R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, SIGMOD, pp.207-216, 1993.

R. Agrawal and R. Srikant, Mining sequential patterns, ICDE, pp.3-14, 1995.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, Sequential PAttern Mining using a bitmap representation, KDD, pp.429-435, 2002.

F. Berzal, J. C. Cubero, D. Sánchez, M. A. Miranda, and J. Serrano, An alternative approach to discover gradual dependencies, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.15, pp.559-570, 2007.

T. Calders, Computational complexity of itemset frequency satisfiability, PODS, pp.143-154, 2004.

K. C. Chan and W. Au, Mining fuzzy association rules, CIKM, pp.209-215, 1997.

R. Chen, G. Tzeng, C. C. Chen, and Y. Hu, Discovery of fuzzy sequential patterns for fuzzy partitions in quantitative attributes, AICCSA, pp.144-150, 2001.

Y. Chen and T. C. Huang, A new approach for discovering fuzzy quantitative sequential patterns in sequence databases, Fuzzy Sets and Systems, vol.157, issue.12, pp.1641-1661, 2006.

M. Delgado, N. Marín, D. Sánchez, and M. Vila, Fuzzy association rules: general model and applications, IEEE Transactions on Fuzzy Systems, vol.11, issue.2, pp.214-225, 2003.

L. Di-jorio, A. Laurent, and M. Teisseire, Fast extraction of gradual association rules: A heuristic based method, CSTST, pp.205-210, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324473

D. Dubois and E. H. Prade, A systematic approach to the assessment of fuzzy association rules, Data Mining and Knowledge Discovery, vol.13, issue.2, pp.167-192, 2006.

C. Fiot, A. Laurent, and M. Teisseire, From crispness to fuzziness: Three algorithms for soft sequential pattern mining, IEEE Transactions on Fuzzy Systems, vol.15, issue.6, pp.1263-1277, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00195099

C. Fiot, F. Masseglia, A. Laurent, and M. Teisseire, Gradual trends in fuzzy sequential patterns, IPMU, pp.456-463, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00273910

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen et al., Discovering all most specific sentences, ACM Transactions on Database Systems, vol.28, issue.2, pp.140-174, 2003.

J. Han, J. Pei, Y. Yin, and R. Mao, Mining frequent patterns without candidate generation: a frequent-pattern tree approach, Data Mining and Knowledge Discovery, vol.8, issue.1, pp.53-87, 2004.

T. Hong, K. Lin, and S. Wang, Fuzzy data mining for interesting generalized association rules. Fuzzy Sets and Systems, vol.138, pp.255-269, 2003.

Y. Hu, R. Chen, G. Tzeng, and J. Shieh, A fuzzy data mining algorithm for finding sequential patterns, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.11, issue.2, pp.173-194, 2003.

E. Hüllermeier, Association rules for expressing gradual dependencies, PKDD, pp.200-211, 2002.

J. Lee and H. Lee-kwang, An extension of association rules using fuzzy sets, IFSA, pp.399-402, 1997.

S. Jaroszewicz and T. Scheffer, Fast discovery of unexpected patterns in data, relative to a bayesian network, KDD, pp.118-127, 2005.

C. M. Kuok, A. W. , .. Fu, and M. H. Wong, Mining fuzzy association rules in databases, SIGMOD Record, vol.27, issue.1, pp.41-46, 1998.

D. H. Li, A. Laurent, and P. Poncelet, Mining unexpected sequential patterns and rules, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00193679

D. H. Li, A. Laurent, and P. Poncelet, Discovering fuzzy unexpected sequences with beliefs, IPMU, pp.1709-1716, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00275951

B. Liu and W. Hsu, Post-analysis of learned rules, AAAI/IAAI, pp.828-834, 1996.

B. Liu, W. Hsu, L. Mun, and H. Lee, Finding interesting patterns using user expectations, IEEE Transactions on Knowledge and Data Engineering, vol.11, issue.6, pp.817-832, 1999.

B. Liu, Y. Ma, and P. S. Yu, Discovering unexpected information from your competitors' web sites, KDD, pp.144-153, 2001.

F. Masseglia, F. Cathala, and P. Poncelet, The PSP approach for mining sequential patterns, PKDD, pp.176-184, 1998.

K. Mcgarry, A survey of interestingness measures for knowledge discovery. The Knowledge Engineering Review, vol.20, pp.39-61, 2005.

B. Padmanabhan and A. Tuzhilin, A belief-driven method for discovering unexpected patterns, KDD, pp.94-100, 1998.

B. Padmanabhan and A. Tuzhilin, Small is beautiful: Discovering the minimal set of unexpected patterns, KDD, pp.54-63, 2000.

B. Padmanabhan and A. Tuzhilin, On characterization and discovery of minimal unexpected patterns in rule discovery, IEEE Transactions on Knowledge and Data Engineering, vol.18, issue.2, pp.202-216, 2006.

J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto et al., Mining sequential patterns by pattern-growth: the prefixspan approach, IEEE Transactions on Knowledge and Data Engineering, vol.16, issue.11, pp.1424-1440, 2004.

A. Silberschatz and A. Tuzhilin, On subjective measures of interestingness in knowledge discovery, KDD, pp.275-281, 1995.

M. Spiliopoulou, Managing interesting rules in sequence mining, PKDD, pp.554-560, 1999.

R. Srikant and R. , Mining sequential patterns: generalizations and performance improvements, EDBT, pp.3-17, 1996.

E. Suzuki, Autonomous discovery of reliable exception rules, KDD, pp.259-262, 1997.

E. Suzuki and M. Shimura, Exceptional knowledge discovery in databases based on information theory, KDD, pp.275-278, 1996.

E. Suzuki and J. M. Zytkow, Unified algorithm for undirected discovery of exception rules, International Journal of Intelligent Systems, vol.20, issue.7, pp.673-691, 2005.

K. Wang, Y. Jiang, and L. V. Lakshmanan, Mining unexpected rules by pushing user dynamics, KDD, pp.246-255, 2003.

X. Yan, J. Han, and R. Afshar, CloSpan: Mining closed sequential patterns in large databases, SDM, pp.166-177, 2003.

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, pp.338-353, 1965.

M. J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine Learning, vol.42, pp.31-60, 2001.