N. Aladenise and B. Bouchon-meunier, Acquisition de connaissances imparfaites : mise enévidence d'une fonction d'appartenance, Revue Internationale de Systémique, vol.11, issue.1, pp.109-127, 1997.

J. Alcalá-fdez, R. Alcalá, M. Gacto, and F. Herrera, Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms, Fuzzy Sets Syst, vol.160, issue.7, pp.905-921, 2009.

F. Berzal, J. Cubero, D. Sanchez, M. Vila, and J. M. Serrano, An alternative approach to discover gradual dependencies, Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.15, issue.5, pp.559-570, 2007.

J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 1981.

B. Bouchon-meunier, A. Laurent, M. Lesot, and M. Rifqi, Strengthening fuzzy gradual rules through "all the more" clauses, IEEE World Congress on Computational Intelligence -Fuzz'IEEE, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01072151

L. D. Jorio, A. Laurent, and M. Teisseire, Fast extraction of gradual association rules: A heuristic based method, Proc. of CSTST'08, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324473

L. D. Jorio, A. Laurent, and M. Teisseire, Mining frequent gradual itemsets from large databases, Proc. of IDA'09, 2009.

D. Dubois and H. Prade, Gradual inference rules in approximate reasoning, Information Sciences, vol.61, issue.1-2, pp.103-122, 1992.

A. Frank and A. Asuncion, UCI machine learning repository, 2010.

A. Fu, M. Wong, S. Sze, and W. Wong, Finding fuzzy sets for the mining of fuzzy association rules for numerical attributes, Proceedings of the first International Symposium of Intelligent Data Engeneering and Learning (IDEAL'98), pp.263-268, 1998.

B. R. Gaines, Fuzzy and probability uncertainty logics, Information and Control, vol.38, pp.297-323, 1987.

S. Galichet, D. Dubois, and H. Prade, Imprecise specification of ill-known functions using gradual rules, Int. Journal of Approximate Reasoning, vol.35, issue.3, pp.205-222, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00428677

R. Giles, The concept of grade of membership, Fuzzy Sets Syst, vol.25, issue.3, pp.297-323, 1988.

D. Goldberg, Genetic algorithms in search, optimization, and machine learning, 1989.

E. , Are grades of membership probabilities? Fuzzy Sets Syst, vol.25, pp.325-348, 1988.

J. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 1992.

E. Hüllermeier, Implication-based fuzzy association rules, Proc. of PKDD'01, pp.241-252, 2001.

E. Hüllermeier, Association rules for expressing gradual dependencies, Proc. of PKDD'02, pp.200-211, 2002.

M. Kaya and R. Alhajj, Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining, Applied Intelligence, vol.24, issue.1, pp.7-15, 2006.

A. Laurent, M. Lesot, and M. Rifqi, Graank: Exploiting rank correlations for extracting gradual dependencies, Proc. of FQAS'09, 2009.

C. Molina, J. Serrano, D. Snchez, and M. Vila, Measuring variation strength in gradual dependencies, Proceedings of the International Conference EUSFLAT'2007, pp.337-344, 2007.

P. Wang, From the fuzzy statistics to the falling random subsets, Advances in Fuzzy Sets, Possibility Theory and Applications, pp.81-96, 1983.

L. Zadeh, Fuzzy sets, Information and Control Journal, vol.8, pp.338-353, 1965.