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Abstract. We propose a new method for thermal rendering in telep-
resence systems which allows an operator to feel most transparently the
thermal behavior of the remote object. It is based on learning and ther-
mal heat flux generation. Two databases are constructed from real mea-
surements recorded during direct contact between operator’s finger and
different materials. One database is used in order to identify the material
in the slave side, the other database is used to generate desired heat flux
for the thermal display loop. The identification bloc is based on Principal
Component Analysis and Neural Network. Experimental results validat-
ing the proposed method are discussed.

Keywords: Thermal display, Heat flux control, Learning, Telepresence.

1 Introduction

There has been several work in thermal sensing and rendering, see e.g. [6][2][7][3]
[1][4][5]. In this paper, we address thermal rendering in real telepresence. To over-
come the lack of having a remote sensing system with exact replication of the
human fingertip, we propose a new approach that shall improve thermal sensa-
tion and produce more realistic thermal feedback when a finger touches a remote
object. For a given thermal sensing technology, when the contact occurs in the
remote part, the material is identified first based on our method, then adequate
heat flux is generated to be used as desired flux for the thermal display in the
operator side. To realize material identification, we proceed to experimental ob-
servations of the heat exchange which occurs when a fingertip touches several
objects having different thermal parameters; these objects are used as standard
samples. These observations are used to build a database by recording the heat
flux and temperature evolution for each material. Another database results from
the observation of contact between the material samples and the slave device.

The observation database is used to train a classifier. When the material is
identified in the telepresence site, an identifier built-in controller provide ade-
quate desired signals for both the sensor and the display. An additional sensor
is also used in order to detect binary contact states and the force applied by the
operator.
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Fig. 1. Master/slave thermal teleoperator: the left part is the display and the right
part, identical to the left system, is used as a thermal sensor

2 Experimental Setup

Figure 1 shows our experimental setup of the master/slave thermal teleoperator.
Each part consists of a contact pad using a Peltier heat pump of dimension
15×15mm with a thickness of 400μm from MELCOR Corporation. A heat flux
sensor with an integrated thermocouple type T from Captec is assembled at
the contact interface with the Peltier pump to measure simultaneously both the
temperature and the heat flux, the sensor sensibility is about 1.26μV/(W/m2).
The underside of the Peltier pump is placed on a dissipater in order to keep its
temperature constant. A silicone grease is used to decrease the contact resistance
at the contact surface of the Peltier pump with the temperature/heat flux sensor.
In the master side, a force sensor is introduced in order to detect the contact
and measure the force applied by the operator finger. In the slave side a pressure
sensor is also incorporated in order to detect eventually contact between the slave
pad and objects. A radiation thermometer is used for measuring the temperature
of the room, the object and the operator finger before contact. Supervision and
control are performed by means of a dSPACE DS1103 setup. Data are sampled
at a frequency of 100Hz.

3 Material Identification and Heat Flux Generation

Two databases are constructed: the first is used to train and to validate the
material identification bloc. The second allows the generation of the adequate
signal to be tracked at contact. Seven different materials are selected. These
materials are characterized by different thermal properties and equal volume. For
constructing a database for thermal interaction, we proceeded to make ten tests
with each material. At first, the room temperature is measured using infrared
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thermometer, which gives us the initial temperature of the material. Then, the
Peltier device is heated until the temperature be as 10◦C greater than that of
the samples taken as reference (figures 2)(Which corresponds to the average of
the initial gap between the temperature of the finger and that of the samples).
For each experiment, heat flux signal is recorded and filtered beginning from the
first instance of contact between the pad and the material.

3.1 PCA Algorithm

Principal Component Analysis is used in order to reduce the data dimension and
extract useful information. First, the average signal is computed as:

xm(t) =
1
N

N∑

i=1

xi(t) t = 0, . . . , M (1)

where xi is the recorded data for a sample i, N the size (cardinality) of the learn-
ing set and M the length of the sampled data. Then, the average is subtracted
from the original data, i.e. yi(t) = xi(t) − xm(t) and the data is prearranged in
a matrix format:

Y(M+1)×N (t) = [y1(t), . . . , yi(t), . . . , yN (t)] ; t = 0, . . . , M (2)

Let A = 1√
N

Y T , we get the new orthogonal base as follow:

φi =
1√
λi

AνT
i (3)

where, λi is the eigenvalue i, and νi is the corresponding eigenvector of the
covariance matrix C = AAT . For each measurement, the projection of Y on the
base Φ, gives ui = yT

i Φ, ui is then the new representation of the sample i.

3.2 FNN Algorithm

Feedforward Neural Network (FNN) with one hidden layer is used. The number
of neurons in the input layer is chosen to be the dimension of the input vec-
tor, and the number of neurons of the output layer is equal to the number of
classes (seven). Sigmoid activation functions are used. The following criterion
determines the size of the error to be back propagated. The mean squared error
criterion is used:

E =
1
2

1
N

N∑

k=1

No∑

p=1

[dp
k − zp

k]2 (4)

where dp
k is the desired output for unit k when pattern p is clamped, zp

k the
actual output and No the number of output. The objective during training is
to minimize this error by choosing the appropriate weights. In this paper we
use the well-known Levenberg-Marquardt rule: Hij = ∂2E

∂ωij∂ωjk
, where H is the

Hessien matrix. The new weight value is determined by the learning algorithm:
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Fig. 2. Left: Thermal heat flux exchanged during real contact between finger and ma-
terials, Right:Temperature evolution during real contact between finger and materials.

ωt+1 = ωt − (H + λI)−1
ΛT err(ωt) (5)

where Λi = ∂xk

∂ωi
and err(ωt) is the error on the previous weights.

Experiments were performed with five persons. Before each experiment, the
temperatures of the index finger of the subject and the material are measured.
Subjects were instructed to keep their index finger on the support and to apply
a force of ≈ 10N of course we instruct the user not to focus on this issue; we
wanted to get a similar contact surface in most cases. The exchanged heat flux
is recorded during 60 seconds, a sample profile is presented in figure 2. The dif-
ference between the heat flux profiles and the temperature profiles is apparent.
In order to get normalized data, we divide each measurement by the initial tem-
perature gap between the operator finger and the material that is to be touched.
According to the length of the presented data, the performance of the identifi-
cation bloc is affected. For a 1sec sequence length, and seven classes, we have
a confusion in one hand, between aluminum and steel and in the other hand,
between graphite and rubber. This is probably due to their close thermal prop-
erties. By gathering the confused materials in two classes, the result is improved
though for sequences of 0.75sec (100% of good identification). But if we decrease
more the sequences length, the performance will be degraded, (table 1).

For the second database, for each material, the average data was computed
and used to train a feed-forward neural networks bloc responsible of the gener-
ation of desired flux for to be displayed to the user. We used one neural net-
work with linear output for each material and the same algorithm presented
previously.

4 Experiments

During all the experiments, a PID controller is used in the heat flux control
loop. Contact is established at the same time both in the master and the slave
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Table 1. Validation results with five classes (columns)(⊕ classification with 0.25sec
sequence length, ⊗ classification with 0.5sec sequence length)

Aluminium-Steel Marbre Plexiglass Graphite-Rubber Wood

Aluminium ⊕⊕⊕⊕⊕
⊗⊗⊗⊗⊗

Marble ⊕⊕ ⊕⊕⊕
⊗ ⊗⊗⊗⊗

Plexiglass ⊕⊕⊕ ⊕ ⊕
⊗⊗⊗⊗⊗

Graphite ⊕⊕⊕⊕ ⊕
⊗⊗⊗⊗⊗

Rubber ⊕ ⊕⊕⊕⊕
⊗⊗⊗⊗⊗

Wood ⊕⊕⊕⊕⊕
⊗⊗⊗⊗⊗

Steel ⊕⊕⊕⊕⊕
⊗⊗⊗⊗⊗
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Fig. 3. Left: Exchanged heat flux, Right: Temperature evolution during contact in the
master side

side. The resulting desired flux is sent to the master and the slave heat flux
control loops. During the first instant of contact, the heat flux exchanged is
due to the contact between the operator finger and the master pad. So that
(figure 3), the first thermal exchange is driven by intrinsic properties of the
master pad because of the latency required for material identification. Although
no temperature control is performed, the temperature profiles are very similar
to those recorded during direct contact. This scenario is similar to a situation
where a non-wearable haptic device is used for teleoperation. In all cases, the
heat flux is reproduced accurately. The temperature profiles are similar to those
recorded during direct contact. This result shows that we have an interaction
very similar to that observed during direct contact.
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5 Conclusion

To reproduce realistic thermal sensations, we propose a new approach based on
a learning technique using real measurements of thermal heat flux exchanged
during contact between operator finger and several materials. The candidates’
materials are chosen so that they have dissimilar thermal properties. The iden-
tification of the material allows the generation of the adequate desired heat flux.
The percentage of good classification depends on the length of the temporal
sequence used for learning and/or for validation and the performance of the
rendering depends on the instant and the type of contact. To validate this ap-
proach, an experimental setup is realized and a set of experiment is performed.
The obtained results are encouraging and allow the improvement of the ther-
mal rendering in the future work in order to get more realistic sensations when
exploring or manipulating remote objects via haptic interfaces.
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