
HAL Id: lirmm-00798770
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798770v1

Submitted on 10 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A next-best-view algorithm for autonomous 3D object
modeling by a humanoid robot

Torea Foissotte, Olivier Stasse, Adrien Escande, Abderrahmane Kheddar

To cite this version:
Torea Foissotte, Olivier Stasse, Adrien Escande, Abderrahmane Kheddar. A next-best-view algo-
rithm for autonomous 3D object modeling by a humanoid robot. Humanoids, Dec 2008, Daejeon,
South Korea. 8th IEEE-RAS International Conference on Humanoid Robots, pp.333-338, 2008,
�10.1109/ICHR.2008.4756001�. �lirmm-00798770�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00798770v1
https://hal.archives-ouvertes.fr

A Next-Best-View Algorithm for Autonomous 3D

Object Modeling by a Humanoid Robot

T. Foissotte 1,2, O. Stasse 2, A. Escande 2, A. Kheddar 1,2

1CNRS-LIRMM, France
2CNRS/AIST JRL, Japan

Abstract— A novel solution is presented which allows hu-
manoids to build autonomously geometric models of unknown
objects. Although good methods have been proposed for the
specific problem of the next-best-view during the modeling and
the recognition process; our approach is different and takes
advantage of humanoid specificities in terms of embedded vision
sensor and redundant motion capabilities.

The problem to select the best next view of interest at each
modeling step is formulated as an optimization problem where
the whole robot posture needs to be defined jointly with the
robot cameras’ position and orientation. To achieve this, we
propose a differentiable formula that expresses the amount of
unknown data visible from a specific viewpoint, given only
knowledge acquired in previous steps. In addition, a specific
stability constraint is introduced to allow the robot to reach a
configuration where its feet can be moved away from their initial
position.

I. INTRODUCTION

A. Problem statement

One requirement for an autonomous robot to explore and

interact fully in an unknown environment with humans is its

ability to model and recognize new objects and environments.

The work presented in this paper is a part of an ongoing project

called ’treasure hunting’, where the robot should retrieve an

object in an unknown environment [1] based on a model that

it previously build and stored [2]. This paper deals specifically

with new objects modeling, with the future aim of being

able to be robustly detected and recognized. Three main

problems need to be solved to ensure a successful modeling

process: (i) object/environment distinction, (ii) object features

processing and memorizing, and (iii) object manipulation or

sensor movement so as to model different faces. Currently

we are simplifying the first problem by putting the object

on a known table in front of the robot. For the second

problem, we take advantage of results from a previous work

[1] using an occupancy grid and disparity maps obtained by

stereo vision, coupled with scale invariant features (SIFT)

detection [3] which already proves their robustness for object

recognition. Finally, this paper deals more particularly with the

third problem by proposing an algorithm to move a humanoid

robot around the object to be modeled. However, the object

manipulation aspect of the problem is not addressed in this

work.

B. Overview of related work

Many existing works focus on the environment exploration

[4] or object recognition problems [5]. The modeling part

Fig. 1. Object modelization setting.

usually relies on a supervised method where different views

of an object are taken manually by a human and served as

an input to the algorithm. A number of works are dedicated

to planning of sensor positions in order to create an accurate

3D model an unknown object, see for example [6], [7] or [8].

Hypothesis and limits of such works are detailed in these two

surveys: [9] and [10]. The most usual assumptions are that

the depth range image is dense and accurate by using laser

scanners or structured lighting, and that the camera position

and orientation is correctly set and measured relatively to

the object position and orientation. The object to analyze is

also considered to be inside a sphere or on a turntable so

that the sensor positioning space complexity to evaluate is

reduced since its distance from the object center is fixed and

its orientation is set toward the object center. The main aim

is to get an accurate 3D reconstruction of an object, using

voxels or polygons, while reducing the number of viewpoints

required.

C. Contribution

Though our modeling process also requires a next best view

solution, it appears that working hypothesis are quite specific

for a humanoid robot which needs only to characterize not all

but the specific useful object’s parts for its detection and recog-

nition. Our work aims at getting rid of the human intervention

in the modeling phase taking into account maneuverability and

constraints of a humanoid robot equipped with stereo cameras.

In [2], we already stepped toward the object modeling by the

robot, yet with human supervision. Our goal is thus to improve

this work by guiding the modeling process using a new visual

criterion.

Section II recalls some previous work necessary to introduce

the new posture generation. Section III details the new stability

constraint designed to ensure a statically stable posture while

not specifying an artificial constraint on the feet as it has been

done in previous work [2]. Our new optimization function

which measures the visible area of the object’s unknown parts

depending on the robot posture is then introduced in section

IV. Section V presents the simulation experiment results and

section VI concludes this paper.

II. POSTURE GENERATION

The posture generation is realized by taking advantage of

the posture generator (PG) proposed as part of the work in

[11] and [2]. This posture generator is based on FSQP. Let

us recall the problem to be minimized on our previous work

when assuming:

1) that a Next Best View algorithm provides to the vision

system with pose H, a point to look at x with a given

direction v, and the vision system is at a distance inside

the following interval [dmin, dmax].
2) an arbitrary vector f sets a constant rigid transformation

between the left foot Fl and the right foot Fr.

then the problem can be written:

min
q∈X

f1(q) (1)

where q = [r w Θ]⊤, r the position of the free-floating

body, w its orientation, and Θ = {θ0 . . . θd} the robot’s joints.

Moreover X is a set of constraints:

Θmin < Θ < Θmax (2)

a < d(Bi(q), Bj(q)) ∀(i, j) ∈ C (3)

F z
l (q) = F z

r (q) = 0 (4)

Fl(q) − Fr(q) = f (5)

hz(q) × (x − h(q)) = 0 (6)

hz(q).(x − h(q)) ≤ 0 (7)

hz(q) × v = 0 (8)

hz(q).v ≤ 0 (9)

dmin ≤‖ h(q) − x ‖2≤ dmax (10)

AS(q)c(q) ≤ bS(q) (11)

with c(q) the CoM of the robot, Θmin and Θmax the joint

limits, d(Bi(q), Bj(q)) the C1 distance between two bodies

introduced by Escande et al. [12], C the set of collision pairs

which are tracked to avoid non desirable collisions and auto-

collisions. It is important to note that here Bi is not constrained

to be a robot’s body but could be an object of the environment

[2]. (4) imposes to the feet to be on the ground, while (5)

imposes the relationship between the feet given by f . The

vector hz(q) is the optical axis of the camera system, and h its

position. (7) and (6) enforces the vision system to look towards

x. (9) and (8) constraints the vision system to be aligned with

the vector v. (10) imposes the vision system distance to x to

be within a predefined interval. The stability constraint of our

previous work uses the convex support polygon of the robot,

obtained from the convex hull of the footprints, at pose q,

which is given by the set of points S(q), and is represented

by the convex polytope AS(q)w ≤ bS(q), with

AS(q)w =

a0 −1 0
...

...

ai −1 0
...

...

an −1 0

bS(q) =

b0

...

bi

...

bn

ai =
yi+1 − yi

xi+1 − xi

bi = −(yi − aixi) ∀i ∈ {0, ..., n − 1}

an =
y0 − yn−1

x0 − xn−1
bi = −(yn−1 − aixn−1)

(12)

and S(q) = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Finally the

function to minimize is:

f1(q) =‖ pc(q) − CoG(S(q)) ‖2 (13)

where the CoG(S(q)) is the barycenter of the convex support

polygon, and pc = [cx cy]⊤ is the projection of the CoM

on the floor. This criterion seeks for the most statically stable

posture that satisfies the constraints described previously. (11)

makes sure that the stability criterion is never violated.

III. STABILITY CONSTRAINT

The robot is required to be statically stable while taking

pictures of the object. Indeed, when walking, induced motion

might result in a blurred image. This happen especially during

landing of the foot; resulting impact’s propagation creates

oscillations at terminal points such as the head. In our previous

work [2], the stability is ensured by both a constraint (11) and

a criterion (13). However these have two limitations: (i) the

poses of the feet relatively to each other cannot be modified,

and (ii) a margin is necessary in the constraint implementation.

In fact, practically if pc is close to the limits of the convex

hull of S(q) the robot can be in an unstable position due to the

flexibility in its ankle. In this paper, our original approach is to

set the robot stability as a constraint where the distance from

pc to the segment between both feet must be null. Though this

is more restrictive than the previous approach, this has three

advantages: (i) a dedicated criterion is not required, (ii) we

are sure that the posture generated is stable, and (iii) the feet

pose can be freely modified. Let us note this distance g(q),
thus the constraint to comply with is: g(q) = 0.

A. Mathematical formulation

The formulation of this constraint can be expressed in a 2D

coordinate system as we work with points on a horizontal

floor. First, the distance between the CoM projection, pc

and the segment between the robot left foot’s center pFl =

[F x
l F y

l]⊤ and right foot’s center pFr = [F x
r F y

r]⊤ needs

to be computed. When a specific robot pose results in a null

distance (or practically when the distance is below a chosen

threshold), then the robot stability constraint is solved. The

computation of g(q) depends on the relative position of the 3

points. Three cases are possible: the closest geometric object

to pc is (i) pFl, (ii) pFr or (iii) the segment between pFl and

pFr. For a given posture, the case encountered, and thus the

formula to use for the distance computation, can be found by

analyzing the point ps, the projection of pc on the segment:

ps = pFl + αp (pFr − pFl) (14)

(pc − ps) · (pFr − pFl) = 0 (15)

By solving these 2 formulas we can deduce the value of αp

αp =
(pc − pFl) · (pFr − pFl)

(pF x
r − pF x

l)2 + (pF y
r − pF y

l)2
(16)

The value of αp determines the closest geometric object to

pc:

g(q) = o(q)o(q)
⊤

(17)

with

o(q) = pc(q) − pFl(q) if αp ≤ 0

o(q) = pc(q) − pFr(q) if αp ≥ 1

o(q) = pc(q) − ps(q) if 1 ≥ αp ≥ 0

B. Gradient for the stability constraint

In order to generate a pose which satisfies our stability

constraint, FSQP relies on a gradient descent method and

thus needs the partial derivatives formulation of the constraint.

Three formulations are possible, depending on the value of αp.

For simplicity, let us write ḟ(q) = ∂f(q)/∂q. From (17) it is

possible to write:

ġ(q) = 2o(q)ȯ(q) (18)

with

ȯ(q) = ṗc(q) − ˙pFl(q) if αp ≤ 0 (19)

ȯ(q) = ṗc(q) − ˙pFr(q) if αp ≥ 1 (20)

ȯ(q) = ṗc(q) − ṗs(q) if 1 ≥ αp ≥ 0 (21)

The gradient’s continuity has been verified by ensuring that

(19) and (21) are equivalent to the same expression when αp =
0, and that the same is true for (20) and (21) when αp = 1.

IV. C1
FUNCTION FOR UNKNOWN QUANTIFICATION

A. Introduction

The goal of this function is to find a next pose for a camera,

at a given instant, using an occupancy grid obtained from

stereo vision and updated through space carving [13]. The

grid’s voxels can be assigned a normal vector and are set to

one of three possible states: known (i.e. perceived), unknown

(i.e. occluded by perceived voxels or out of fields of vision

used), and empty. The normal vector of known voxels are

computed by using a normal map created from the disparity

map following a common method used in computer graphics

to perform bump mapping [14]. Unknown voxels are assigned

a normal vector when they have at least one emtpy neighbor

by considering that the normal go through the barycenter of

all empty neighbors.

We want to maximize the area of unknown voxels that will

be visible from the next robot’s pose in order to reduce the

number of required viewpoints and motions. A new formula

to quantify the amount of unknown voxels visible depending

on the camera pose was thus used. Although this amount can

be effectively deduced with basic algorithms, in order to use

it as a criterion to minimize in the PG, we need a function

which is at least of class C1. Our new function is inspired by

the splatting algorithm [15] where voxels projection on the

image plane are represented by a pre-defined kernel.

B. Function to minimize

In the present work, a voxel is considered as a sphere, their

influence on any pixel (x, y) in the resulting image can then

be expressed as a 2D Gaussian function:

Gi(q) = exp

(

−0.5

(

(x − Xi(q))
2

σi(q)
2 +

(y − Yi(q))
2

σi(q)
2

))

(22)

(Xi(q), Yi(q)) are the coordinates of the perspective projec-

tion of the voxel i’s center vi on the camera image plane.

They are computed relatively to the camera focal length f , its

position C(q) and its orthonormal basis vectors (ei, ej, ek):

Zi(q) = (Vi − C(q)) · ek (23)

Xi(q) = f
(Vi − C(q)) · ei

Zi(q)
(24)

Yi(q) = f
(Vi − C(q)) · ej

Zi(q)
(25)

σi(q) defines the Gaussian dimension and is directly related

to the fixed size of the voxels, noted σ:

σi(q) = f
σ

Zi(q)
(26)

In order to measure the visibility of unknown voxels, we need

to distinguish them from known ones in our formulation and

occlusions must be taken into account. The first issue is simply

solved by setting a parameter Si to each voxel based on their

status. Si = −1 if the voxel is known or equal to 1 if the voxel

is unknown. The empty voxels are ignored in this algorithm.

To help deal with occlusions, a weight is defined for each voxel

depending on their distance to the robot camera. This weight

should get bigger when the voxel is closer to the camera:

Di(q) = exp

(

−σd

(

Zi(q) − Zmin

Zmax − Zmin

)2
)

(27)

The weight value depends on three values arbitrarily set: σd,

Zmin and Zmax. The σd parameter influences the discrim-

ination based on distance. Zmin and Zmax are parameters

delimiting the maximum and minimum distance between the

camera and the object’s voxels. They help influence further the

distance-based discrimination but must be coherent with the

allowed robot movement space and the relative object position.

Finally another coefficient is added to enhance the voxel

occlusions handling by using the voxel’s normal vector ni:

Ni(q) = exp

(

−0.5

(

ni · −ek − 1

σn

)2
)

(28)

The σn parameter is chosen so that angles superior to 90

degrees between ni and −ek are close to 0, e.g. 0.4.

For each pixel in the camera image, we set together these

coefficients:

Px,y(q) =

N
∑

i=0

Si Gi(q) Di(q) Ni(q) (29)

Depending on the closest visible voxel status, Px,y is then

supposed to be either negative or positive. In some cases where

one voxel with a specific status occludes many neighboring

voxels of the other status, the sign of Px,y may not reflect the

real occlusion. To minimize this problem, only voxels on the

perceived envelope of the object are considered. This also has

the advantage of speeding up the computation.

By thresholding Px,y , the pixel contribution on the total area

of unknown currently visible can be found. The continuous

threshold function used is a sigmoid defined as:

T (x) = (1 + exp (−α x))
−1

(30)

The α parameter influences the slope of the sigmoid. In our

case, a large value is required to be discriminant enough but

not too much so that discontinuities introduced by number

coding precision can be avoided. Using this function, negative

values of Px,y are set close to 0, i.e. voxels occluded by a

known one are not counted in the total area sum.

The total area is then expressed as:

Atot(q) =
W
∑

x=0

H
∑

y=0

T (Px,y(q) − ǫ) (31)

W is the image width and H its height. Due to the use of

Gaussian functions, Px,y(q) can result in small positive value

in the image parts where no voxels are projected, thus an

arbitrarily defined ǫ term is used to set such values close to 0

through the threshold function.

C. Gradient formulation

The optimization method tries to find the minimum of the

objective function by using its gradient. In our case, Atot(q)
is used with a negative sign so that the minimum values relate

to the biggest amounts of unknown area visible.

− Ȧtot(q) = −
∂

∂q

W
∑

x=0

H
∑

y=0

T (Px,y(q) − ǫ) (32)

A common multiplier to all partial derivatives can be found

by developing the equation above:

− Ȧtot(q) = −
W
∑

x=0

H
∑

y=0

e−α (Px,y(q)−ǫ)

(

1 + e−α (Px,y(q)−ǫ)
)2 α Ṗx,y(q)

(33)

Carved

default
function resultOriginal Image

σ = 0.25

σ = 2

ε=10

α=10 ε=10

σ = 10d

σ = 30d

α=10
4

10

−8

−2

Fig. 2. Influence of the C1 function’s parameters on the unknown area
visibility estimation.

By developing the derivative of Px,y(q), we obtain:

Ṗx ,y(q) = −

N
∑

i=0

Si Gi(q)Di(q)Ni(q) Ψ̇(q) (34)

with

Ψ(q) =
(x − Xi(q))

2
+ (y − Yi(q))

2

2 σi(q)
2

+
σd (Zi(q) − Zmin)

2

(Zmax − Zmin)
2 +

(ni · −ek − 1)
2

2 σ2
n

(35)

As the function depends only on the robot head position and

orientation, we can compute first the partial derivatives of the

function relatively to the robot head pose
∂Ψ(q)

∂C
,

∂Ψ(q)
∂ei

,
∂Ψ(q)

∂ej

and
∂Ψ(q)
∂ek

. The partial derivative relatively to the robot pose

can then be expressed as:

Ψ̇(q) =

(

∂Ψ(q)

∂C

∂Ψ(q)

∂ei

∂Ψ(q)

∂ej

∂Ψ(q)

∂ek

)

(

Ċ ėi ėj ėk

)T

(36)

The gradient’s continuity was verified by developing all partial

derivatives.

V. SIMULATION

A. Stability

The stability function was tested using a separate simplified

problem. A robot pose is generated taking into account the fol-

lowing constraints: collisions, joint limits, feet on the ground

and the robot camera must be looking at a specified point using

a specified view direction vector. By modifying the target

point and view direction vector, different poses were obtained

where the projection of the CoM on the floor was lying on

the segment between the feet contact point. A generated pose

is illustrated in Fig.1 where the viewing vector is aimed at

the object center and is rotated 30 degrees vertically and 15

degrees horizontally.

B. Unknown area estimation

1) Function parameters: The unknown quantification func-

tion contains various parameters that need to be set manually.

As the result of the function is a 2D image directly related to

the object image perceived by the camera, these parameters

can be tuned experimentally by judging visually the images

obtained. Fig.2 presents some samples of images computed

3916 voxels 15268 voxels 65726 voxels

200 × 200 pixels 11s 38s 142s

300 × 300 pixels 25s 86s 314s

TABLE I

COMPUTATION TIME TABLE

X

Y

Z

Sphere Carved Once
Camera

Fig. 3. Setup to test the function variations relatively to the camera movement
around a sphere. Known voxels are represented in blue and unknown ones in
green.

depending on different parameters values. On the left of the

figure are the original image, the carved image rendered using

OpenGL with known voxels in blue and unknown voxels in

green, and the result of our function using the following default

parameters: σ = 1.0, σd = 20, α = 107 and ǫ = 10−4. A small

value of σd results in occlusions by known voxels not correctly

rendered when a relatively large amount of unknown voxels is

behind. On the other hand, distant voxels may not appear with

a big σd value. Small values for α and ǫ create a background

noise, rendered in light gray in the figure, as the values of

the function Px,y(q) equal or are close to 0 resulting then in

T (x) = 0.5. Big values for ǫ make the function too restrictive.

Setting α to a high value gives a correct rendering but the

function reacts as a discrete function with higher variations of

the gradient.

2) Computation time: Our formulation depends on the size

of the camera image and the number of voxels. Practically

for an accurate result, the process involves a high number

of pixels and voxels. Some examples of computation time

to evaluate the unknown area are presented in table I for

3 objects with different number of voxels and 2 different

image size. Tests were performed with a C implementation

of the algorithm with 2 threads, on an Intel Xeon 3.2GHz

processor with 1GB of RAM under an Ubuntu OS. Some speed

optimization techniques were applied: only pixels of the image

which are close to a voxel’s center projection are considered,

and a parallel implementation of the algorithm was realized.

3) Comparison of the function results with OpenGL ren-

dering: To ensure that the function’s optima are linked to the

same camera poses as those of a traditional rendering method,

we implemented a point-based rendering with OpenGL where

voxels are displayed on the screen as points with a fixed

size. An example of test setup is illustrated in Fig.3. The

corresponding results, obtained with the default parameters for

the function, are shown in Fig.4. Though the resulting values

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

ar
ea

camera translation (meters)

function - translation X
OpenGL - translation X
function - translation Y
OpenGL - translation Y

Fig. 4. Comparison of the amount of unknown area visible depending on
camera position for our evaluation method and a basic voxel rendering method.

-205

-204.5

-204

-203.5

-203

-202.5

-202

-201.5

-201

-200.5

-200

 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
-580000

-290000

 0

 290000

ar
ea

gr
ad

ie
nt

camera translation on Y axis (meters)

function
function partial derivative Y

Fig. 5. Close-up of area and gradient depending on camera position on the
Y axis.

are not equal between the 2 methods, the overall variations

of the 2 curves match and both methods detect the optima in

the same positions. This confirms that our function gives a

consistent approximation of the unknown visible area.

4) Gradient evaluation: Though the function has an overall

evolution matching our expectations, the gradient has a higher

variability than expected. In fact, at smaller movement scale

than presented in the previous section, the function shows

abrupt variations of low amplitude. A typical example of this

problem is illustrated in Fig.5 where the conditions are the

same as in the previous section. It appears that the cause of

such variations comes from our formulation which relies on a

sampling of the data by using the result image pixels. In fact,

the values of some pixels can change drastically during small

movements of the camera around the object. Unfortunately this

affects badly the optimization process which therefore cannot

converge properly, and reflects in the computation time. Our

future work is to investigate the resolution of this problem.

Fig. 6. Pose generated using our NBV algorithm.

C. Pose generation

We tested our posture generation solution in simulation

using two virtual objects: a sphere and the soldier shown in

Fig. 2. Two main problems with our criterion (31) need to

be faced: (i) the computation time as it takes from many

seconds to few minutes to compute an area or a gradient

depending on the number of voxels to process, and (ii) the

presence of many possible local optima. When seeking a

global optimal solution, these problems lead to a processing

time, in order to generate a pose, between several minutes to

few hours. In such experiments, the optimization algorithm

could solve all constraints easily but got stuck in one of

the objective function local minima, relatively far from any

obvious better solution. Thus a complete modeling process

cannot be achieved in an acceptable amount of time using

this criterion alone. Fig. 6 gives the result of a typical pose

generated from the initial robot posture in front of the object.

The humanoid moved 102 cm from its starting position and

correctly oriented itself toward the object. As it can be noticed,

though, further movements on the side would lead to a much

higher amount of unknown visible area.

VI. CONCLUSION

A new stability constraint (17) specific to a humanoid and

a new C1 function (31) for visual unknown quantification

were introduced in this work. The stability constraint allows

us to generate statically stable postures where feet position

and orientation do not need to be specified. The introduced

function for quantification is able to compute an estimation of

the amount of unknown area visible from a specific camera

location by taking into account occlusions between known

and unknown voxels. Its result matches those of algorithmic

methods confirming its estimation accuracy, and making it a

pertinent criterion for a local search of a next best view. With

further optimizations and tuning of the formulation, we hope

this function can be of particular use coupled with a global

planning method in order to complete the modeling of an un-

known object by a humanoid. We are actually investigating on

possible refinements of the function results and the completion

of the whole autonomous modeling process.

ACKNOWLEDGMENT

This work is partially supported by grants from the

ROBOT@CWE EU CEC project, Contract No. 34002 under

the 6th Research program www.robot-at-cwe.eu.

The soldier 3D model used for tests is provided courtesy

of INRIA by the AIM@SHAPE Shape Repository shapes.

aim-at-shape.net.

The visualization of the experimental setup relied on the

AMELIF framework presented in [16].

REFERENCES

[1] F. Saidi, O. Stasse, K. Yokoi, and F. Kanehiro, “Online object search
with a humanoid robot,” in IEEE/RSJ IROS, 2007.

[2] O. Stasse, D. Larlus, B. Lagarde, A. Escande, F. Saidi, A. Kheddar,
K. Yokoi, and F. Jurie, “Towards autonomous object reconstruction
for visual search by the humanoid robot hrp-2.” in IEEE RAS/RSJ

Conference on Humanoids Robots, 2007.
[3] D. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, 2004.
[4] J. Sanchiz and R. Fisher, “A next-best-view algorithm for 3d scene

recovery with 5 degrees of freedom,” in British Machine Vision Confer-

ence, 1999.
[5] D. Lowe, “Local feature view clustering for 3d object recognition,” in

IEEE CVPR,, 2001.
[6] J. Banta, Y. Zhien, X. Wang, G. Zhang, M. Smith, and M. Abidi,

“A best-nextview algorithm for three-dimensional scene reconstruction
using range images,” in Proceedings SPIE, 1995.

[7] R. Pito, “A solution to the next best view problem for automated sur-
face acquisition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1999.
[8] K. Yamazaki, M. Tomono, T. Tsubouchi, and S. Yuta, “3-d object

modeling by a camera equipped on a mobile robot,” in IEEE ICRA

Proceedings, 2004.
[9] K. Tarabanis, P. Allen, and R. Tsai, “A survey of sensor planning in

computer vision,” in IEEE Transactions on Robotics and Automation,
1995.

[10] W. Scott, G. Roth, and J. Rivest, “View planning for automated three-
dimensional object reconstruction and inspection,” ACM Comput. Surv.,
2003.

[11] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on hrp-2,” in IEEE/RSJ

IROS, 2006.
[12] A. Escande, S. Miossec, and A. Kheddar, “Continuous gradient proxim-

ity distance for humanoids collision-free optimized postures,” in IEEE

RAS/RSJ Conference on Humanoids Robots, 2007.
[13] K. N. Kutulakos and S. M. Seitz, “A theory of shape by space carving,”

International Journal of Computer Vision, 1999.
[14] A. Hertzmann, “Introduction to 3d non-photorealistic rendering: Silhou-

ettes and outlines,” in SIGGRAPH ’99 Course Notes. Course on Non-

Photorealistic Rendering, 1999.
[15] L. Westover, “interactive volume rendering,” in Symposium on Volume

Visualization, 1989.
[16] P. Evrard, F. Keith, J.-R. Chardonnet, and A. Kheddar, “Framework

for haptic interaction with virtual avatars,” in 17th IEEE International

Symposium on Robot and Human Interactive Communication (IEEE RO-

MAN 2008), 2008.

www.robot-at-cwe.eu
shapes.aim-at-shape.net
shapes.aim-at-shape.net

	Introduction
	Problem statement
	Overview of related work
	Contribution

	Posture generation
	Stability constraint
	Mathematical formulation
	Gradient for the stability constraint

	C1 function for Unknown quantification
	Introduction
	Function to minimize
	Gradient formulation

	Simulation
	Stability
	Unknown area estimation
	Function parameters
	Computation time
	Comparison of the function results with OpenGL rendering
	Gradient evaluation

	Pose generation

	Conclusion
	References

