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Abstract—Sales on the Internet have increased sig-
nificantly during the last decade, and so, it is crucial
for companies to retain customers on their web site.
Among all strategies towards this goal, providing
customers with a flexible search tool is a crucial issue.

In this paper, we propose an approach, called
TIGER, for handling such flexibility automatically.
More precisely, if the search criteria of a given query
to a relational table or a Web catalog are too restric-
tive, our approach computes a new query combining
extensions of the criteria. This new query maximizes
the quality of the answer, while being as close as
possible to the original query. Experiments show that
our approach improves the quality of queries, in the
sense explained just above.

I. INTRODUCTION

Sales on the Internet have increased significantly
during the last decade, and so, it is crucial for
companies to retain customers on their web site.
Among all strategies towards this goal, providing
customers with a flexible search tool is a crucial
issue. Additionally to provide recommendation sys-
tems ([AT05], [Bur02], [MSR04]), an important
point is to ease search when customers are browsing
a web site. To this end, the standard approach
consists in providing customers with forms in which
all search criteria are filled in.

For example, let us consider the case of a cus-
tomer looking for a car to buy. Then, once logged on
a car seller web site, several behaviors are possible.
A first option is to scan all cars on sale. Although
exhaustive, this option might not be realistic, due to
the large number of cars on sale. A second option is

focussing on the relevant cars, using criteria. Then,
it might happen that the number of cars satisfying
the criteria be so small that the user would like to
change the search criteria (the worst situation being
when no answer is given). In this case, defining less
restrictive criteria amounts to issue a new query, but
can result in the fact that the user gives up and visits
a competing web site...

In this paper, we propose an approach, called
TIGER1, for handling search criteri on flexibility
automatically. More precisely, if the search criteria
of a given query to a relational table or a Web
catalog are too restrictive, our approach computes
a new query combining extensions of the criteria,
so as to maximize the quality of the answer, while
keeping the new query as close as possible to
the original query. Experiments show that (i) our
approach can be safely embedded in a web site,
and that (ii) the quality of answers is improved.

Regarding related work, an early approach for
query relaxation can be found in [GGM92], and
in [CYC+96], the authors propose a relaxation
system called CoBase, in which relaxations must
be explicitly specified. More recently, approaches to
flexibility have been proposed, and can be classified
as automatic and interactive.

Automatic approaches ([JF03], [TC04],
[JRMG06]) are generally based on “pseudo-
relevance feedback”, and as noticed in [Rut03], the
quality of the new query is debatable because some

1TIGER means TryIng to Get Extra Responses.
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terms might be irrelevant. In interactive approaches
([Fur85], [Ani03]), the user is asked to choose
between automatically generated extensions.

The remainder of the paper is organized as fol-
lows: In Section II, we introduce an example to
illustrate our approach. Basic concepts are intro-
duced in Section III and Section IV deals with
criterion and query extension. The TIGER approach
is presented in Section V and Section VI reports on
experiments. Section VII concludes the paper.

II. A CASE STUDY

We consider a user wishing to buy a car, an
example that will be used as a running example.

We assume that all cars on sale are stored in the
table called CARS, shown in Table I and defined
over attributes Id, Type, Color, Km and Price, whose
meaning is clear from the context.

We consider the following query: Give all cars of
type Clio, of withe color, with less than 5000 km,
and whose price is below 5000 euros.

As the table CARS contains no row satisfying
these criteria, it is expected that the user will en-
hance the criteria by issuing a new but more general
query. We propose an approach for an automatic
query rewriting method that generalizes a given
query Q into a new one, as close as possible to
Q, but whose answer becomes acceptable. To do
so, we assume the following user preferences:
• The user really wants the price to be less than

5000 euros (as in the original query).
• The user prefers french cars to german cars,

and then, to any other car.
• The user prefers white cars to black or gray

cars, and then, to any other color.
• The user accepts to enhance the criteria, first

on kilometers, then on the color or on the type.
Based on this knowledge and the original query, we
look for another query taking user preferences into
account and such that:

1) The criteria that cannot be changed remain
unchanged (the price in our example).

2) For all criteria that can be changed, the
change must be as limited as possible.

3) The new query returns more tuples than the
original one.

Note: The information concerning user preferences,
as well as which criteria (attributes) can change and
which cannot will actually have to be elicited from
the user or extracted from query logs. Moreover,
when preference elicitation involves the user, a user
friendly interface is indispensable. However, this
topic lies outside the scope of the present paper.

In order to generate such a query, we define a
score function that measures the “distance” between
two queries Q and Q′.

Id Type Color Km Price
1 Clio White 6000 5000
2 Polo Gray 10000 4000
3 206 Gray 7000 5000
4 Golf Black 6000 4500
5 Ibiza Yellow 7000 4000
6 Ibiza Red 4000 5000
7 Clio Red 4000 5000
8 206 Black 6000 4500
9 Polo Black 7000 5000

10 Polo White 10000 4000
11 Ibiza Red 10000 5000
12 Golf White 7000 5000
13 206 White 6000 4500
14 Polo Gray 4000 4000
15 Clio Gray 7000 4000

TABLE I
SNAPSHOT OF TABLE CARS.

III. BASIC DEFINITIONS

Let T = (A1, . . . , An) be a relational table
defined over the attribute set {A1, . . . , An}, which
we denote by A. As usual, we assume that each
attribute Ai (i = 1, . . . , n) is associated with a
domain of values, denoted by dom(Ai).

Definition 1. A criterion c is an expression of the
form c = (A ∈ a) where A is an attribute of T and
a is a subset of dom(A). If A is a numeric attribute
then a is an interval.

The semantics in T of a criterion c = (A ∈ a),
denoted by SemT (c) or by Sem(c) when T is clear
from the context, is the set of all tuples in T that
satisfy c, that is the set: {t | (t ∈ T )∧ (t.A ∈ a)}.

We note that if c = (A ∈ a) is a criterion such
that |a| = 1, then c corresponds to a selection
condition (A = α), where α is the element of a.
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Definition 2. An attribute A of T is said to be
extensible if there exists an ordering <A over
dom(A). The set of all extensible attributes of T
is denoted by AE . A criterion c = (A ∈ a) is said
to be extensible if so is A.

An attribute A of T is said to be fix if A is
not extensible. The set of all fix attributes of T is
denoted by AF , and c = (A ∈ a) is fix if so is A.

Example 1. In the context of our running example,
assuming that attribute Price is fix entails that
the criterion c = (Price ∈ [0; 5000]) is fix as
well. Notice that, in this case, no ordering on
dom(Price) is considered during the processing.

On the other hand, attribute Km is considered
extensible, using the natural ordering over numbers.
Consequently, c = (Km ∈ [0; 5000]) is extensible.

Similarly, considering Type and Color as exten-
sible attributes requires the definitions of orderings
<Type and <Color over the corresponding domains.

Preferences given in Section II yield:
Ibiza <Type {Golf, Polo} <Type {Clio,
206}, and {Red, Y ellow} <Color {Black,
Gray} <Color White.

Definition 3. A query Q is a conjunction of the
form ECQ ∧ FCQ where ECQ is a non empty
conjunction of extensible criteria and FCQ is a
(possibly empty) conjunction of fix criteria.

Every attribute of T occurs at most once in the
criteria defining Q, and we denote by EQ the set of
all extensible attributes occurring in Q.

Every query Q is associated with its semantics in
T , denoted by SemT (Q) or Sem(Q) when T is
clear from the context, as follows: Sem(Q) is the
intersection of all Sem(c), for every c in Q.

Definition 4. Let c = (A ∈ a) be an extensible
criterion. An extension of c is a criterion c′ of the
form c′ = (A ∈ a′) where a ⊆ a′.

Let Q = ECQ ∧ FCQ be a query. An extension
of Q is a query Q′ = ECQ′ ∧ FCQ′ such that
FCQ = FCQ′ and every criterion of ECQ′ is an
extension of a criterion of ECQ.

Example 2. In the context of our running example,
the considered query is: Q = ECQ ∧ FCQ where
ECQ = (Type = Clio) ∧ (Km ∈ [0; 5000]) ∧

(Color = White) and FCQ = (Price ∈
[0; 5000]). Referring to Table I, Sem(Q) = ∅.

Moreover, (Km ∈ [0; 7000]) is an extension of
(Km ∈ [0; 5000]) and (Color ∈ {Black,White})
is an extension of (Color ∈ {White}).

Thus Q′ = ((Type = Clio)∧(Km ∈ [0; 7000])∧
(Color ∈ {Black,White}))∧FCQ is an extension
of Q, and Sem(Q′) is not empty.

We notice that if c′ is an extension of c, then
Sem(c) ⊆ Sem(c′). Thus, if Q′ is an extension
of Q, then Sem(Q) ⊆ Sem(Q′). The problem
addressed in this paper can be summarized as
follows: Given a query Q, find an extension Q′ of
Q such that: (i) the extended criteria in Q′ are as
close as possible to those in Q, and (ii) Sem(Q′)
is larger than Sem(Q).

IV. CRITERION AND QUERY EXTENSION

Every extensible attribute A is associated with a
function RankA such that, for all α, α′ in dom(A),
if α′ <A α, then RankA(α) < RankA(α

′).

Example 3. In the example of Section II, Km
is a numerical extensible attribute whose domain
is assumed to be discretized through the intervals
[0; 4000[, [4000; 6000[, [6000; 7000[, [7000; 10, 000[
and [10, 000;∞[. Table II (top) depicts the as-
sociated function RankKm. On the other hand,
the user preferences about colors are expressed on
dom(Color), according to the function RankColor
shown in Table II.

Regarding preferences on types, we assume an
ontology on car types, manufacturers and countries,
so that the function RankType shown in Table II
can be generated.

A. Rewriting Extensible Criteria

Definition 5. Given an extensible attribute A and
a value α in dom(A), we call α-extension of
α, denoted by ρA(α), the set ρA(α) = {α′ ∈
dom(A) | RankA(α) = RankA(α

′)}.
If a is a subset of dom(A), the a-extension of a,

denoted by ρA(a), is the set ρA(a) =
⋃
α∈a ρA(α).

The ρ-extension of c = (A ∈ a), denoted by ρ(c),
is defined by ρ(c) = (A ∈ ρA(a)).
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x RankKm(x)

[0; 4000[ 0
[4000; 6000[ 1
[6000; 7000[ 2

[7000; 10, 000[ 3
[10, 000;∞[ 4

x RankColor(x)

White 0
{Black,Gray} 1
{Y ellow,Red} 2

x RankType(x)

{Clio, 206} 0
{Polo,Golf} 1

Ibiza 2

TABLE II
THE FONCTIONS RankKm , RankColor AND RankType

Referring back to Example 3, ρColor(Black) =
{Black,Gray}, since RankColor(Black) =
RankColor(Gray) = 1. Thus, ρ(Color ∈
{Black}) = (Color ∈ {Black, Gray}).

Notice that the set {ρA(α) | α ∈ dom(A)} is the
partition of dom(A) induced by RankA. Thus, for
all α and α′ such that RankA(α) 6= RankA(α

′),
ρA(α)∩ρA(α′) = ∅. Moreover, Definition 5 shows
that the ρ-extension of c is an extension of c.

B. Distance between Queries

Definition 6. Let c = (A ∈ a) and c′ = (A ∈ a′)
be two criteria over A. The distance between c and
c′, denoted δ(c, c′), is defined as follows:
• If ρA(a) ∩ ρA(a′) 6= ∅ then δ(c, c′) = 0.
• Otherwise, δ(c, c′) = min{RankA(α′) −
RankA(α) |α ∈ A ∧ α′ ∈ a′ ∧ RankA(α) <
RankA(α

′)}.

Although the function δ defined above is not a
distance function (because δ(c, c′) = 0 with c 6= c′

is possible) we use the term “distance” because of
intuition. Moreover, Definition 6 implies that: (i)
for all c = (A ∈ a) and c′ = (A ∈ a′), δ(c, c′) =
δ(ρ(c), ρ(c′)), and (ii) δ(c, ρ(c)) = 0, for every
criterion c.

The function δ is extended from criteria to
queries as follows: let Q and Q′ be queries such
that ECQ and ECQ′ consist respectively of m ex-
tensible criteria c1, . . . , cm and c′1, . . . , c

′
m, defined

over the same attributes A1, . . . , Am, we have:

δ(Q,Q′) =
∑m
j=1 δ(cj , c

′
j).

Since user preferences may involve the attributes
themselves, we assume that the extensible attributes
of Q are partially ordered through a relation, de-
noted by ≺. We associate every extensible attribute
A with a positive number wA, called the weight of
A, and such that A ≺ A′ implies wA < wA′ .

Definition 7. Let Q = ECQ ∧ FCQ and Q′ =
ECQ′ ∧ FCQ be such that ECQ and ECQ′ con-
sist respectively of m extensible criteria c1, . . . , cm
and c′1, . . . , c

′
m, defined over the same attributes

A1, . . . , Am. The weighted distance between Q and
Q′, denoted by δw(Q,Q′), is defined by:

δw(Q,Q
′) =

∑m
j=1 wAj × δ(cj , c′j).

Example 4. In the context of our running ex-
ample, we recall that we consider the query Q
where ECQ = (Type ∈ {Clio}) ∧ (Color ∈
{White}) ∧ (Km ∈ [0; 5000]) and FCQ =
(Price ∈ [0; 5000]), and that Q′ = ((Type ∈
{Clio}) ∧ (Color ∈ {Black,White}) ∧ (Km ∈
[0; 7000])) ∧ FCQ is an extension of Q.

For extending Q into Q′, we consider the criteria
c1 = (Color ∈ {Black}) and c2 = (Km ∈
{7000}), for which Table II shows that ρ(c1) =
(Color ∈ {Black,Gray}) and ρ(c2) = (Km ∈
[7000; 10, 000[), and δ((Color ∈ {White}), c1) =
1 and δ((Km ∈ [0; 5000]), c2) = 2.

Therefore, denoting by Q′′ the query Q′′ =
((Type ∈ {Clio})∧ (Color ∈ {Black})∧ (Km ∈
[7000; 10, 000[))∧FCQ, δ(Q,Q′′) = 0+1+2 = 3.

As the user prefers to extend the kilometer cri-
terion over the type and the color criteria, we
have Km ≺ Type and Km ≺ Color. Assuming
wKm = 1 and wType = wColor = 3, we obtain
δw(Q,Q

′′) = 3× 0 + 3× 1 + 1× 2 = 5.

V. THE TIGER APPROACH

A. Basic Properties

Let Q be a query with extensible criteria cj =
(Aj ∈ aj) (j = 1, . . . ,m), and t a tuple in T
such that t.(EQ) = (α1, . . . αm). We denote by
Q(t) the query obtained from Q by replacing every
extensible criterion cj of ECQ by (Aj ∈ ρAj (αj)).
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Moreover, we associate t with the tuple δQ(t) =
(δt1, . . . , δ

t
m) such that, for every j = 1, . . . ,m,

δtj = δ(cj , (Aj ∈ ρAj (αj))), and we denote by
δQ(T ) the set {δQ(t) | t ∈ T }. For every ν in
δQ(T ), we denote by τQ(ν) the number of tuples t
in T such that δQ(t) = ν.

We notice that if t and t′ are tuples in T such that
δQ(t) = δQ(t

′) = ν, then Q(t) = Q(t′). Therefore,
we denote this query by Q(ν).

Example 5. In the context of our running example,
consider again the query Q such that FCQ =
(Price ∈ [0; 5000]) and ECQ = (Type ∈
{Clio})∧(Color ∈ {White})∧(Km ∈ [0; 5000]).

Let t3 be the tuple of T with identifier 3 in Table
I. As ρType(Clio) = {Clio, 206}, ρColor(Gray) =
{Gray,Black} and ρKm(7000) = [7000; 10, 000[,
we have Q(t3) = (Price ∈ [0; 5000]) ∧ (Type ∈
{Clio, 206})∧(Color ∈ {Gray,Black})∧(Km ∈
[7000; 10, 000[).

Moreover, it can be seen from Table II that
δQ(t3) = (0, 1, 2), and that the last tuple of T
in Table I, which we call t15, is also such that
δQ(t15) = (0, 1, 2). In fact, it can be checked that
τQ(0, 1, 2) = 2, since t3 and t15 are the only tuples
of T corresponding to (0, 1, 2).

Based on the notation just introduced, we have
the following proposition.

Proposition 1. Let Q be a query with extensible
criteria cj = (Aj ∈ aj) for j = 1, . . . ,m.

1) If ν and ν′ are distinct tuples in δQ(T ), then:
Sem(Q(ν)) ∩ Sem(Q(ν′)) = ∅.

2) For every ν in δQ(T ), |Sem(Q(ν))| =
τQ(ν).

Now, given a positive integer m, we consider the
following ordering ≤m over tuples in the cartesian
product Nm: for all (n1, . . . , nm) and (n′1, . . . , n

′
m)

in Nm, (n1, . . . , nm) ≤m (n′1, . . . , n
′
m) if for every

j = 1, . . . ,m, nj ≤ n′j .
Given a tuple ν in δQ(T ), we denote by I(ν) the

set I(ν) = {ν′ ∈ δQ(T ) | ν′ ≤m ν}.
Denoting for every j = 1, . . . ,m by ρj(νj) the

ρ-extension of any αj such that RankAj (αj) = νj ,
the ν-extension of Q is defined as follows.

Definition 8. Given a query Q such that ECQ =
((A1 ∈ a1) ∧ . . . ∧ (Am ∈ am)) and a tuple ν in
δQ(T ), the ν-extension of Q, denoted by Q(ν), is
the query Q(ν) = ECQ(t) ∧ FCQ(t) such that
• FCQ(ν) = FCQ, and
• ECQ(ν) is the conjunction of the criteria cj =

(Aj ∈ aj) where, for every j = 1, . . . ,m,
aj = ρj(aj) ∪

(⋃
ν′∈I(ν) ρj(ν

′
j)
)

.

As for every j = 1, . . . ,m, aj ⊆ ρj(aj) ⊆ aj ,
by Definition 4, Q(ν) is an extension of Q.

Example 6. In the context of our running example,
referring back to the query Q of Example 5, the
first three columns of Table III show the content
of δQ(T ), and the fourth column contains the
corresponding values of τQ(ν). For example, the
seventh row means that T contains two tuples t
and t′ such that δQ(t) = δQ(t

′) = (0, 1, 2) (the
last column of Table III will be explained later). In
fact, t and t′ are the tuples called t3 and t15 in
Example 5. Consequently, Proposition 1(2) implies
that |Sem(Q(0, 1, 2)| = 2.

For ν = (0, 1, 2), Table III shows that I(ν) =
{ν1, ν2, ν}, where ν1 = (0, 0, 1) and ν2 =
(0, 1, 1). Thus, by Proposition 1(2), |Sem(Q(ν)| =
|Sem(Q(ν1))| = 2 and |Sem(Q(ν2))| = 1.

Moreover, Q(ν) = (Price ∈ [0; 5000]) ∧
(Type ∈ {Clio, 206})∧ (Color ∈ {White, Gray,
Black}) ∧ (Km ∈ [0; 10, 000[).

δType δColor δKm τQ(ν) Score

0 0 1 2 1
1 1 0 1 0,5
0 2 0 1 0,5
0 1 1 1 1,5
1 0 2 1 1
1 1 1 1 2

3

0 1 2 2 10
3

1 1 2 1 5
2

2 2 0 1 0,5
1 0 3 1 3

4

1 1 3 1 11
5

2 2 2 1 13
6

2 2 3 1 15
7

TABLE III
THE TABLE δQ(T ) AND THE ASSOCIATED SCORES

The following proposition shows how to compute

ha
l-0

06
12

81
3,

 v
er

si
on

 1
 - 

1 
Au

g 
20

11



the cardinality of the semantics of ν-extensions.

Proposition 2. Using the notation previously intro-
duced, for every ν in δQ(T ), we have

|Sem(Q(ν))| =
∑
ν′∈I(ν) τQ(ν

′).

Referring back to Example 6 and applying Propo-
sition 2, we have |Sem(Q(ν))| = |Sem(Q(ν))| +
|Sem(Q(ν1))|+ |Sem(Q(ν2))| = 5.

B. The Score Function

Given a query Q = ECQ ∧ FCQ and assuming
that the preferences over the extensible attributes in
EQ are known, our approach works as follows:

1) Discard from T all tuples that do not sat-
isfy the fix criteria in FCQ; let TFCQ be
the resulting table. If TFCQ = ∅ then stop,
otherwise, proceed to the next three steps.

2) Compute the tuples in δQ(TFCQ) along with
the corresponding numbers τQ(ν).

3) Find the “best” ν-extensions of Q, for all ν
in δQ(TFCQ).

4) In case more than one query is returned by
the previous step, choose the ν-extensions
of Q having the least weighted distance to
Q. Although no further criterion is set if
several queries satisfy this last requirement,
we assume that only one query is returned.

The ν-extension computed according the steps
above is called the best ν-extension of Q and is
denoted by Qbest.

Regarding Step 3, we recall that the “best” ν-
extension of Q must improve the quality of the
answer to Q, i.e., have a semantics significantly
greater than that of Q, while being as “close” as
possible to Q. In order to combine these two re-
quirements, we define the following score function.

Definition 9. Let Q be a query. For every ν
in δQ(TFCQ), the score of the ν-extension of Q,
Q(ν), denoted by ScoreQ(ν), is defined by: If
δ(Q,Q(ν)) = 0 then ScoreQ(ν) =∞, otherwise

ScoreQ(ν) =
|Sem(Q(ν))|

δ(Q,Q(ν))/|Sem(Q(ν))| .

Clearly, in Definition 9, ScoreQ(ν) is not defined
when |Sem(Q(ν))| = 0. This happens if TFCQ is
empty, in which case any extension of Q has also an

empty semantics. However, assuming that TFCQ 6=
∅ implies that |Sem(Q(ν))| 6= 0.

On the other hand, if δ(Q,Q(ν)) = 0 then ν =
(0, . . . , 0). Thus, by definition of Q(ν), all extended
criteria of Q(ν) are the ρ-extensions of those of Q.
Therefore, in this case, Q(ν) is the least ν-extension
of Q that we can get, and this explains why the
score is set to ∞. Notice that if ScoreQ(ν) = ∞
then Qbest = Q(ν).

It is important to note that the score function
of Definition 9 fits our requirements because the
more tuples returned by Q(ν) and the closer to
Q is Q(ν), the higher the score. Moreover, by
dividing by δ(Q,Q(ν))/|Sem(Q(ν))|, instead of
simply δ(Q,Q(ν)), allows to take explicitly into
account the number of tuples satisfied by the criteria
defining the considered ν-extension.

Regarding computational aspects, using the def-
inition of δ, Proposition 1 and Proposition 2,
ScoreQ(ν) can be written as

ScoreQ(ν) =
∑
ν′∈I(ν) τQ(ν′)

(
∑m
j=1 νi)/τQ(ν)

.

Consequently, assuming that δQ(TFCQ) along with
the corresponding τQ(ν) have been computed, de-
termining the scores of all ν-extensions of Q does
not require any access to the table T .

Example 7. In the context of our running example,
all scores of all ν-extensions of Q are shown in
the last column of Table III. It can be seen that the
seventh row of this table has the highest score.

This score is computed as follows: since ν =
(0, 1, 2), we have |Sem(Q(ν))| = 3 and we have
seen that |Sem(Q(ν))| = 5. Since Table III shows
that τQ(ν) = 2, we have ScoreQ(ν) = 5

3/2 = 10
3 .

As seen in Example 6, Q(ν) = (Price ∈
[0; 5000]) ∧ (Type ∈ {Clio, 206}) ∧ (Color ∈
{White,Gray,Black}) ∧ (Km ∈ [0; 10, 000[).

Since Q(ν) is the only ν-extension having the
highest score 10

3 , this query is the query Qbest
proposed to the user, and it is easy to see that its
semantics is not empty, contrary to Q.

VI. IMPLEMENTATION AND EXPERIMENTS

Our approach has been implemented in JAVA 1.6
on a MacBook computer equipped with a 2.4 GHz
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Intel Core 2 Duo processor and 2 Go RAM.
The experiments reported in this section have

been run on synthetic data sets whose characteristics
are stated as EeRrTtk, meaning that the data set
consists of t × 103 tuples, and that the query
contains e extensible attributes, for which the Rank
functions have r values. Two distinct types of data
sets have been generated:
• Randomly and uniformly generated data, to

assess our approach against uncorrelated data.
• Biased generated data sets, to assess our ap-

proach in more realistic situations where most
data values are close to each other.

In the latter case, data sets are generated so as, if
(A ∈ a) is an extensible criterion, 80% of values
α over A are such that 0 ≤ δ((A ∈ ρA(α)), (A ∈
a)) ≤ M/3, where M is the maximum value of
RankA. For example, for E10R20T10k, 80% of the
generated A-values α are such that 0 ≤ δ((A ∈
ρA(α)), (A ∈ a)) ≤ 6.

The following three parameters have been first
considered in our experiments: the number of ex-
tensible attributes, the number of possible values
of the Rank functions and the number of tuples
satisfying the fix criteria. Figure 1 shows separately
the impacts on runtime of these parameters. We first
notice that the fact that the data are biased or not
does not significantly change runtime.

Regarding the impacts of the number of extensi-
ble attributes and of the number of possible Rank
values, Figures 1 (a) and (b) show that the best
extension Qbest is computed in about 4 seconds,
which is an acceptable runtime, considering that the
table TFCQ contains 10, 000 tuples.

On the other hand, Figure 1 (c) clearly shows that
the number of tuples in TFCQ has a significant im-
pact on runtime. This is due to the fact that when the
number of tuples in TFCQ increases, then so does
the number of tuples in δ(TFCQ). Consequently, the
number of queries Q(ν) to be processed for the
computation of Qbest also increases accordingly.
We note that, for 50, 000 tuples in TFCQ , the
runtime is below 12 seconds, an acceptable increase
in runtime, considering that we have 10 extensible
attributes with 20 possible Rank values.

Then, the quality of the obtained ν-extensions

(a) Number of attributes

(b) Number of extensions

(c) Number of tuples

Fig. 1. Quantitative experiment results

has been assessed according to the number of ex-
tensible attributes and the number of Rank values.
Moreover, according to Definition 9, |Sem(Qbest)|
and δ(Q,Qbest) are the values that have to be
considered in this respect. Whereas the distance
between Q and Qbest is easy to assess, measuring
the quality of the computed ν-extension Qbest in
terms of the additional returned tuples is not trivial.

A first way could be computing the gain in tuples
of Sem(Qbest) with respect to Sem(Q). However,
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e Gain δ(Q,Qbest) δ(Q,Qmax)
3 68 1 25
5 71 10 75
10 53 19 190
15 21 50 285
20 26 61 380

r Gain δ(Q,Qbest) δ(Q,Qmax)
3 63 1 20
5 65 1 40

10 50 12 90
20 23 70 190
40 19 90 390

TABLE IV
QUALITATIVE EXPERIMENT RESULTS

this gain is not relevant because, if Sem(Q) = ∅,
it is equal to 100% for any extension of Q.

We rather measure quality improvement in terms
of the difference between |Sem(Qbest)| and the
semantics of the maximal ν-extension that can be
considered, based on the content of δQ(TFCQ).
Intuitively, denoting by Qmax this particular ν-
extension of Q, Sem(Qmax) is the largest set of
tuples that can be obtained from T by extending
the criteria in Q, based on the user preferences.

Thus, we call gain of Qbest, denoted by
Gain(Qbest) the number |Sem(Qbest)|×100

|Sem(Qmax)|
.

We point out that, although providing the user
with the query Qmax is computationally easier than
computing Qbest, this solution is not satisfactory,
due to the large size of the semantics of Qmax.
Taking into account the distance between queries in
the score function avoids to consider such queries.

The experiments were conducted with biased data
sets EeRrT10k, where e, respectively r, ranges
from 3 to 20, respectively from 3 to 40.

The results of these experiments, displayed in
Table IV, show that for e and r less than or equal
to 10, the gain is above 50%, while for larger
values, the gain decreases significantly, but still, is
not below 20% (except for r = 40, in which case
the maximal distance is about 400).

It is important to note from Table IV that all
distances δ(Q,Qbest) are much less than the dis-
tances δ(Q,Qmax), showing that Qbest is close to
the original query Q, as compared with Qmax.

VII. CONCLUSION

In this paper, we have presented an approach for
handling extensible criteria in order to enhance the
answer to a given query. Criterion extension makes
use of user preferences, seen as partial orderings
over attribute domains, in order to compute the
“best” extension.

Based on this work, we are investigating the
following issues: (i) testing our approach against
real data, (ii) considering a static knowledge base
such as WordNet [F+98] to improve the quality of
the extended query, (iii) investigating the coupling
of our approach with recommendation systems, and
(iv) considering fuzzy criteria.
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