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Abstract— This paper intends to describe the current status
of our group in trying to make a humanoid robot autonomously
build an internal representation of an object, and later on to
find it in an unknown environment. This problem is named
“treasure hunting”. In both cases, the main difficulty is to
be able to find the next best position of the vision sensor in
order to realize the behavior while taking care of the robots
limitation. We briefly describe the models and the processes
we are currently investigating in building this overall behavior.
Along the description we stress the current key problems faced
while trying to solve this problem.

I. INTRODUCTION

A. Context of the work

The works presented in this paper are parts of an on-

going project called ’treasure hunting’, where the robot

should retrieve autonomously an object in an unknown

environment [1] based on a model that it autonomously

build and stored [2] during a previous phase. This work

takes its foundation upon a previous work [3] where some

parts not described here (i.e. the software structure and the

motion generation) were detailed more specifically. In this

paper, we describe more specifically the two problems of

object visual model construction and visual search. In the

first case, a new optimization problem and its resolution are

introduced. This allows to find a pose for a HRP-2 humanoid

robot which maximize the unknown surface perceived with

the robot’s stereoscopic while coping with all the humanoid

robot constraints. In the second case, we investiguate the

problem related to visual recognition and research strategies

when dealing with the images taken in the first phase.

II. OBJECT VISUAL MODEL BUILDING

A. Overview of related work

Many existing works focus on the environment exploration

[4] or object recognition problems [5]. The modeling part

usually relies on a supervised method where different views

of an object are taken manually by a human and served as

an input to the algorithm. A number of works are dedicated

to planning of sensor positions in order to create a 3D

model of an unknown object, see for example [6], [7] or [8].

Hypothesis and limits of such works are detailed in these two

surveys: [9] and [10]. The most usual assumptions are that

the depth range image is dense and accurate by using laser

scanners or structured lighting, and that the camera position

and orientation is correctly set and measured relatively to

the object position and orientation. The object to analyze

is also considered to be inside a sphere or on a turntable,

i.e the sensor positioning space complexity to evaluate is

reduced since its distance from the object center is fixed and

its orientation is set toward the object center. The main aim

is to get an accurate 3D reconstruction of an object, using

voxels or polygons, while reducing the number of viewpoints

required.

B. Contribution

Though our modeling process also requires a Next-Best-

View (NBV) solution, it appears that working hypothesis

are quite specific for a humanoid robot. Our approach looks

similar to the works of [11], or [6], as we also rely on an

occupancy grid and a space carving method, but it still differs

in few important ways:

1) the limits of the sensor pose are constrained due to

it being embedded in a humanoid robot. Constraints

such as self-collisions, collisions with the environment,

joint limits, feet on the floor, and stability must be

taken into account. We also need another constraint

that keeps some landmarks visible from the cameras

so as to correct positionning errors.

2) the sensor possible positions are not constrained to

some precomputed discrete positions on a sphere sur-

face, and its viewing direction is not forced toward a

sphere center

3) an accurate 3D model of the object is not required.

Our goal is to get a set of SIFT around the object to

allow its effective detection and recognition.

In [2], the object modeling was performed by generating

postures with the robot head pose set as a constraint given by

a human supervisor. In [12], a first attempt to complete this

work by using visual cues to guide the modeling process

automatically was proposed by using a formulation which

can be directly integrated into the posture generator proposed

in [2]

III. TWO STEPS NBV APPROACH

Traditional works in the NBV field reduce the problem

dimensionality and sample the configuration space in order

to retrieve a solution in an acceptable amount of time without

relying on the gradient.

In order to avoid previous problems encountered while

taking into account the constraints related to the use of a



humanoid, a novel solution to our Next-Best-View problem

is introduced by decomposing it in two: first, find a cam-

era position and orientation that maximizes the amount of

unknown visible while solving specific constraints related

to the robot head, then generate a posture for the robot

using the PG. We propose to solve the first step by using

NEWUOA [13], a method that can find a function minimum

by refining a quadratic approximation of the function through

a deterministic iterative sampling, and which can be used

for non-derivable functions. The sampling positions at each

step in the iteration process are selected according to the

previous sampling results and the state of the actual quadratic

approximation. Moreover they are limited to vectors inside

a trust region, which is defined relatively to two radius

parameters: ρbeg and ρend, and a given starting vector, which

will be the camera pose in our case. NEWUOA has the

advantages of being fast and robust to noise while allowing

us to keep the 6 degrees of freedom of the camera.

A. Evaluation of the camera pose

In this approach, the estimation of unknown data visi-

ble from a specific viewpoint can be computed by taking

advantage of hardware acceleration, as a gradient is not

required. Moreover oscillations of small amplitude have only

a negligeable influence on the convergence of NEWUOA.

An OpenGL rendering of the occupancy grid was thus

implemented by displaying voxels as cubes whose color

corresponds to one of the two possible states: “known”

and “unknown”. The amount of unknown visible, noted

Nup, is then equal to the number of pixels of the color

related to “unknown” state present in the framebuffer. For

such purpose, voxels’ normals and lighting functionalities

of OpenGL are not used, which allows to speed up the

computation. Further optimization can be achieved by storing

voxels data in the graphic card memory.

B. Constraints on the camera pose

Though NEWUOA is supposed to be used for uncon-

strained optimization, some constraints on the camera pose

need to be solved in order to be able to generate a posture

with the PG from the resulting desired camera pose. The

constraints on the camera position C and orientation Θc

included in the evaluation function of the first step given to

NEWUOA are:


























Czmin < Cz < Czmax (1)

dmin < d(C,ogcenter) (2)

Θcxmin < Θcx < Θcxmax (3)

Θcymin < Θcy < Θcymax (4)

Nl > Nlmin (5)

(1) limits the range of the camera height to what is accessible

by the humanoid size and joints configuration. (2) imposes

a minimum distance dmin between the robot camera and

the center of the occupancy grid. This corresponds to a

requirement in order to generate the disparity map with the

two cameras embedded in the robot head. (3) and (4) restricts

the rotations on X and Y axises to ranges manually set

according to the robot particularities. Finally (5) constraint

keeps a minimum number of landmarks, i.e. features that

were detected in previous views, visible from the resulting

viewpoint. By matching them with features detected within

the new viewpoint, it is possible to correct the odometry

errors due to the movement of the humanoid and thus the

position and orientation of the features detected all around

the object, relatively to each other, can also be corrected.

The landmark visibility constraint is currently imple-

mented by assigning a unique color to each landmark and

setting all corresponding voxels to the appropriate color. If

there is a sufficient amount of pixels with a specific landmark

color, then the landmark can be considered as visible.

C. Evaluation function formulation

In order to include the constraints into the function that

NEWUOA evaluates, we formulate the interval constraints

(1), (3) and (4), as:

K v = (α v − µ)
p

(6)

where parameters α and µ are manually set to modulate,

respectively, the interval center and width depending on the

parameter v to constrain. v can correspond to the parameter

Cz , Θcx, or Θcy . p can be set to a large value so that the

result is close to 0 inside the interval and increases quickly

outside of it.

Following the same principle, the inequality constraint (2)

related to the minimum distance beween the camera and the

object is formulated as:

Kd = expr (γ (dmin − d(C,ogcenter))) (7)

where γ and r parameters are set manually.

For the landmark visibility constraint, the formulation

depends on two cases. When Nl is greater or equal to Nlmin,

configurations maximizing Nl are slightly encouraged :

Kl = β (Nlmin − Nl) (8)

The β parameter influences how important is the maximiza-

tion of Nl in the optimization process. Its value should be

low enough so that the maximization of Nup stays the main

priority of the algorithm.

In the other case, configurations where Nl is less than

Nlmin are greatly penalized:

Kl = exp (δ (Nlmin − Nl)) + δ d (C,Cp) (9)

The penality is expressed through the δ value and gets larger

when the camera moves away from previously validated

position by using d (C,Cp), the distance between the actual

camera position, C, and the closest of the previous camera

positions where landmarks have been detected, Cp.

The evaluation function used as input to the NEWUOA

algorithm is then:

fe = λzKCz
+λxKΘcx

+λyKΘcy
+λdKd +λlKl−λnNup

(10)

The λ parameters are fixed manually to modify the balance

between the constraints. As Nup depends on the image

size, the value of the parameters used in the constraints

formulation should be modulated accordingly.



Fig. 1. (right) Best constrained visibility of unknown obtained depending
on fixed camera XY positions around a carved object (left). Clearer color
mean better results.

D. NEWUOA configuration

NEWUOA seeks the minimum of fe by approximating it

with a quadratic model, inside a trust region. Thus an initial

configuration is provided to the software which limits the

sampling to a subspace according to a range given by the

user. Due to the constraints used, many different cases can

result in local minimums in our evaluation function that are

quite disjoint as can be seen in the example shown in Fig. 1.

This figure shows the best results for fe obtained for a soldier

statue carved once and using different sampled values of

Cx and Cy . Darker points means worse evaluations. Known

voxels are represented as blue on the displayed object, and

unknown voxels in green. We can observe discontinuities

in the evaluation results due principally to the distance to

the object constraint, e.g the black zone in the center of the

image, and the landmark visibility constraint, e.g the black

zones on the right and on the top-left corner. In such cases,

the quadratic model cannot be pertinent if the trust region is

too big.

In our actual implementation, the optimization process is

biased by setting the starting pose of the camera to a pose

deduced from previous ones, and by limiting the trust region

size. When an optimum is found, NEWUOA is run again by

using the result configuration as a new starting pose. This is

done until a chosen maximum number of iterations has been

reached, or until the result pose is not better than the starting

one. Another way to improve the results is to choose a set

of possible starting poses around the object and launching

the optimization process for each of them. Results of all

optimizations are then compared to select the best camera

pose.

E. Second step: Posture Generator

Once an optimal camera pose has been found, the result

is used as a constraint on the humanoid robot head in order

to generate a whole-body posture that takes into account all

other constraints such as stability, collisions, etc.

The head posture is fixed by setting the embedded left

camera, with position hp and coordinate sytem vectors

(hi,hj ,hk), to the desired pose, with position C and co-

ordinate sytem vectors (Ci,Cj ,Ck), using:


























































((C + Ci) − hp) .Cj = 0 (11)

((C + Ci) − hp) .Ck = 0 (12)

hk.Cj = 0 (13)

hk.Ck ≥ 0 (14)

hi.Cj = 0 (15)

hi.Ck = 0 (16)

hi.Ci ≥ 0 (17)

d (C,hp) ≤ ǫd (18)

For this algorithm, the objective function for the PG is not

necessary. Nevertheless we use it as an esthetic criterion to

place the robot posture close to a reference posture where

joints are set to one quarter of their possible range from

their minimum limit. The associated non-linear optimization

problem to is solved using FSQP as described in more detail

in [2].

The starting robot pose is set using a pre-computed posture

and a position deduced from the desired camera pose. In

cases where the PG cannot converge, it can be launched again

with a different pre-computed starting posture, or a different

starting position.

IV. SIMULATIONS

We tested the influence of the trust region parameters on

the optimal found with NEWUOA. The parameter ρbeg sets

the maximum variation that can be taken by the camera pose

parameters, and the parameter ρend sets the accuracy of the

optimum search. Tests were conducted by selecting a camera

pose and by launching the optimization process with different

values for ρbeg and ρend. This was repeated several times

with different poses in order to check if some specific values

result in a convergence of NEWUOA toward a better pose

in most cases.

During our tests, it generally took NEWUOA between 1

and 3 seconds to find a minimum with an average computer.

This is quick enough to select and test different starting poses

in order to find a good Next-Best-View.

A. Modeling process simulation

We implemented the first step of our algorithm using a

C version of the original FORTRAN code published by

Powell [13]. The experimental setting is simulated by having

a virtual 3D object perceived by a virtual camera. The

modeling process loop the following steps:

1) The disparity map is constructed using the object 3D

informations and is used to perform a space carving

operation on the occupancy grid. Some known voxels

are randomly selected to be considered as landmarks.

2) The NEWUOA routine is then called in order to find

an optimal camera pose by minimizing our evaluation

function. In our current implementation, the starting

camera pose for NEWUOA is selected by rotating the

previous camera orientation 90 degrees on the Z axis



Fig. 2. Postures generated successively for the modeling of an unknown
object

and by positioning the camera at the same distance

from the object than the previous pose while the new

view vector is pointing at the occupancy grid center.

Other starting poses are generated by using a fixed

sampling of 3D positions centered on the computed

one. The view vectors are set toward the occupancy

grid center for each starting pose.

3) When an optimal camera pose is found, it is sent to

the PG in order to generate a whole-body posture.

Then we loop through all previously described steps until the

amount of unknown voxels is below a specified threshold, or

if it does not change after a space carving operation, i.e the

unknown voxels cannot be perceived due to the constraints

on the robot. An example of postures generated during a

successful modeling process is illustrated in Fig. 2 with the

updated occupancy grid at each step.

B. Pose generation

The second step of our Next-Best-View algorithm was

tested by verifying that camera poses obtained in the first step

do not result in a constraint, on the robot head, impossible

to satisfy when set in the PG with other constraints. Several

camera poses were computed using different virtual objects

with different states of space carving and the landmarks were

randomly generated amongst the known voxels on the surface

of the object.

During our tests, we could confirm that the constraints

set in the first step reduce the possible poses to what is

achievable by the PG with our current settings. In our first

simulations, we set the starting posture for the PG as a

standup position but found some cases where the posture

could not be generated. This happens when the camera is

set close to the minimum height limit. By using a squatting

Fig. 3. Postures generated using our NBV algorithm

position as a starting posture, this convergence problem was

not found afterwards.

Some of the whole-body postures obtained with the PG

were played with OpenHRP2 and then on a real HRP-2 robot

to ensure the stability constraint results in statically stable

postures. Two of them are shown in fig. 3.

V. CONCLUSION AND FUTURE WORK

A new method to generate automatically postures for a

humanoid robot depending on visual cues is presented. The

postures are selected amongst the possible configurations

allowed by stability, collisions, joint limitations and visual

constraints, so as to complete the modeling of an unknown

object using a minimum number of postures. An extended

version of this work has been submitted at ICRA 2009 [14].

The next target for our work is to use a planner which

is not based on a A∗ as proposed by Kuffner [15] and

Bourgeot [16]. Indeed such kind of planner usually create

an unwelcome stepping because the robot has its action set

decreased artificially to facilitate the path search resolution.

In the case of the visual search, as described in paragraph

VI-G, this increase very much the realization time of the

behavior.

VI. OBJECT VISUAL SEARCH

The object visual search has recently regain some interest

especially with new contest such as the Semantic Robot

Challenge [17] which interestingly is taking place in the

Computer Vision community. The 2007 contest winners

described their architecture in [18][19].

A. Visual recognition

1) SIFT model based approach: The object model used by

the robot consists of all the 3D features that had been spotted

during the learning phase, moved to a unique frame of

reference. What follows explains how such a representation

is used for object recognition.

First, feature detection is run on the scenery. The resulting

features are then matched between the scene and the object,



in the same way as it had been done for pairs of views

during the learning phase. Rigid motion evaluation is then

performed with unlikely matches cast aside.

The results for close-up scenes (up to 1 meter) are ex-

cellent, but worsen when the distance increases. In order to

measure the influence of distance on this algorithm, object

detection was run from many distances, in two different

experiments: with the object alone on a black background,

and in a heavily cluttered environment.

Fig. 4. A screenshot of the model successfully detected in the range map
of the scenery. It contains over 6000 3D SIFT features, but only the best
matches are represented.

Fig. 5. Left : The left eye’s image of figure 4’s scenery. Right : The pose
of the object is successfully determined using Rigid Motion minimization.

Beyond 2 meters, the object can still be located in the

scene’s 3D map, but the pose estimation fails. This is due

to the position error of the disparity map’s 3D points. As

specified [2], our approach uses geometric information to

check the geometrical relationship between the landmarks.

Thus we do not have problem related to the rotation of

the features as in a monocular approach [18] provided than

enough landmarks are detected during the visual model

construction.

B. Seeing far away: a generative model based approach

As the sift-based reconstruction method fails at detecting

objects far away, a method [2] was presented which aims

at providing coherent hypothesis of the object position and

scale in the robot field of view. It can detect object in

challenging conditions, such as difficult viewpoints, small

scale, extreme illumination conditions and occlusions. This

hypothesis can be used as an input for the visual search

when the 3D object reconstruction fails. It is an extension of

the method of [20] and uses additional information coming

from the robot to guide the model estimation process. In

particular we will use both the left and right images of the

robot cameras to compute dense disparity maps and then use

the resulting depth information as an extra component of the

model.

C. Visual Features

Images are represented by a set of n overlapping patches

and a gradient map (see figure 6).

Overlapping visual patches. Patches, denoted Pi, i ∈
{1, . . . , n}, are sets of pixels belonging to square image

regions. Five different characteristics are computed from

each patch.

First of all, a visual codebook is obtained by k-means

clustering SIFT [21] based representations of the patches.

Then, each patch Pi is associated to the closest codeword.

The assigned codeword is denoted w
sift
i ; this is the first

characteristic. We also produce visual words based on color

information by clustering color descriptors [22]. The patch

Pi is also characterized by its closest color codebook word

wcolor
i . A RGB value is computed by averaging over pixels

extracted in the center of the patch. This 3D-vector is denoted

rgbi. We also consider the coordinates of the patch center

Xi = (xi, yi) in the image. Finally, the dense disparity map

provides an estimation of the depth di of the patch.

Gradient Map. In addition to this patch based character-

istics computation, we also extract a gradient map G(x, y),
that consists of the strength of the gradient at each (x, y)
pixel location.

In the end, the gradient map G(x, y) and the

characteristics of the n overlapping patches Pi:

{wsift
i , wcolor

i , rgbi, Xi, di}, i ∈ {1 · · ·n} compose all

the information we use to describe an image.

D. Model description

The strength of our model lies in the combination of two

(different but) complementary components: (i) a blob based

generative model using visual words for its good object

localization properties, and (ii) a MRF (Markov Random

Field) structure which provides a coherent field of labels

following object boundaries.

1) A blob-based generative model: We consider that an

image is made of “blobs”, and that each blob generates some

patches with its own model. Intuitively, if an image contains

three objects, we may have three blobs, one over each object

region. Each blob is thus responsible for generating a set of

patches the appearance of which corresponds to the object

category.

The generation of a patch requires to a) select a blob, and

b) generate a patch with the patch model specific to that blob.



The blob generation is assumed to follow a Dirichlet

process. The Dirichlet process exhibits a self-reinforcing

property: the more often a given value has been sampled

in the past, the more likely it is to be sampled again. This

means that each newly generated patch can either belong to

an existing image blob Bk or start a new region.

We characterize each blob Bk, 1 ≤ k ≤ K, with a

set of random variables: Θk = {µk,Σk, Ck, lk, Nk, Sk}.

µk,Σk are respectively the mean and the covariance matrix

describing the geometric shape of the blob, lk is the blob

label (object category), Ck is a Gaussian mixture model

representing the colors of the blob, Nk is the number of

patches generated by the blob, Sk is the scale of the blob

which is closely related to the distance between the object

and the camera.

We characterize each patch Pi by its features

(wsift
i , wcolor

i , rgbi, Xi, di).
The probability of generating a patch, given that it is

generated by the blob Bk of parameters Θk: p(P|Θk) is

made of 5 distinct parts, as the model assumes that patch

position and scale, color and appearance are independent for

a given blob. The probability for a blob Bk to have generated

patch P thus consists of five terms:

p(P|Θk) = p(wsift, wcolor, rgb, X, d|Θk)
= p(wsift|Θk)p(wcolor|Θk)

p(rgb|Θk)p(X|Θk)p(d|Θk)
(19)

The position X of a patch is chosen according to a normal

distribution of parameters µk and Σk for object blobs. It is

uniform for background blobs.

We assume that background and object blobs have a

Gaussian Mixture color model. The patch depth is closely

related to the blob size. Finally, the probability of the SIFT

and color codewords only depend on the class label. These

distributions encode object appearance information and are

responsible for the recognition ability of our model. They

are learned using training images in a way described later

on (section VI-F).

2) A MRF structured field of blob assignment: A MRF

of blob assignment regularizes the assignment of neigh-

boring patches and also aligns borders between the object

and the background with natural image contrast and with

strong depth changes. This field is defined over a grid (8-

connectivity), nodes correspond to patch centers.

This component basically defines a Gibbs energy that is

used to compute conditional probability of patch assignment.

This energy has a model fitting term based on the blob

representation previously defined as well as neighboring

constraint terms for spatial regularization.

The total energy E of the field is the sum of local energies

Ei defined for each patch Pi

Ei = Ui + γ
∑

j∈N (i) Vi,j (20)

where N (i) represents the 8 neighbors of Pi, γ balances the

proportion of the two terms. Let bi be the blob assignement

index of patch Pi. Ui = − log p(bi|Pi, N1:K ,Θbi
) is a

Fig. 6. First row: patches are extracted in a very dense manner. Each
patch is associated to the closest visual word for sift and color descriptors,
and then represented by the words indexes (wSIFT

i
, wcolor

i
), a RGB value

(rgbi), a position (xi) and a depth (di) given by the disparity map. Second
row: the model computes the best assignment of patches to object blobs or
background and estimates to blobs positions.

potential that measures the coherence between the patch and

the blob model, and p(bi|Pi, N1:K ,Θbi
) is the probability of

the blob assignment knowing the patch and the parameters

of all the blobs. It stems from the model presented in the last

section and makes the link between the two components of

the model. Vi,j is a potential that measures similarity between

two patches Pi and Pj . It enforces local coherence of the

object/background labels, via constraints on the similarity

of neighboring patch labels. These contraints are computed

using the gradient map G and the distance between depth

values of neighboring patches. It encourages cuts along high

image gradients and depth discontinuity.

E. Model Estimation

Now that the model has been defined, its parameters have

to be estimated for each image to produce object/background

blobs labels (li) and patch assignments to blobs (bi). The

model is estimated by a Gibbs sampling algorithm [23] (spe-

cific case of Markov Chain Monte Carlo (MCMC) method).

A Gibbs sampler generates an instance of parameter values

from the distribution of each variable in turn, conditional on

the current values of the other variables. More details on the

model estimation could be found in [20].

F. Learning an object appearance

In order to learn the object appearance information, ex-

amples of images containing the object are fed to the

robot. Once again, these learning images are stereoscopic

views, taken from several viewpoints. The resulting dense

disparity map provides local information that we use to

create segmentation masks on positive images. This makes



Fig. 7. The model gives a list of patches actually being components of
the model. This produces segmentation masks.

the estimation of object model more accurate by knowing

exactly which part of the image belongs to the object and

which does not.

We also use a set of negative images (ie not containing

the object) provided by the robot camera while moving in

its environment.

Descriptors (SIFT + color) are extracted on local regions

exactly as described for the test images. These descriptors are

used first to create visual words by a quantification process,

and then to compute the probability for each visual word to

be observed as a component of an object blob or not. These

probability distributions (p(wsift|Θk) and p(wcolor|Θk)) are

stemed from an occurrence histogram obtained by a counting

process.

The model also provides the list of patches belonging to

a particular object instance. The patches correspond to sets

of pixels belonging to their support. Using the information

on all patches containing a given pixel, we can create a

segmentation of the object. Figure 7 provides segmentation

masks in terms of probability maps of the object location on

images where the detection succeeded.

G. Global strategy

In this section we present a high-level behavior which

relies on all the previously presented functionnalities to

reason and take autonomously a decision in order to find an

object. Our main contribution is to introduce the constraints

related to the walking algorithm and the recognition system

into one entity called the visibility map to reduce the space

of the sensor configuration.

1) Introduction: Sensor planning to find a known object in

an unknown environment using vision with a mobile platform

is an old problem which received a lot of attention during

the 80s. Most of this work relied on the use of a range finder

coupled with a camera, whereas the object model was either

a polyhedron, a 3-edge based representation or a voxel grid

description. Even so the recognition process is still valid, and

used in recent humanoid applications by Neo [24] to achieve

autonomous behavior, it is interesting to revisit this problem

in the context of humanoids. Indeed new available hardware

such as multi-core CPUs make efficient implementation of

such algorithms possible. However as this problem is NP-

complete, simplified models are still necessary to simplify

Fig. 8. Visibility sphere for a given 3D point.

the search. Finally, the motion capabilities of humanoid

robots, instead of the classical 2D representation of the

search space, requires the adoption of a 3D representation.

2) The simplified model: In this work we consider mainly

the problem of finding the best next camera pose to search

an object in an unknown environment. Here the camera

pose is given by a 3D position plus an orientation provided

by pan and tilt values, which give us a five dimensional

space. In order to simplify the problem we [1] take into

account two considerations: the robot’s motion capabilities,

the recognition system’s characteristics. Depending on the

task different recognitions can be used, as we have at our

disposal either a 3D-edge model [25] or a Spin-Image [26].

The first consideration allows to limit the domain of the

pan and tilt values according to the joint limits. Moreover

if we consider only the case where the robot walks[1], the

vertical axis can be deduced from the constraint on the CoM.

The second consideration implies to use a model of the

recognition system. But in addition to the classical statistical

model, we consider that they are practical bounding values

(Rmin, Rmax) for which the recognition system is able to

work. From this additional information found experimentally

and which vary according to the object we proposed the

concept of visibility map.

3) The visibility map: In order to explain what visibility

map is, we shall introduce the concept of visibility sphere.

Let us assume that we have a partial representation of the

world using a voxel grid representation. A visibility sphere

is the set of poses for which an unknown or solid point

of the voxel grid is seen within the perception interval

(Rmin, Rmax). A visibility map can then be defined by the

intersection between the constraints related to the robot’s

motions and the visibility spheres centered on each voxel

of the world map. When the robot walks, the height of the

camera is fixed, so the visibility map is a plane going through

the head of the robot.

4) Planning: Once the visibility map has been made, the

next step is to chose the best candidate location to search

the object while taking account three quantities: a cost for

motion, the new information and the detection probability.

The motion cost (MC) is an approximation of the cost to

reach a particular pose. It is based on the Chamfer distance

and a specific weighting of each DOF. The new information

(NI) is quantified by projecting the environment grid onto

the camera pose candidate. It also includes a likelihood of

occlusion. This part, which is the most costly, can be easily



Fig. 9. 3D reconstruction and the real environment in which the robot
evolves.

paralleled using multi-core architecture, or even with a GPU.

Finally the detection probability (DP) for any given voxel

is built upon the probability that this voxel belongs to the

target, and the resolution at which it is perceived. Those three

quantities are combined together in the rating function:

RF = αDP .DP + αNI .NI − αMC .MC (21)

The weights α balance the contributions between a wide

exploration of the environment and a deep search of each

potential target. A detailed explanation of this approach can

be found in [1].

5) Integration: It is important to notice that the key to

reduce the search space is the concept of the visibility

map which includes the constraints related to the walking

algorithm. Here more particulary this constraint is the height

of the CoM. Moreover this module is at the highest level

of abstraction and relies totally on the other modules to

perform the full behavior as depicted in figure 9. Once the

next best view is decided, it uses the path planner to feed

the motion generator with appropriate foot steps and posture.

The reasonning is performed on a visual reconstruction of the

world .

VII. CONCLUSION

We have presented our current status in trying to have a

robot building automously a representation of an object and

finding it back in an unknown environment. In our approach

we have try so far to make as few assumptions as possible,

but to use all the knowledge available on the robot and its

control structure. We still have some problems related to

the drift of the robot while realizing this complex overall

behavior partly due to the poor quality of the A∗ planner, and

because of the inherent floor reaction when trying to perform

complex actions. Our current work is trying to address those

issues.
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