factor of the occurrence-unexpectedness in a sequence s is that the recurrence sequence ⟨s β , ζ β ⟩ does not occur as expected however at least the sequence s β occurs in s, so that we also called this form of unexpectedness as β-unexpectedness.

	For instance, considering the belief in Example 2, noted
	as b, let s be a customer transaction sequence, if we have
	that ⟨(movie), often⟩ ⊑ s and ⟨(game), often⟩ ⊑ s,
	then s is expected with respect to the fuzzy recurrence rule
	⟨(movie), often⟩ → ⟨(game), often⟩; however, if we have

the sequence ⟨s α , ζ α ⟩ occurs and the sequence s β but the sequence ⟨s β , ζ β ⟩ does not occur; or (2) the sequence ⟨s α , ζ α ⟩ and the sequence ⟨s γ , ζ γ ⟩ occurs. Therefore, we consider two forms of unexpectedness in our approach with respect to the occurrence of the sequences ⟨s β , ζ β ⟩ and ⟨s γ , ζ γ ⟩ contained in a belief. Definition 3 (Occurrence-unexpectedness). Given a sequence s and a belief b = [⟨s α , ζ α ⟩ ; ⟨s β , ζ β ⟩ ; ⟨s γ , ζ γ ⟩], if s supports ⟨s α , ζ α ⟩ and there exist s β ⊑ s and ⟨s β , ζ β ⟩ ̸ ⊑ s, then the sequence s is occurrence-unexpected, denoted as s β b. ⟨(game)⟩ ⊑ s but not ⟨(game), often⟩ ⊑ s, for example, the case ⟨(game), rarely⟩ ⊑ s, since ⟨(game), rarely⟩ ⊑ s implies that ⟨(game)⟩ ⊑ s, then s is a β-unexpected sequence, i.e., s β b. Definition 4 (Semantics-unexpectedness). Given a sequence s and a belief b = [⟨s α , ζ α ⟩ ; ⟨s β , ζ β ⟩ ; ⟨s γ , ζ γ ⟩], if s supports ⟨s α , ζ α ⟩ and there exists ⟨s γ , ζ γ ⟩ ⊑ s, then the sequence s is semantics-unexpected, denoted as s γ b.

Table 1 :

 1 Web access logs used for the evaluation.

	Data Set	Size	Distinct Items	Average Length
	BBS	135,562	126,383	15.5591
	WWW	53,325	85,810	8.3507

Two types of Web access log are used in our experiments: one is a large access log file of an online forum site (labeled as BBS), and another is a large access log file of a mixed homepage hosting server (labeled as WWW).

Table 2

 2 depicts that the forum users who rarely visit the forum No.4 also rarely visit the forum No.9, and that they often visit the forum No.9 is a contradiction; the belief WWW 2 = [⟨(/pub/), often⟩ ; ⟨(/), rarely⟩ ; ⟨(/doc/), often⟩ ; * ]

lists several sample beliefs in our experiments. For instance, the belief

BBS 1 = [⟨(f=4), rarely⟩ ; ⟨(f=9), rarely⟩ ; ⟨(f=9), often⟩ ; * ]

Table 2 :

 2 Belief Premise ⟨sα, ζα⟩ Conclusion ˙sβ , ζ β ¸Contradiction ⟨sγ , ζγ ⟩ Sample beliefs of fuzzy recurrence rules.

	BBS 1	(f=4), rarely	(f=9), rarely	(f=9), often
	BBS 2	(f=0)(f=5), often	(f=8), often	(f=4), often
	BBS 3	(f=5), frequently	(f=4), rarely	(f=9), often
	WWW 1	(/˜li/), rarely	(/˜li/pub/), often	(/˜li/pub/), rarely
	WWW 2	(/˜li/pub/), often	(/˜li/), rarely	(/˜li/doc/), often
	WWW 3	(/˜li/), frequently	(/˜li/doc/), rarely	(/˜li/doc/), often

To respect the space allowed in the figure, a notation like sα denotes a recurrence sequence ⟨sα, ζα⟩, etc.
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