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Mining Common Outliers for Intrusion
Detection

Goverdhan Singh and Florent Masseglia and Céline Fiot and Alice Marascu and
Pascal Poncelet

Abstract Data mining for intrusion detection can be divided into several sub-topics,
among which unsupervised clustering (which has controversial properties). Unsu-
pervised clustering for intrusion detection aims to i) group behaviours together de-
pending on their similarity and ii) detect groups containing only one (or very few)
behaviour(s). Such isolated behaviours seem to deviate from the model of normality;
therefore, they are considered as malicious. Obviously, not all atypical behaviours
are attacks or intrusion attempts. This represents one drawback of intrusion detec-
tion methods based on clustering. We take into account the addition of a new feature
to isolated behaviours before they are considered malicious. This feature is based on
the possible repeated occurrences of the bahaviour on many information systems.
Based on this feature, we propose a new outlier mining method which we validate
through a set of experiments.
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1 Introduction

Intrusion detection is a very important topic of network security and has received
much attention [Lee and Stolfo, 1998, Dokas et al., 2002, Lazarevic et al., 2003, Patcha and Park, 2007]
since potential cyber threats make the organizations vulnerable. Intrusion De-
tection Systems (IDS) are intended to protect information systems against intru-
sions and attacks and are traditionally based on the signatures of known attacks
[Roesch, 1998, Barbara et al., 2001]. Therefore, new kinds of attacks have to be
added to the signature list regularly. The main drawback is that in case of an emerg-
ing attack (the recent discovery of a new security hole for instance), the IDS will
ignore it since this new attack has not been listed yet in the signature database.

Protecting a system against new attacks, while keeping an automatic and adap-
tive framework is an important topic in this domain. One solution to this problem
can be based on data mining tools. Data mining tools have been used to provide
IDS with more adaptive detection approaches of cyber threats [Dokas et al., 2002,
Bloedorn et al., 2001, Wu and Zhang, 2003]. Among these data mining approaches,
predictive models are built to improve the database of signatures used by exist-
ing IDS [Wu and Zhang, 2003]. Other ones, whose category this chapter refers to,
make use of data mining to detect anomalies from which the intrusions are de-
duced [Lazarevic et al., 2003, Eskin et al., 2002, Chimphlee et al., 2005]. The over-
all principle is generally to build clusters (or classes) of usage and, afterwards, to
find the outliers (i.e. events that do not belong to any class or cluster correspond-
ing to a normal usage). Actually, outlier detection aims to find records that devi-
ate significantly from a well-defined notion of normality. It has a wide range of
applications, such as fraud detection for credit card [Aleskerov et al., 1997], health
care [Spence et al., 2001], cyber security [Ertoz et al., 2004] or safety of critical sys-
tems [Fujimaki et al., 2005]. However, the main drawback of detecting intrusions by
means of anomaly (outliers) detection is the high rate of false alarms. In both cases
(building a model or detecting outliers) an alarm can indeed be triggered because of
a new kind of usages that has never been seen before; so it is considered abnormal.
Considering the large amount of new usage patterns emerging in the Information
Systems, even a weak percentage of false positive gives a very large amount of
spurious alarms that would be overwhelming for the analyst. Reducing the rate of
false alarms is thus crucial for a data mining based intrusion detection system in a
real-world environment.

Therefore, the goal of this chapter is to propose an intrusion detection algorithm
based on the analysis of usage data coming from multiple partners in order to reduce
the number of false alarms. Our main idea is that a new usage is likely to be related
to the context of the information system on which it occurs (so it should only occur
on this system). On the other hand, when a new security hole has been found on a
system, the hackers would use it in as many information systems as possible. Thus
a new anomaly occurring on two (or more) information systems is rather an intru-
sion attempt than a new kind of usage. Let us consider Ax, an anomaly detected in
the usage of web site S1 corresponding to a php request on the staff directory for a
new employee: John Doe, who works in room 204, floor 2, in the R&D department.
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The request has the following form: staff.php?FName=John\&LName=Doe
\&room=204\&floor=2\&Dpt=RD. This new request, due to the recent re-
cruitment of John Due in this department, should not be considered as an attack.

Let us now consider Ay, an anomaly corresponding to a real intrusion. Ay is
caused by a security hole of the system (for instance a php vulnerability) and might,
for instance, look like: staff.php?path=../etc/passwd%00. In this re-
quest, one can see that the parameters are not related to the data accessed by the
php script, but rather to a security hole discovered on the staff script. If two or more
firms use the same script (say, a directory requesting script bought to the same soft-
ware company) then the usage of this security hole is certainly repeated from one
system to another and the request having parameter path=../etc/passwd%00
will be the same for all the victims.

We propose to provide the end-user with a method that has only one parameter: n,
the number of desired alarms. Based on the analysis of the usage data coming from
the different partners, our algorithm will detect n common outliers they share. Such
common outliers are likely to be true attacks and will trigger an alarm. In a real-
world application of this technique, privacy preserving will be a major issue in order
to protect partners’ data. We focus on clustering and outlier detection techniques in
a distributed environment. However, privacy issues in our framework are currently
being studied.

The chapter is organized as follows. In Section 2 we present the motivation of this
approach and our general framework. Section 3 gives an overview of existing works
in this domain. Section 4 presents COD, our method for detecting outliers and trig-
gering true alarms. Eventually, our methods is tested through a set of experiments
in Section 5 and Section 6 gives the conclusion.

2 Motivation and General Principle

In this section, we present the motivation of our work, based on the main drawbacks
of existing anomaly-based methods for intrusion detection and we propose COD, a
new algorithm for comparing the anomalies on different systems.

2.1 Motivation

Anomaly-based IDS [Eskin et al., 2002, Chimphlee et al., 2005] can be divided into
two categories: semi-supervised and unsupervised. Semi-supervised methods use a
model of “normal” behaviours on the system. Every behaviour that is not considered
as normal is an anomaly and should trigger an alarm. Unsupervised methods do
not use any labelled data. They usually try to detect outliers based on a clustering
algorithm.
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Obviously, anomaly-based IDS will suffer from a very high number of false
alarms since a new kind of behaviour will be considered as an anomaly (and an
attack). Actually, anomalies are usually extracted by means of outlier detection,
which are records (or sets of records) that significantly deviate from the rest of the
data. Let us consider, for instance, a dataset of 1M navigations collected during one
week on the Web site of a company (say, a search engine). In this case, a false alarm
rate of 2% represents 20,000 alarms that could be avoided. Reducing the number of
false alarms is linked to the detection rate. However, the primary motivation of our
work is to lower the rate of false alarms. We propose to improve the results of unsu-
pervised IDS by means of a collaborative framework involving different network-
based systems. Section 3 gives an overview of existing IDS based on the principles
presented above and on the existing collaborative IDS. However, to the best of our
knowledge, our proposal is the first unsupervised IDS using the common anomalies
of multiple partners in order to detect the true intrusion attempts. The main idea of
our proposal is that multiple partners do not share the same data, but they share the
same systems (the Web server can be Apache or IIS, the data server can run Oracle,
the scripts accessing the data can be written with PHP or CGI, etc). When a security
hole has been found in one system (for instance, a php script with specific param-
eters leading to privileged access to the hard drive), then this weakness will be the
same for all the partners using the same technology. Our goal is to reduce the rate
of false alarm based on this observation, as explained in section 2.2

2.2 General Principle

In this chapter we present COD (Common Outlier Detection) a framework and al-
gorithm intended to detect the outliers shared by at least two partners in a collabo-
rative IDS. Outliers are usually small clusters. Some outlier detection methods are
presented in section 3. As explained in section 2.1 the main drawback of clustering-
based IDS is that they obtain a list of outliers containing both normal atypical usages
and real intrusions; so the real intrusions are not separated from the normal atypical
behaviors. Our goal is to compare such outlier lists from different systems (based on
a similar clustering, involving the same distance measure). If an outlier occurs for
at least two systems, then it is considered as an attack. COD is based on following
the assumptions:

• An intrusion attempt trying to find a weakness of a script will look similar for all
the victims of this attack.

• This attack will be quite different from a normal usage of the system.
• The distance between normal usage patterns will be low, which makes it possi-

ble for most of them to group in large clusters (remaining unclassified normal
patterns are the false alarms of methods presented in Section 3).

We propose to detect intrusion attempts among the records of a Web server,
such as an Apache access log file. For each access on the Web site, such a file
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keeps record of: the IP, the date, the requested URL and the referrer (as well
as other information, less important in our situation). Our main idea is that the
anomalies occuring on two different systems, are highly probable to be attacks.
Let us detail the short illustration given in section 1 with Ax, an anomaly that
is not an attack on site S1. Ax is probably a context based anomaly, such as a
new kind of usage specific to S1. Therefore, Ax will not occur on S2. As an illus-
tration, let us consider a php request on the staff directory for a new employee:
John Doe, who works in room 204, floor 2, in the R&D department. The re-
quest will have the following form: staff.php?FName=John\&LName=Doe
\&room=204\&floor=2\&Dpt=RD. This new request, due to the recent re-
cruitment of John Due in this department should not be considered as an attack.
However, with an IDS based on outlier detection, it is likely to be considered as an
intrusion, since it is not an usual behaviour.

Let us now consider Ay, an anomaly corresponding to a true intrusion. Let us
consider that Ay is based on a security hole of the system (for instance a php vul-
nerability). Then Ay will be the same for every site attacked through this weak-
ness. For instance, a php request corresponding to an attack might look like:
staff.php?path=/../etc/passwd%00. In this request, one can see that the
parameters are not related to the data accessed by the php script, but rather to a se-
curity hole that has been discovered on the staff script that returns passwords. If
this script is provided by a software company to many firms, the usage of this se-
curity hole will repeatedly occur on different sites and the request having parameter
path=/../etc/passwd%00 will be the same for all the victims.

For clarity of presentation we present our framework on the collaboration of two
Web sites, S1 and S2 and we consider the requests that have been received by the
scripts of each site (cgi, php, sql, etc). Our goal is to perform a clustering on the
usage patterns of each site and to find the common outliers. However, that would
not be enough to meet the second constraint of our objective: the request of only
one parameter, n, the number of alarms to return. Our distance measure (presented in
section 4.1) will allow normal usage patterns to be grouped together rather than to be
mixed with intrusion patterns. Moreover, our distance measure has to distinguish an
intrusion pattern from normal usage patterns and also from other intrusion patterns
(since different intrusion patterns will be based on a different security hole and will
have very different characteristics). Our algorithm performs successive clustering
steps for each site. At each step we check the potentially matching outliers between
both sites. The clustering algorithm is agglomerative and depends on the maximum
distance (MD) requested between two objects.

Let us consider that n, the desired number of alarms, is set to 1 and the usage
patterns are distributed as illustrated in figure 1. Let us also consider that, for these
sites, cluster A at step 1 is the only one corresponding to an intrusion attempt. For
the first step, MD is initialized with a very low value, so the clusters will be as tight
and small as possible. Then we check correspondences between outliers of S1 and
S2. Let us consider the clustering results on S1 and S2 at step 1 in figure 1. There
are two matching outliers between both sites (A and B). That would lead to 2 alarms
(just one of the alarms being true) which represents more than the number of alarms
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desired by the user. We thus have to increase the clustering tolerance (i.e. increase
MD) so that bigger clusters can be built. After a few steps, we will find the clusters of
step n in figure 1. The only common outlier is A, which corresponds to the intrusion
attempt. Furthermore, this will trigger one alarm, as desired by the user, and there is
no need to continue increasing MD until step m.

Fig. 1 Detection of common outliers in the usage patterns of two Web sites

As explained in section 1, we want to propose an algorithm that requires only
one parameter, n, the maximum number of alarms desired by the end-user. Actually,
this work is intended to explore the solutions for monitoring a network in real time.
Then, the potential alarms will be triggered at each step of the monitoring (for in-
stance with a frequency of one hour). A first batch of usage data is clustered on each
site and n alarms are triggered. Depending on the number of true or false alarms, the
user might want to adjust n for the next step, until no false alarm is returned. Our
assumption is that common outliers, sorted by similarity from one site to another,
will give the intrusions at the beginning of the list.

Obviously, such a framework requires a good privacy management of each part-
ner’s data. This is a very important issue in our framework and we propose solutions
in chapter ?? (note to the editors, please insert here the chapter number for Verma
et. al, in this book).

Our challenge is to reply to important questions underlying our method ; what is
the distance between two usage patterns? How to separate clusters in order to give
the list of outliers? How to detect common outliers?
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Our main algorithm, corresponding to the framework presented in this section,
is given in section 4.1. Our distance measure and our clustering algorithm are
given in section 4.2. As explained in section 4.3 our outlier detection method is
parameterless, thanks to a wavelet transform on the cluster distribution. In contrast
to most previous methods [Jin et al., 2001, Zhong et al., 2007, Portnoy et al., 2001,
Joshua Oldmeadow et al., 2004] it does not require a percent of cluster and it does
not depend on a top-n parameter given by the user. The correspondance between
outliers of S1 and S2 also has to be parameterless. As explained in section 4.4 it will
automatically find clusters that are close enough to trigger an alarm.

3 Related Work

Atypical data discovery is a really active research topic for now few decades. The
problem of finding in databases patterns that deviate significantly from a well-
defined notion of normality, also called outlier detection, has indeed a wide range of
applications, such as fraud detection for credit card [Aleskerov et al., 1997], health
care [Spence et al., 2001], cyber security [Ertoz et al., 2004] or safety of critical sys-
tems [Fujimaki et al., 2005].

Over time many techniques have been developped to detect outliers, leading to a
number of surveys and review articles [Hodge and Austin, 2004, Chandola et al., 2008].
Some of them more precisely focus on the topic of outlier detection within the con-
text of intrusion detection in computer networks [Lazarevic et al., 2003, Patcha and Park, 2007].
We focus on this specific area and we propose an unsupervised anomaly-based de-
tection system. On the opposite to semi-supervised anomaly detection systems, con-
sisting of describing normal behaviours to detect deviating patterns [Marchette, 1999,
Wu and Zhang, 2003, Vinueza and Grudic, 2004], unsupervised techniques do not
require a preliminary identification of the normal usage by a human expert. Our
application will thus be more usable in a real-world context.

Statistic community has quite extensively studied the concept of outlyingness
[Barnett and T. Lewis, 1994, Markou and Singh, 2003, Kwitt and Hofmann, 2007].
Statistical approaches construct probability distribution models under which out-
liers are objects of low probability [Rousseeuw and Leroy, 1996, Billor et al., 2000,
Lee and Xiang, 2001] However, within the context of intrusion detection, dimen-
sionality of data is high. Therefore, to improve overall performance and accuracy, it
has become necessary to develop data mining algorithms using the whole data dis-
tribution as well as most of data features [Knorr and Ng, 1998, Breunig et al., 2000,
Aggarwal and Yu, 2001].

Most of these approaches are based on clustering-based outlier detection al-
gorithms [Ester et al., 1996, Portnoy et al., 2001, Eskin et al., 2002, He et al., 2003,
Papadimitriou et al., 2003]. Such techniques rely on the assumption [Chandola et al., 2008]
that normal points belong to large and dense clusters while anomalies (or out-
liers, atypical instances) either do not belong to any clusters [Knorr and Ng, 1998,
Ramaswamy et al., 2000, Duan et al., 2006] or form very small (or very sparse)
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clusters [Otey et al., 2003, Chimphlee et al., 2005, Pires and Santos-Pereira, 2005,
Fan et al., 2006]. In other words anomaly detection consists in identifying those
among the data that are far from significant clusters – either isolated or in small
clusters. Depending on the approach, the number of parameters required to run the
algorithm can be high and will lead to different outliers. To avoid this, some works
return a ranked list of potential outliers and limit the number of parameters to be
specified [Ramaswamy et al., 2000, Jin et al., 2001, Fan et al., 2006].

However all the anomaly-based intrusion detection techniques suffer of the
number of false alarms they trigger. On the contrary, misuse techniques (i.e. ap-
proaches that detect elements similar to well-known malicious usage) will pre-
cisely detect attacks but they will miss every intrusion that differs from these
already known attack signatures. Therefore some works proposed collaborative
frameworks in order to improve performance and both true and false alarm rates
[Valdes and Skinner, 2001, Locasto et al., 2004, Yegneswaran et al., 2004]. These
approaches rely on propagating in a distributed IDS IP blacklist after individual
misuse or anomaly detection. Also this communication can lead to more accurate
results, it does not allow the system to uncover totally unknown attacks or to avoid
high false alarm rates.

For these reasons we propose an anomaly detection approach that uses collab-
oration between systems in order to discriminate attacks from emerging or novel
usage behaviours, thus leading to a reduced number of false alarms. To the best of
our knoweldge, this is the first proposal for such an IDS.

4 COD: Common Outlier Detection

The principle of COD is to perform successive clustering on usage patterns of differ-
ent partners sites, until the number of common outliers meets the number of alarms
desired by the user. We present in this section an algorithm designed for two in-
formation systems. Extending this work to more than two systems would require a
central node coordinating the comparisons and triggering the alarms, or a peer-to-
peer communication protocol. This is not the goal of this chapter, since we want to
focus on proposing solutions to the following issues:

• Clustering the usage patterns of a Web site with different levels of MD.
• Proposing a distance measure adapted to intrusion detection.
• Identifying the outliers after having clustered the usage patterns.
• Comparing the outliers given by each partner.

Our objects are the parameters given to script files in the requests received on
a Web site. In other words, the access log file is filtered and we only keep lines
corresponding to requests with parameters to a script. For each such line, we sepa-
rate the parameters and for each parameter we create an object. Let us consider, for
instance, the following request: staff.php?FName=John&LName=Doe. The
corresponding objects are o1 =John and o2 =Doe. Once the objects are obtained
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from the usage data of multiple Web sites, COD is applied and gives their common
outliers.

4.1 Main Algorithm

As explained in section 2.2, COD will process the usage patterns of both sites step
by step. For each step, a clustering result is provided and analyzed for intrusion
detection. The pseudo-code is given in figure 2. First, MD is set to obtain very
tight and numerous clusters (very short distance is allowed between two objects in
a cluster). Then, MD is relaxed by an amount of 0.05 step after step in order to
increase the size of resulting clusters, decrease their number and lower the number
of alarms. When the number of alarms desired by the user is reached, then COD
ends.

Algorithm Cod
Input: U1 and U2 the usage patterns of sites S1 and S2

and n the number of alarms.
Output: I the set of clusters corresponding

to malicious patterns.

1. MD← 0 ;
2. MD←MD+0.05 ;
3. C1←Clustering(U1,MD) ;

C2←Clustering(U2,MD) ;
4. O1← Outliers(C1) ; O2← Outliers(C2) ;
5. I←CommonOutliers(O1,O2,MD) ;
6. If |I| ≤ n then return I ;
7. If MD = 1 then return I ; // No common outlier
8. Else return to step 2 ;

End algorithm Cod

Fig. 2 Algorithm Cod

4.2 Clustering

COD clustering algorithm (given in figure 3) is based on an agglomerative principle.
The goal is to increase the volume of clusters by adding candidate objects, until the
Maximum Distance (MD) is broken (i.e. there is one object oi in the cluster such
that the distance between oi and the candidate object oc is greater than MD).
Distance between objects. We consider each object as a sequence of characters.
Firstly, we need to introduce the notion of subsequence in definition 1.
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Definition 1. Let S = s1,s2, . . . ,sn be a sequence of characters having length n, a
subsequence is a subset of the characters of S with respect to their original order.
More formally, V = v1,v2, . . . ,vk, having length k≤ n, is a subsequence of S if there
exist integers i1 < i2 < .. . < ik such that s1 = vi1 , s2 = vi2 , . . . sk = vik .

Our distance is then based on the longest common subsequence (LCS, where the
problem is to find the maximum possible common subsequence of two sequences),
as described in definition 2.

Definition 2. Let s1 and s2 be two sequences. Let LCS(s1,s2) be the length of the
longest common subsequences between s1 and s2. The distance d(s1,s2) between s1
and s2 is defined as follows:

d(s1,s2) = 1− 2×LCS(s1,s2)
|s1|+ |s2|

Example 1. Let us consider two parameters p1=intrusion and p2=induction.
The LCS between p1 and p2 is L=inuion. L has length 6 and the dissimilarity
between p1 and p2 is d = 1− 2×L

|p1|+|p2| = 33.33%. Which also means a similarity of
66.66% between both parameters.

Centre of clusters. When an object is inserted into a cluster we maintain the centre
of this cluster, since it will be used in the CommonOutliers algorithm described in
Figure 6. The centre of a cluster C is the LCS between all the objects in C. When
object oi is added to C, its center Cc is updated. The new value of Cc is the LCS
between the current value of Cc and oi.

4.3 Wavelet-based Outlier Detection

Most previous work in outlier detection require a parameter [Jin et al., 2001, Zhong et al., 2007,
Portnoy et al., 2001, Joshua Oldmeadow et al., 2004], such as a percent of small
clusters that should be considered as outliers, or the top-n outliers. Their key idea is
generally to sort the clusters by size and/or tightness. We consider that our clusters
will be as tight as possible, according to our clustering algorithm and we want to
extract outliers by sorting the cluster by size. The problem is to separate “big” and
“small” clusters. Our solution is based on an analysis of cluster distribution, once
they are sorted by size. The usual distribution of clusters is illustrated by Figure 4
(screenshot made with our real data). In [Marascu and Masseglia, 2009], the authors
proposed to use a wavelet transform to cut down the distribution. This technique is
illustrated by figure 4, where the y axis stands for the size of the clusters, whereas
their index in the sorted list is represented on x, and the two plateaux allow sep-
arating small and big clusters. With a prior knowledge on the number of plateaus
(we want two plateaus, the first one standing for small clusters, or outliers, and the
second one standing for big clusters) we can cut the distribution in a very effective



Mining Common Outliers for Intrusion Detection 11

Algorithm Clustering
Input: U , the usage patterns

and MD, the Maximum Distance.
Output: C, the set of as large clusters as possible,

respecting MD.

1. Build M, the distance matrix between each pattern in U ;
2. ∀p ∈M,Neighboursp ← sorted list of neighbours for p (the first usage pattern in the list of p

is the closest to p).
3. DensityList← sorted list of patterns by density ;
4. i← 0 ; C← /0 ;
5. p← next unclassified pattern in DensityList ;
6. i++ ; ci← p ;
7. C←C + ci ;
8. q← next unclassified pattern in Neighboursp ;
9. ∀o ∈ ci, If distance(o,q) > MD then return to step 5 ;

10. add q to ci ;
11. Cc← LCS(Cc,q) ; //Cc is the center of C
12. return to step 8 ;
13. If unclassified patterns remain then return to step 5 ;
14. return C ;

End algorithm Clustering

Fig. 3 Algorithm Clustering

manner. Actually, each cluster mapped to the first plateau will be considered as an
outlier.

Fig. 4 Detection of outliers by means of Haar Wavelets

Advantages of this method, for our problem, are illustrated in figure 5. Depending
on the distribution, wavelets will give different indices (where to cut). For instance,
with few clusters having the maximum size (see graph with solid lines from figure
5 ), wavelets will cut the distribution in the middle. On the other hand, with a large
number of such large clusters (see graph with dashed lines from figure 5), wavelets
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will accordingly increase the number of clusters in the little plateau (taking into
account the large number of big clusters).

Fig. 5 Self-adjusting detection of outliers

4.4 Comparing Outliers

Since we want our global algorithm to require only one parameter (the number
of alarms), we want to avoid introducing a similarity degree for comparing two
lists of outliers. Our algorithm (given in figure 6) for this comparison will use the
centre of outliers. For each pair of outliers, CommonOutliers calculates the distance
between centers of these outliers. If this distance is below the current MD (C.f.
Subsection 4.2), then we consider those outliers as similar and add them to the
alarm list. The centre of an outlier is the LCS calculated on all the objects in this
outlier. The distance between two outliers is given by the LCS between the centers.

5 Experiments

The goal of this section is to analyze our results (i.e. the number of outliers and true
intrusions and the kind of intrusions we have detected).

5.1 Datasets

Our datasets come from two different research organizations; Inria Sophia-Antipolis
and IRISA. We have analyzed their Web access log files from March 1 to March
31. The first log file represents 1.8 Gb of rough data. In this file, the total num-
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Algorithm CommonOutliers
Input: O1 and O2, two lists of outliers

and MD, the maximum distance.
Output: A, the list of alarms (common outliers).

1. A← /0
2. ∀i ∈ O1 do
3. ∀ j ∈ O2 do
4. centrei← centre(i) ;
5. centre j ← centre( j) ;
6. If distance(centrei,centre j) < MD

Then A← A+ i∪ j ;
7. done ;
8. done ;
9. Return A ;

End algorithm CommonOutliers

Fig. 6 Algorithm CommonOutliers

ber of objects (parameters given to scripts) is 30,454. The second log file repre-
sents 1.2 Gb of rough data and the total number of objects is 72,381. COD has
been written in Java and C++ on a PC (2.33GHz i686) running Linux with 4Gb of
main memory. Parameters that are automatically generated by the scripts have been
removed from the datasets since they cannot correspond to attacks (for instance
“publications.php?Category=Books”). This can be done by listing all
the possible combinations of parameters in the scripts of a Web site.

5.2 Detection of common outliers

As described in Section 2.2, COD proceeds by steps and slowly increases the value
of MD, which stands for a tolerance value when grouping objects during the clus-
tering process. In our experiments, MD has been increased by steps of 0.05 from
0.05 to 0.5. For each step, we report our measures in table 1. The meaning of each
measure is as follows. C1 (resp C2) is the number of clusters in site 1 (resp. site 2).
O1 (resp. O2) is the number of outlying objects in site 1 (resp. site 2). %1 (resp %2)
is the fraction of outlying objects on the number of objects in site 1 (resp. site 2).
For instance, when MD is set to 0.3, for site 1 we have 6,940 clusters (built from
the 30,454 objects) and 5,607 outlying objects, which represents 18.4% of the total
number of objects in site 1. COD is the number of common outliers between both
sites and %FP is the percentage of false positive alarms within the common outliers.
For instance, when MD is set to 0.05, we find 101 alarms among which 5 are false
(which represents 4.9%). One first observation is that outliers cannot be directly
used to trigger alarms. Obviously, a number as high as 5,607 alarms to check, even
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for one month, is not realistic. On the other hand, the results of COD show its ability
to separate malicious behaviour from normal usage.

Our false positive patterns correspond to normal requests that are common to
both sites but rarely occur. For instance, on the references interrogation script of
Inria Sophia-Antipolis, a user might request papers of “John Doe” and the request
will look like publications.php?FName=John\&LName=Doe. If another
user requests papers of “John Rare” on the Web site of IRISA, the request will be
biblio.php?FName=John\&LName=Rare and the parameter “John” will be
given as a common outlier and trigger an alarm. As we can see, %FP is very low
(usually we have at most 5 false alarms in our experiments for both Web sites)
compared to the thousands of outliers that have been filtered by COD.

Another lesson from these experiments is that a low MD implies very small clus-
ters and numerous outliers. These outliers are shared between both sites, among
which some are false alarms due to rare but common normal usage. When MD
increases, the clustering process gets more agglomerative and alarms are grouped
together. Then one alarm can cover several ones of the same kind (e.g. the case of
easter eggs explained further). At the same time, the number of outliers correspond-
ing to normal usage decreases (since they are also grouped together). Eventually, a
too large value of MD implies building clusters that do not really make sense. In this
case, outliers will get larger, and the matching criteria will get too tolerant, leading
to a large number of matching outliers capturing normal usage.

In a streaming environment, one could decide to keep 70 as the number of desired
alarms and watch the ratio of false positive alarms. If this ratio decreases, then the
end-user should consider increasing the number of desired alarms.

Measure \MD 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
C1 14165 11922 10380 8974 7898 6940 6095 5390 4863 4316
O1 13197 10860 8839 7714 6547 5607 5184 4410 3945 3532
%1 43.3% 35.6% 29% 25.3% 21.5% 18.4% 17% 14.4% 12.9% 11.6%
C2 37384 30456 25329 21682 19080 16328 14518 12753 10984 9484
O2 35983 27519 24032 20948 18152 14664 12738 11680 10179 8734
%2 49.6% 37.9% 33.1% 28.9% 25% 20.2% 17.5% 16.1% 14% 12.1%
COD 101 78 74 70 67 71 71 85 89 90
%FP 4.9% 5.12% 4% 2.85% 1.5% 2.8% 2.8% 10.6% 11.2% 16.6%

Table 1 Results on real data

5.3 Execution times

Processing one month of real data: We want to show that COD is suitable both for
off-line and on-line environments. First, regarding off-line environments, we report
in Figure 7 the time responses of COD for the results presented in subsection 5.2.
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These results have been obtained on real log files corresponding to the navigations
of one month from Inria Sophia-Antipolis and IRISA for a rough size of 1.8 Gb and
1.2 Gb. We consider that preprocessing the log files and obtaining the clusters and
outliers for each site can be done separately and by different machines. This is why
Figure 7 reports the maximum time for Sophia-Antipolis (Log1) and IRISA (Log2)
for these three steps (preprocessing, clustering and outlier detection). Foreach user
threshold, we also report the execution time of common outlier detection (COD).
Eventually, the total time (addition of preprocessing, clustering, outlier detection
and common outlier detection) foreach threshold is reported. The global time for
these two log files (corresponding to one month) is 2819 minutes (addition of all the
total times).

Fig. 7 Execution times of COD for one month of real data

Once this knowledge is obtained (i.e. the outliers for each site), when new trans-
actions arrive in the system (new navigations on the site, for instance) we want to
extract the outliers for this set of new navigations, and compare them to the existing
ones. The time responses obtained for this real-time situation are reported hereafter.

Time response for one day: the navigations, after one day, represent approxi-
mately 60 Mo of rough data, and 2500 objects in average after preprocessing. Pars-
ing one day of data needs 73 seconds in average. Clustering and outlier detection
needs 82 seconds. Common outlier detection requests comparing 715 outliers (av-
erage number of outliers for one day) to 21,460 known outliers (average number for
one month) over 5 thresholds. The total time of common outlier detection for one
day of navigations is 43 minutes.

Time response for one hour: with one hour of navigations, the total time for
detecting outliers shared with one month of navigations, from the partner site, is less
than 2 minutes.
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5.4 A sample of our results

None of the attacks found in our experiments have been successful on the considered
Web sites. However, our security services and our own investigations allow us to
confirm the intrusion attempts that have been discovered by our method:

• Code Injection: a recent kind of attack aims to inject code in PHP scripts by
giving a URL in the parameters. Here is a sample of such URLs detected by
COD:

– http://myweddingphotos.by.ru/images?
– http://levispotparty.eclub.lv/images?
– http://0xg3458.hub.io/pb.php?

Depending on the PHP settings on the victim’s Web server, the injected code
allows modifying the site. These URLs are directly, automatically and massively
given as parameters to scripts through batches of instructions.

• Passwords: another kind of (naive and basic) attack aims to retrieve the password
file. This results in outliers containing parameters like ../etc/password
with a varying number of ../ at the beginning of the parameter. This is probably
the most frequent attempt. It is generally not dangerous but shows the effective-
ness of our method.

• Easter Eggs: this is not really an intrusion but if one adds the code
?=PHPE9568F36-D428-11d2-A769-00AA001ACF42 to the end of any URL
that is a PHP page, he will see a (funny) picture on most servers. Also on April
1st (April Fool’s Day), the picture will replace the PHP logo on any phpinfo()
page. This code (as well as two other ones, grouped into the same outlier) has
been detected as a common outlier by COD.

6 Conclusion

We have proposed i) an unsupervised clustering scheme for isolating atypical be-
haviours, ii) a parameterless outlier detection method based on wavelets and iii) a
new feature for characterizing intrusions. This new feature is based on the repeti-
tion of an intrusion attempt from one system to another. Actually, our experiments
show that atypical behaviours (up to several thousands for one day on Inria Sophia-
Antipolis) cannot be directly used to trigger alarms since most of them correspond
to normal (though atypical) requests. On the other hand, this very large number of
outliers can be effectively filtered in order to find true intrusion attempts (or attacks)
if we consider more than one site. By comparing the outliers of two sites, our method
kept only less than one hundred alarms, reducing the amount of atypical behaviours
up to 0.21%. Eventually, our method guarantees a very low ratio of false alarms,
thus making unsupervised clustering for intrusion detection effective, realistic and
feasible.
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