
HAL Id: lirmm-00801171
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00801171v1

Submitted on 15 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upgrading the ContrACT Scheduler with Useful
Mechanisms for Dependability of Real-Time Systems

Robin Passama, David Andreu, Bertrand Brun

To cite this version:
Robin Passama, David Andreu, Bertrand Brun. Upgrading the ContrACT Scheduler with Useful
Mechanisms for Dependability of Real-Time Systems. CAR: Control Architectures of Robots, May
2012, Nancy, France. �lirmm-00801171�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00801171v1
https://hal.archives-ouvertes.fr

Upgrading the ContrACT Scheduler with Useful Mechanisms for
Dependability of Real-Time Systems

Bertrand Brun David Andreu

LIRMM, CNRS and Montpellier II University
161, rue Ada

34392 Montpellier Cedex 5 France
{brun,andreu,passama}@lirmm.fr

Robin Passama

Abstract

Nowadays, current research in the development of
a robot focuses on ensuring the safety of persons
around the robot and on resilience to recover from
errors. As part of the general problem, managing
real-time aspects is of main importance regarding
“fault tolerance” in robotic systems, to monitor and
adjust control scheme execution or to guarantee ex-
ecution of critical behaviors prior to less important
ones. In this context, the paper describes our cur-
rent work on the ContrACT middleware [10] to en-
hance its real-time scheduling service for instance
to provide to users some means to observe and po-
tentially react to temporal errors occurring during
periodic loops execution.

1 Introduction

Robotic software is now one of the essential parts
of robotic system development, therefore software
control architecture design methods and concepts,
often inspired by software engineering community,
are necessary within a robotic project to enhance
evolution, modularity and re-usability, and to avoid
redesign costs [1]. In this context, we already pro-
posed a control architecture engineering methodol-
ogy, named ContrACT, and associated tools and
middleware to improve such characteristics [10].
The central piece of ContrACT based architectures
is the scheduler module, that allows for a fine

grain decomposition, control and reuse of periodic
schemes and/or algorithms.

Nowadays, current research in the development of
a robot focuses on ensuring the safety of per-
sons around the robot and on resilience to recover
from errors. Some improvements of the ContrACT
methodology to treat “dependability” aspects have
been proposed [4], but one main concern is that Con-
trACT lacks for efficient middleware services to pre-
cisely observe temporal errors and to adapt the pe-
riodic behaviors adequately. Fortunately, since the
scheduler module has been reified in the architec-
ture, we have a great liberty to implement new ser-
vices to achieve such a general objective.

In this context, this paper focus on our current work,
whose aim is to provide new mechanisms inside the
scheduler module so that the roboticians can have
a better control over real-time aspects. We want to
add new features to the scheduler:

• to adapt its execution regarding context,

• to guarantee some functional constraints (e.g.
important schemes are executed prior to less
critical ones),

• to allow for fine grain definition and observation
of temporal events and,

• to provide supervision level some means to dy-
namically adapt the periodic behaviors used at
runtime.

1

The scheduling algorithm is the cornerstone of the
scheduler module. It ensures execution of periodic
schemes given a set of real-time constraints. “Adapt-
ing scheduler execution regarding context” does not
mean to directly improve this algorithm but to adapt
some parameters it is based on in order to optimize
its execution in function of periodic schemes exe-
cuted at a given time of the robot mission. This
can be achieved by observing periodic schemes’ du-
ration at runtime and by doing an online adaptation
of schemes’s related parameters according to well-
defined rules.

One important concern, currenlty not managed into
the scheduler module is the ability to define peri-
odic schemes with different criticity levels ; a pe-
riodic scheme being an ordered subset of modules
to be executed in the current context. Indeed, low
level control (for instance sensor sampling or actua-
tor command) often needs to be guaranteed before
any other functionality can be executed or security
command schemes (e.g. obstacle avoidance vs. tra-
jectory following). The modification of the schedul-
ing algorithm is in this case necessary to manage
different levels of criticity among schemes.

It is interesting for roboticians to observe not only
if but how their robots execute their behaviors. So
we first need to implement an observation system al-
lowing the decisional level of architecture to decide
to take action if deemed necessary (ie according to
observations that have been notified and rules of re-
action that have been defined). For instance if a
control law does not respect its timing time con-
straints, it may produce unstable behaviors, behav-
ior which can be very risky for the robot. Super-
vision system must be notified of such situations to
potentially perform an adequate reaction before any
reaction can take place. Furthermore, depending on
the periodic scheme implementing a given behavior,
temporal errors can be more or less significant. So
the precise observation of the periodic schemes exe-
cution is very important to characterize the current
execution context of a robot, it is a mandatory fea-
ture before any adjustment of the behavior can take
place.

Jointly to observation of temporal errors, a control

levers on schemes execution are necessary to be able
to react when they occur. The most important ques-
tion to answer to is: what to do in case of faulty
scheme? There is no unique solution since it depends
on the nature of the scheme and its execution con-
text. Nevertheless, depending on the nature of the
algorithms (modules) used, a scheme overpassing its
delay is more or less foreseeable and/or acceptable.
For instance, an algorithm such as a reactive trajec-
tory planner can have sometime long computation
time compared to its mean computation time, but
this should be acceptable in some execution contexts
and maybe not in others. In the first case we can let
it continue to make it end its cycle, while we could
want to immediately interrupt it in the other case.
ContrACT scheduler should be able to manage such
situations.

We also need to implement a greater level of control
of schemes execution. If this control is already possi-
ble in ContrACT scheduler by simply changing the
schemes it schedules, the problem becomes harder
when several simultaneously executed schemes are
in interaction (they share part of their inputs/out-
puts), which is in fact the general case. Indeed,
changing a periodic scheme may result in many re-
configurations of data flows between schemes: for
instance commuting from a cartesian control law to
another one (more precise, less time consuming, etc.)
will also result in reconfiguring (parts of) the inputs
(set point flow) and the outputs (sensor sampling
flow) of the lower level articular control law. In the
context of ContrACT, where schemes are decom-
posed into several modules, managing the correct
reconfiguration of data flows can be an error prone
scheme. That is why we need new mechanisms to
easily define and control these situations.

The following sections of this paper will present all
these points. First, Section 2 gives an overview
of ContrACT and discuss about its limitations re-
garding observability, controllability and adaptabil-
ity. Then Section 3 presents the improvement the
scheduler module regarding its current internal lim-
itations and Section 4 focuses on the evolution of
periodic schemes themselves. Finally, Section 5 con-
cludes this paper and discuss about future work.

2

2 Presentation of ContrACT

2.1 Architectural model

The programming model of ContrACT relies on the
concept of module. A module is an independent
(with it own context) real-time software task that
reacts to a set of predefined requests and commu-
nicates with other modules by the means of ports
(for more detail see [10]). Each port is a connection
point of a module by which it can send or receive
data or events. A port is defined by its data type,
its name and its direction (input or output). Ports
connections are made by binding one output port to
one to many input ports, and connection is checked
by verifying types of exchanged data. There are two
kind of ports using two different publish/subscribe
mechanisms : event ports (receiver is triggered) and
data ports (receiver is not triggered). In a Con-
trACT architecture all modules are software tasks,
but different classes of modules, and even some spe-
cific ones, derived from the previous module model
are defined (see Figure 1):

• Synchronous modules are used to implement
periodically computed algorithms and period-
ically performed sampling of sensors and com-
mand of actuators. They communicate between
each other only using data flow communication.

• The scheduler module is the unique module im-
plementing the applicative scheduling services.
Its main role is to schedule synchronous mod-
ules according to a set of constraints defined
on the module itself (duration of the execu-
tion) and schemes (i.e. on composition of mod-
ules): precedence constrainst, critical delay, pe-
riod. To achieve this job it handles OS priori-
ties (managment of preemption) and sends ac-
tivation requests to synchronous modules. The
second role of the scheduler module is to no-
tify scheduling events to supervisors or asyn-
chronous modules.

• Supervision modules are implementing reac-
tive supervisory control in the architecture.
There may be many supervisors but only their

configuration change, not their implementa-
tion. Supervisors can be seen as specific asyn-
chronous modules that control the execution
(asynchronous or scheduled execution), the as-
sembling (data or event communication) and
the parametrization/consultation of modules
according to events they receive. They can
so receive events from synchronous and asyn-
chronous modules but also produce events to
other supervisors.

Exécutif

Modules ordonnancés

Ordonnanceur

Module temps restant

Modules d’interaction

DécisionnelSuperviseur global

Superviseur Local
Superviseur Local

Superviseur Local

objectifs

...
Superviseur Local

Superviseur Local
Superviseur Local

Superviseur Local
Superviseur Local

Superviseur Local

sous-objectifs

exécution/arrêt
de schémas
périodiques

−

+

Priorité
système

E/S

Module asynchrone

Module synchrone

Requête activation/arrêt

Port d’évènement (E ou S)

Port de paramètre (E)

Port de donnée (E ou S)

Flux d’évènements
Fixation de
paramètres

Flux de données

Figure 1: ContrACT architectural model

2.2 The applicative real-time scheduler

The applicative real-time scheduler is embedded
in a specific module of the middleware, dedicated
to real-time aspects management. This sched-
uler manages the execution of synchronous mod-
ules, dealing with periodical schemes. A periodi-
cal scheme describes an ordered sequence (compo-
sition) of synchronous modules to be executed (see
Listings 1 to have an example) ; modules are or-
dered to respect causal relationship between them
(described in scheduling graph), according to the
usual “perception-decision-action” process. The ap-
plicative real-time scheduler controls the execution
of synchronous modules (their corresponding tasks)
above the scheduler of the real-time OS. To do so

3

it sends activation request to considered modules
and plays with priorities it dynamically associates
to the corresponding tasks according to the selected
scheduling policy [7]. The scheduling policy used in
ContrACT is Earliest Deadline (ED). ED algorithm
gives the highest priority to the task which has the
earliest deadline. The scheduling problem has been
formalized taking into account two kinds of tasks:
treatment tasks which contain an algorithm that will
be executed on the processor, and acquisition tasks
that are two-part algorithm which first sends a re-
quest to a device (e.g. sensor, communication link)
and then waits for the response (to get the data).
Constraints between tasks are described in terms of
task ordering within a given scheme and tasks mu-
tual exclusion (e.g. tasks of different schemes using
common or exclusive resources, like interfering sen-
sors for example) [6]. There is no pre-running val-
idation of the scheduling setup to anticipate CPU
saturation, the behavior of the scheduler consist in
launching a scheduling setup and doing an online re-
porting to supervisors each time realtime constraints
are violated. Thus the execution of a scheme will
consist in the execution of a sequence of periodic
modules until the end of the scheme. This suite of
modules will begin its execution in the reception of
the scheme by the scheduler and will have to end
before the date specified by CRITICAL_DELAY while
following the policy explained above. This sequence
will be repeated with a period defined by PERIOD.

This real-time scheduler enables a fine grain de-
composition of complex robotic algorithms (typi-
cally control loops) into individual real-time mod-
ules. Doing so, users obtain a better reusability for
these algorithms because they can be composed dif-
ferently according to the global algorithm to put in
place. Furthermore, this approach allows to manage
precisely real-time constraints execution and reac-
tion to constraints violation, what is not possible
when the global control loop is implemented as a
periodic task of the real-time OS.

2.3 Limitation of ContrACT

Currently, scheduling algorithm’s performance is
strongly coupled with the nominal duration of syn-

chronous modules, but these values are set quite
empirically. This solution is maladjusted because
either this duration is an overestimation and thus
the system is sub-optimized (because the scheduler
considers that the module is working during all this
period), or this solution is sub-estimated and the
scheduler will generate many notifications. The ba-
sic needs are:

• doing an online optimization of the scheduling
parameters without loosing stability (regular-
ity) of periodic loops. One big constraint is to
avoid too many time parameters adjustements,
otherwise the risk is that the scheduler module
does an excessive number of reconfigurations
and so “waste” too much CPU time.

• allowing the developpers to control more deeply
the notification of scheduling events, in order to
better discriminate situations and react only to
important ones. For now the scheduler module
only notifies a “scheduling invalid” event when
a module excessively exceeds its nominal dura-
tion or when a scheme repeatedly exceeds its
period but nothing can be configured by a user.
The consequence is that the user cannot limit
the generation of events to the situations he
wants to handle.

The ContrACT scheduler notifies events to the su-
pervision level, but being simply informed of tem-
poral errors occurence is an information too low to
discriminate implicated modules among all active
schemes. For instance, we can not know if the error
comes from a long calculation or of a module that
loop indefinitely. Thus we want to distinguish the
faults of the modules (critical delay outdated) and of
schemes (periodicity impossible to respect by exam-
ple, duration of modules > the period of scheme).
We also want to identify precisely which modules
and schemes involved and to define the “severity” of
the fault.

As explained in section 2.2 a prerunning validation
of the schedule setup is not done, to date, to an-
ticipate CPU saturation. An “a priori” verification
would allow to avoid structurally faulty situations
(i.e. situations when scheduling parameters values

4

are intrinsically not coherent, resulting in a config-
uration that cannot be scheduled). The big interest
at runtime is to avoid too many unecessary notifi-
cations by producing a single specific event. The
contextually faulty situations (i.e. situations when
modules execution time spontaneously derives for
any reason) would be so the only ones managed with
the default mechanism (see previous paragraph).

Another limitation is that all schemes are “function-
ally equals”, therefore it is impossible to define those
that are considered “critical” (control law for the se-
curing of the system) and that must run before. For
instance, we might want to maintain an observation
loop (for instance to store the articular positions of
a tele-echograph robot in order to pair them with
ultrasond images memorized) while controlling the
robot. This loop can have the same frequency that
the loop of the probe by example. If the processor
resources are too limited, the articular control loop
and the probe control loop must take priority to the
observation loop. Nothing allows it at present.

And finally in the case of the multischeme (see Fig-
ure 2), when one wants to make two or more schemes
interact between each-others, modules contained in
schemes have to be correctly bound. This opera-
tion requires that developers know modules inside
the schemes which is against reuse principle.

articular position control

CAR CV A

probe referenced position control

MGD MGI

Figure 2: Example of two interacting periodic
scheme used in the PROSIT robot control architec-
ture

We present with listings 1, 2 and 3 the implemen-
tations of Figure 2. In this example we create two
periodical schemes (Listing 1 and 2). Then when the
doLocalArticularAndEulerPositionRobotControl
is call it execute the two rules which realized the
connections and activate schemes. We see that into
the supervisor we realize two others connections
(subscribe modules CAR:0 -> MGD:0 * 5; and
subscribe modules MGI:0 -> CVA:0 * 1;) to
connect schemes between them.

periodic schema doArt i cu la rContro l () {
realtime{

PERIOD=10ms ;
CRITICAL_DELAY=4ms ;

}
modules{

CAR() ;
CVA() ;

}
scheduling graph{

CAR −> CVA;
}
communications{

CAR:0 −> CVA:1 ∗ 1 ;
CVA:0 −> CAR:0 ∗ 1 ;

}
}

Listing 1: The scheme doArticularControl which
manage the articular loop

periodic schema doSondControl () {
realtime{

PERIOD=50ms ;
CRITICAL_DELAY=50ms ;

}
modules{

MGI() ;
MGD() ;

}
scheduling graph{

MGD −> MGI;
}
communications{

MGD:0 −> MGI:0 ∗1 ;
}

}

Listing 2: The scheme doSondControl which manage
the sond

supervisor SCR{

.

.

.
doLocalArt icu larAndEulerPos i t ionRobotContro l

() {
rules {

ROBOT_ARTICULAR_POSITION_CONTROL:
[elapsed=1ms]

activate schema doArt i cu la rContro l ()
[endof (ROBOT_ARTICULAR_VELOCITY_CONTROL)]

ROBOT_SOND_POSITION_CONTROL:
[elapsed=200us]

subscribe modules CAR:0 −> MGD:0 ∗ 5
POSTNOW;

subscribe modules MGI: 0 −> CVA:0 ∗ 1 ;
activate schema doSondControl ()

[endof (ROBOT_ARTICULAR_POSITION_CONTROL)]
}

}

.

.

.

5

}

Listing 3: The supervisor which connect schemes in
a multischeme instance

Even more complex is the management of recon-
figuration of data flows when some scheme change.
It requires that supervisors adequately reconfigure
these flows, which can be an error prone task.
For instance, in figure 2 (extracted from ANR
PROSIT project) direct geometric model’s (MGD)
input flows of the probe referenced control scheme
is bound to CAR module’s (sensor/actuator access)
output flows or the articular control scheme. If the
probe referenced control scheme changes the discon-
nection of CAR module with the MGD module and
eventually its reconnection with the new one used
has to be redefined. Considering that these recon-
figurations can be requested by different supervisors
and applied to many interacting scheme (in the gen-
eral case) the situation can become really “uncon-
trolled” in terms of complexity for the developers.
So, we need to provide new mechanisms to auto-
mate as far as possible the reconfiguration of flows
between schemes, while of course keeping consistent
links between them.

3 Proposed scheduler ameliora-
tions

3.1 Adapting duration parameters of
modules

During an execution, the execution period of differ-
ent ContrACT modules can vary. For example, par-
ticle filter is an algorithm which estimates Bayesian
models per sampling methods. As the particules
number is more or less important during execution,
and considering that this number greatly condition-
ates the duration of a module, its duration can vary
in an important interval during runtime.

It was planned in Cotama architecture (ContrACT’s
predecessor) to adapt the execution times in the
modules using the following formula [5]:

valestimated = average+ 1, 5σn (1)

This formula computes “safe” average.

When a user defines a module he must emprically
specify its nominal execution delay. This will lead,
as we previously said, to a sub utilization of the
system, because the nominal execution delay may
be far longer than the mean execution delay. Be-
ing currenlty “lost” (not used by the scheduler), the
time interval between both delays could benefit to
another module.

The basic need to be able to do so is to set up a
system of statistics on the execution of modules,
and that is what we have primilarly implemented:
the scheduler records execution runs of each syn-
chronous module (start stop dates) over a sliding
temporal horizon and incrementally compute sim-
ple statistics (means, standard deviation). From
these statistics, we get the information useful to au-
tomatically adjust execution times, but also useful
to the decision-making level (for instance to decide
if the robot has to be put in emergency or degraded
modes).

Concerning a global dependability manament sys-
tem, the scheduler can obviously only allow the con-
sulting of these statistics and cannot do more “rea-
sonning”, first for efficiency reasons, second for re-
specting separation of concerns. The dependability
management system should include specific modules
to do so, for instance as explained in [3].

After the observation of the evolution of executions
durations of the modules. We propose here an algo-
rithm that will allow to adapt the execution times
of the modules at runtime. It’s not really an action
on which supervisors can interact. But this is still a
control action on the scheduler modules.

To achieve this adaptation, we use the formula (1)
presented in [5] to compute the execution time of
the module using the various statistics collected
throughout their performances.

Algorithm 1 presents how this adaptation is per-
formed.

• First, the decision of adaptation is taken only
every X cycles (where X is either computed or

6

given directly “in hard”, as actually).

• Second, the computed tendency of a module ex-
ecution defines if this duration time strongly
derives from the mean time.

• Third, the last test is a kind of filter
: the adaptation of current execution time
(M.running_time, algo 1) will take place only
if the “securized mean” (M.avg, computed ac-
cording to formula 1) defines a sufficient varia-
tion around current execution time value. This
variation is defined using a threshold delay (∆)
that applies above or below current execution
time.

Algorithm 1: Algorithm determining when to
adapt, 3rd version
Data: M module to adapt
if M.counter ≥ X then

if M.trend↗ or M.trend↘ then
if M.avg > M.running_time+ ∆ or
M.avg < M.running_time−∆ then

adapt

M.counter ← 0
else

M.counter ← M.counter + 1

3.2 Priority levels for the schemes

During the evolution of a robot in its environment,
it may have to enter into an emergency behavior for
various reason. Such a behavior is implemented with
one or more schemes, that consequently must run in
preference to schemes used to implement other less
critical behaviors. From this observation it brings
up a need to establish a system of priorities between
schemes.

We initially thought to establish two levels of prior-
ity as in [8]. But we do not know if using two priority
levels will be sufficient for a given application. So we
have instead kept the solution of hierarchical levels
of priority. We so allow the users to define oriented
relationships between schemes, according to a prior-
ity constraint. If we have two schemes A and B, A

with higher priority than B, then we write A→ B.
From these constraints we defined a graph (that is
not necessarily made of connected components, see
fig. 3).

A

B

C

D

E

Figure 3: Relationship between five schemes

In figure 3, readers can remark that a scheme can
have no relation with the others. If two schemes
have no direct or undirect relationship, it may mean
that they will not be simultaneously active or that
they apply to completely disjoint controlled systems
(arms vs legs). However, there can’t be no cycle in
the graph. Thus we can’t write A→ C, C → D and
D → A. It won’t have a meaning.

The graph of relationship defines relatives priorities
between schemes. Nevertheless, the implementation
of schemes priority management requires global pri-
orities for schemes. Indeed the internal algorithm is
based on static levels of priority to avoid any ambi-
guity at runtime or any extra unnecessary computa-
tion. To compute global priorities for schemes, we
create a vertex “source” that is connected to all the
roots of the schemes relationship graph, as shown in
Figure 4.

A

B

C

D

E

Figure 4: Adding the source vertex in our graph

Once the tree built, we perform a breadth-first
search (BFS) to compute the distances of nodes from
the “source”. These distances represent global prior-
ities of schemes (see figure 5).

7

A

B

C

D

E1

2

1

2

1

Figure 5: Relationship between tree height and pri-
ority level

On the graph 6, we have the scheme C with a dis-
tance of 2 because the BFS algorithm looking for the
minimum distance from a vertex (here, “source” ver-
tex), but it should be 3 because user had specified
B → C. The conflicts comes that we have a transi-
tive arc AC. This is why, we propose algorithm 2 to
reduce the transitivity. This algorithm is performed
before the calcul of the schemes priority levels.

A

B C

1

2 2 or 3?

Figure 6: Conflicting priorities when A → C and
B → C

A

B C

1

2 3

Figure 7: The changes on the figure 6 after a pass
of algorithm 2

The research for the levels of priorities of schemes
is realized during the phase of compilation of the

Algorithm 2: Removing transitivities
Data: G the graph of priorities
Data: s the starting vertex (the source)

q = CreateQueue()
setParent(s, s)
mark(z)
Enqueue(q, s)
while ¬Empty(q) do

x = Dequeue(q)
while haveChild(x) do

z = nextChild(x)
setParent(z, x)
if ¬mark(z) then

Enqueue(q, z)

project. When the scheduler has to choose a mod-
ule to be executed, it will begin by looking for the
module with the strongest priority (thanks to the
algorithm ED) but in the schemes of stronger prior-
ities (those who have the smallest value in our fig-
ures). If the scheduler does not find modules in the
list of the schemes of stronger priority, then it will
look in that just down and so on until find a module
to be executed.

3.3 A system for controlling the observa-
tion of and the reaction on temporal
events

In the current version of ContrACT scheduler, the
temporal event detection mechanism is based on
nominal delays of modules, which are, in practice,
an overestimation of the real execution delays. Due
to the automatic adaptation of modules duration in
the new scheduler version (cf. section 3.1), we no
more need a nominal delay except for initialization
purposes. Nevertheless, we still want to define a
temporal constraint on a module, either for checking
scheme schedulability (see section 3.4) or for tempo-
ral event generation. The temporal constraint of a
module can be defined as “the maximum amount of
time the module can execute before being considered
as faulty”. We assume that each module defines a

8

default temporal contraint and that each schema can
redefine the temporal constraints of its modules.

From this start point, it is important to classify pos-
sible temporal events and to reify them as simple
concepts. We classify temporal event into three lev-
els (cf. figure 8), from the less to the most “critical”
one : delays, faults, exceptions.

fault fault fault fault exception
notification

C

delay

overtime

d

horizon

Figure 8: Diagram presentating the concepts of De-
lay, Fault and Exception

The delay is the first level. A temporal delay oc-
curs when a run of a given module is longuer than its
adjusted “secured” duration. Regarding delays man-
agement, decisionnal level has no mean to act on this
type of events. The scheduler computes additional
time given to a module based on its temporal con-
straint value (max, see formula 2) and the adjusted
duration (adapt, formula 2).

add_time = (max− adapt)× 1

delay_allowed
(2)

delay_allowed is the maximum numbers of time
which we grant additional time to the module. It
is among five in the architecture.

This approach gives additionnal time to modules
proportionnaly to their remaining delay until reach-
ing their temporal constraint. In other words, a
module with a bigger remaining execution time will
have of course more additional time but it will gener-
ate at maximum as many temporal delays. We think
this is a reasonnable approach to avoid too many
unnecessary tasks switches (between scheduler and
late module), because the delay is also an event that
awakes the scheduler.

The fault is the second level of temporal event.
When the scheduler detects an excess large number
of delay for one module (defined by delay_allowed
in equation (2)), then the module is in temporal
fault. Unlike delay, the temporal faults can be sub-
ject to an action by the user. Indeed, when specify-
ing the scheme it can choose among three types of
reactions:

• The module continues its execution, as if noth-
ing had happened. This reaction is useful for
managing modules using some class of algo-
rithms that are known to be temporally un-
bounded or with big delay variations.

• The module immediately interrupts (abort and
restart from beginning at next start) its execu-
tion. This reaction is equivalent to an Abort
strategy in [2]: a STOP request is sent to the
module that consequenlty stops as quickly as
possible. This strategy is so related to the man-
agement of what is commonly called “hard real
time tasks”.

• The module will be interrupted just before next
run if not terminated yet. This is the same
behavior as previously but delayed to let the
module the possibility to execute in rest time if
possible.

Other strategies could be imagined in the future.

The exception is the last level. A temporal excep-
tion characterizes an important situation that must
be reported to the decisionnal layer. This situation
is determined in function of a repartition of tem-
poral faults among a memorized temporal horizon.
Currently, this repartition is really simple since we
define the number of authorized faults over a given
temporal horizon (in number of cycles). If this con-
dition is broken the scheduler sends a notification to
the supervisors that asked for it. As we presented
in the section on observability, we trigger an tempo-
ral exception by a combination of errors over a cycle
time. This combination allows us to define rules.
According to these rules we can inform the decision-
nal layer if an exception occurred, and the decision-
nal layer can dynamically configure the scheduler to

9

adapt temporal exception generation to the context.
For example, the user can define a “hard real time”
rule with a couple mistake time equal to 0 at any
horizon. In contrast, it may define a rule with 10
faults on a time horizon of 30 cycles to behave much
more flexible. With these notifications, supervisors
are notified when one of their modules does not meet
these time constraints. We could add to the system
mentioned above more features for instance:

• to define the repartition of faults in terms of
successives errors over a given horizon.

• to anticipate future tendencies.

Via these new concepts and mechanisms we try to
provide a frame to detect various situations:

• Blocking module: normally, it should be de-
tectable from the time when there will be a
temporal succession of faults that will system-
atically cause a temporal exception.

• Running an unusual branch of the very long
calculation: this may generate some errors on
some temporal cycles, but, a priori, should not
generate exceptions, unless the module is in real
time and in strict if this behavior is quite nor-
mal.

• Preemptive sporadic supervisors or other mod-
ules: this is the same case as for the execution of
a long branch. The problem is especially strin-
gent for modules. Indeed, supervisors will in-
evitably run and they will bring this kind of
problem.

• Adapting too vigorous execution time: it
should, a priori, only lead to delays and faults
that should be reabsorbed in the next adjust-
ment.

3.4 Checking the schedulability of the
scheme

In this section we will look at various verifications
that can do the scheduler to ensure that the modules
meet their temporal constraints.

A computation of the new CPU load is put in place
each time a new scheme is inserted in the sched-
ule and a verification process can then apply: if the
CPU load is too high then some scheme have to be
removed from the schedule. This is the way we can
quickly test that the schedule is coherent. To com-
pute the CPU load we use the formula (3). There
are other formulas for calculating this charge, but
this one has the advantage of being simple and thus
to provide a result quickly.

Un =
n∑

i=1

Ci

Ti
(3)

Rather than using the value of 100% load as the
threshold, we will instead use a value, defined ac-
cording to the experiments. Indeed, a CPU load of
100% computed by our formula can correspond to a
load of 110% in reality, since there are also the activ-
ities of the modules with greater priority (scheduler
module, supervisors and asynchronous modules) to
take into account.

Algorithm 3 presents our CPU load verification:

Algorithm 3: precompute the CPU load
Data: Config configuration to schedule
Data: S scheme to schedule

add S to configuration Config
load = calculating the load for Config
if load > threshold then

notify supervisors that the scheme is not
sequenced

In our precomputation algorithm, we can add the
consideration of priorities between scheme. Thus
when we compute the CPU load, we start the highest
priority to lowest priority. Algorithm 4 presents the
changes.

We can notice three things in our algorithm 4:

• If the addition of a higher priority scheme is
theoretically not schedulable with the current
configuration, then a scheme of lower priority
will not be scheduled.

10

• The order scheduling for schemes of same pri-
orities is determined by the algorithm already
in place in ContrACT.

• If an overload is detected, the scheduler sends a
notification to the adequate supervisors (those
who asked to execute the scheme that are now
no more scheduled).

Algorithm 4: precomputation of the CPU load
with consideration of priorities schemes
Data: Config configuration to schedule
Data: L the list of priority lists sorted in

descending order of priority level
Data: S the scheme to schedule

load = 0
Add S at the list of priorities l ∈ L which
corresponds to it.
for li ∈ L|i = 1..n with 1 > n for priorities do

Uli =
∑n

j=1

Clij

Tlij

load = load+ Uli

if load > threshold then
notify supervisors that the scheme is not
sequenced
return

Since statistics on synchronous modules are avail-
able, they can be used to compute a good estima-
tion of the CPU load, in order to have a value closer
to reality. Of course the modules’s delay adaptation
can be more or less important depending on the ex-
ecution context of the robot, that’s why modules
statistics have to be bound with adequate scheme
that characterize most of their execution context.
So, the goal is to be as close to realistic values as
possible to avoid the CPU load verification process
to be too constraining.

For now the CPU load check is always made imme-
diately, whether it is based on nominal values (time
constraints values) or adjusted values. Nevertheless,
one improvement would be to let the scheduler ad-
justing all delays (if needed) before doing the check
N cycles later, in order to take decision only on re-
alistic values. But what is problematic with this op-

tion is the configuration of the number N of cycles
that could lead, if not well adjusted, to a significant
number of temporal faults.

4 Proposed schemes ameliorations

This section presents the new way schemes are rei-
fied in the ContrACT environment. The basic idea
is to transform schemes into independently reusable
blocks of code, as for modules. It is achieved by pro-
viding an interface to schemes’ inputs and outputs
(see figure 9). An interface is defined the same way
as modules’s ports.

N.B. The examples presented here are derived from
two nested control laws (see Figure 2), the first
“cartesian” and the second “articular”. For nota-
tional convenience we will use letters to name the
modules.

X Y Z
2)

A B C
1)

Figure 9: Adding interfaces on schemes

In a scheme, we have two types of connections: Con-
nections between modules and connections between
a scheme and a module. The first case is realized by
the system implemented in ContrACT and detailed
in [10].

Figure 10 shows the second case in which there are
two examples of connections between modules and a
scheme. An input interface can be connected to an
input port and vice versa, as shown on the figure.

4.1 Internal switching

The reification of schemes will allow us to simplify
scheme switching. Thus, when adding a scheme, one

11

X Y Z
2)

A B C
1)

Figure 10: Connections between modules and
schemes

must first create it. To do this the user specifies the
constituent modules. Next, he connects the mod-
ules together (see Figure 9), then connects the mod-
ules that must communicate with the outside to the
scheme in which it is located’s interfaces (see Fig-
ure 10).

With the internal connections of scheme realized, we
connect them with each other as shown in Figure 11.

X Y Z
2)

A B C
1)

Figure 11: Connections between schemes

When switching schemes, we start by cutting the
connections to the scheme’s interfaces. Once the
connections have been cut, we replace the scheme
by an other one which has its internal connections
satisfied. Finally, we reconnect the interfaces be-
tween these schemes. The reconnection of interfaces
will depend on the dependencies that we will dis-
cribe below.

The benefit of this method compared to the cur-
rent version of ContrACT is mainly the possibility
to switch schemes. Because we no longer have to
specify which modules communicate with which, we
only have to specify the dependencies of the scheme.
Dependency resolution (discussed in the next sec-

tion) takes care of making the connection just before
scheduling.

X Y Z
2)

A D E C
1)

Figure 12: We replace the B module by two others
D and E

To switch from Figure 11 to Figure 12 we will pro-
ceed in five steps:

1. Create the new scheme (connect the modules
together and the scheme) ;

2. Delete connections between the scheme we want
to replace and other schemes and unschedule it ;

3. Send a schedule request for the new scheme ;

4. Resolve dependencies between interfaces ;

5. Schedule the new scheme.

Step 1 is achieved through the software provided by
ContrACT which will have to add the management
of the reification of schemes. Step 2 is not necessary
if the aim is to add the scheme instead of replace
it. Step 3 is detailed in section 3.4. Step 4 will
be detailed in the section 4.2. The last step is per-
formed by ContrACT’s scheduler in which we added
the event management and the implementation of
priorities between schemes.

4.2 Expression and Resolution of depen-
dencies between schemes

In this section is presented the way interfaces of
schemes are described and used in the resolution of
dependencies.

12

Schemes’ interfaces are described the same way as
modules’ ports : they have a direction (input or out-
put), a data type (e.g. GPS data, articular coordi-
nates, navigation data) and a name. The main dif-
ference is in the use of the name : while this name
is not used when connecting ports (only data type
equivalence is checked), the name of a scheme inter-
face is an important identifier for dependencies re-
solving process. So, when two or more interfaces are
connected, their type but also their name is checked
for equivalence, and of course there is a verification
of their respective direction (one interface as ouptut
for N interfaces as inputs). Name checking is impor-
tant to understand the role of the interface, the type
of data it produces or consumes being not sufficient
to resolve dependencies. For instance the name “ar-
ticular_velocity_arm2” could represent the articu-
lar velocity of the arm number 2 of a two armed
robot. When resolving dependencies, the system has
to take care of names to make schemes produce and
consume adequate data.

Basically, the dependencies resolution is a simple
binding of interfaces identifiers in function of their
name, type and direction. According to the direc-
tion of the interface, the dependency is provided by
the scheme (outgoing) or if it is requested by the
scheme (incoming). Jointly to names and types, the
system knows at any moment which scheme required
or provide a given data. As readers can understand,
this resolution process requires a global table of ex-
changed data (identified by name and type) and as-
sociated schemes that produce and consume it. This
phase can not be realized at the level of supervisors,
because they just have a partial vision on schemes
that are available in the system. Therefore the de-
pendency resolution has so to be done at level of the
scheduler module, since it is the only module that
centralizes information on periodic schemes. The
scheduler performs dependencies resolution during
the precomputation phase, each time a scheme is
launched, stopped, or switched.

The first step of the resolution so consists in, for all
active scheme, checking if each requirement (input
interface) is satisfied by exactly one providing (out-
put interface). Resolutions errors come when more
than one active scheme produce the same data and

when at least one requirement is not satisfied. Algo-
rithm 5 presents this check applied to each scheme
(each dependency must be considered as named,
typed and directed). Once this first step of resolu-
tion process is done, the resolver directly binds mod-
ules’s ports together according to 1) the schemes’ in-
ternal connections between internal modules’ ports
and its involved interfaces and 2) the connection be-
tween schemes interfaces.

Algorithm 5: Algorithm checking the depen-
dencies of a scheme
Data: LO the list of dependencies as output

for s ∈ all active scheme do
for d ∈ s.input_dependency do

for lo ∈ LO do
if d.already_connected then

disconnect S.input_dependency
notify supervisors we can’t
resolved dependency
S.input_dependency
return

else if ¬d.already_connected and
lo = d then

connect lo to d
d.already_connected = true

if ¬d.already_connected then
notify supervisors we haven’t
resolved dependency
S.input_dependency
return

If the dependencies resolution fails, for instance be-
cause a dependency is missing in the architecture (no
scheme provides it at a moment of the mission), then
the active scheme whose dependency is not satisfied
is removed from the current schedule. And supervi-
sors that are listening to such scheduler events are
notified.

From this first simple resolution process, we ob-
served (see Figure 13) that links not satisfied may
be correct in some cases. Indeed, in our example,
module B does not use data supplied by scheme 1
input interface (e.g. algorithm based on other data).

13

In this case, the fact that its port is not con-
nected to the scheme input interface does not mat-
ter. Reversely, module Z shall need data provided
by schema 2 input interface (e.g. command law re-
quiring a set point). So, there is an error if module
B’s output port is not connected to the interface of
scheme 1 or (as in figure 13) if module Z’s port is
not connected to the interface of scheme 2. Indeed,
it should for example mean that a command law
module will not receive set points, what is certainly
a design error.

X Y Z
2)

right wrong

A B C
1)

Figure 13: Links between schemes

This observation leads us to define the concepts of
“mandatory and optional” ports and interfaces. This
concept is not new in the frame of software engineer-
ing [9]: it consists in defining connection constraints
for ports. A mandatory port or interface must be
connected, while an optional may be let unsatis-
fied, the appreciation is left to the user. During the
scheme’s design phase, the connection of mandatory
ports (between themselves and with scheme inter-
faces) is statically checked. On the contrary, manda-
tory interfaces connection is dynamically checked
when resolution is checked.

But the notion of “mandatory and optional” does not
contain all the possibilities that the user might want
to express. For example, one might want to specify
that either the interfaces 1 and 2 are mandatory or
the interfaces 1 and 3 are mandatory in function
of which dependencies are offered by the currently
scheduled schemes.

To realize these concepts we introduce the possibility
to constrain which interfaces and ports are manda-

tory through first-order logic. So if we want to ex-
press the example above we write:

(interface1∧interface2)⊗(interface1∧interface3)

All possible combinations in the first-order logic can
be expressed using interfaces as variables.

We think that these improvements on schemes’
structure, allowing an automation of schemes recon-
figurations, will greatly help the users to precisely
control their system, notably control laws commu-
tation. This is also an important characteristic for
the management of fault tolerance mechanism de-
fined in [4], in which possible scheme commutations
are numerous.

5 Discussion and Conclusion

We are adding to ContrACT various mechanisms to
observe, adapt and control real-time properties of
ContrACT-based architecture in a simpler and more
precise (finer grain) way than currently. To this
end, regarding current limitation of ContrACT, we
are enhancing the ContrACT applicative scheduler
module with many new features: observing, mem-
orizing and computing statistics on modules execu-
tion times; CPU load checking; temporal faults reac-
tion and configuration of the generation of temporal
exceptions; schemes priority control; schemes com-
mutation; automatic reconfiguration of inter-scheme
relationships. Some of these features are already im-
plemented (duration observation, automatic adapta-
tion) while others remain to be completely specified
or implemented.

Concerning the reification of schemes, once imple-
mented, it should simplify the development of in-
teractions between different control laws. Indeed,
the user will not have to realize the connections
between modules of different scheme, but only to
define the connections between the modules of the
same scheme. Then the scheduler will take care of
resolving dependencies between schemes. The au-
tomatic management of scheme dependencies and
internal switching, coupled with scheme priorities

14

management is in our opinion, a main improvement
to precisely control reaction/adaptation when recon-
figuration is required (for instance after a temporal
exception notification): the adaptation (e.g. inter-
nal switching of a scheme to commute control laws)
defined in a supervisor can precisely target a given
periodic loop (scheme) while keeping consistent re-
lations between active loops (with no more efforts as
compared to current version) and without perturb-
ing more critical parts of the system.

With this new approach, it is possible to put in place
a system in which adaptation decision can be decom-
posed into a hierarchy of independently reusable su-
pervisors, each one managing a specific responsibil-
ity in control (e.g. articular control, cartesian con-
trol, teleoperation, visual servoing, etc.). In terms
of dependability, we hope this improvement will be
useful in fault tolerant architectures [4], notably to
program supervisors that manage fault recovery pro-
cesses.

References

[1] D. Brugali and M. Reggiani. A Roadmap
to crafting modular and interoperable robotic
software systems. In SDIR05, Principles and
Practice of Software Development in Robotics,
ICRA workshop, Barcelona, Spain, Apr. 2005.

[2] A. Cervin. Analysis of overrun strategies in
periodic control tasks. In 16th IFAC World
Congress, Prague, Czech Republic, 2005.

[3] B. Durand. Proposition d’une architecture de
contrôle adaptative pour la tolérance aux fautes.
These, Université Montpellier II - Sciences et
Techniques du Languedoc, June 2011.

[4] B. Durand, K. Godary, L. Lapierre, R. Pas-
sama, and D. Crestani. Using adaptive control
architecture to enhance mobile robot reliability.
In TAROS’10: 11th Conference Towards Au-
tonomous Robotic Systems, pages 54–61, Ply-
mouth, Royaume-Uni, Sept. 2010.

[5] A. El Jalaoui. Gestion Contextuelle de Tâches
pour le contrôle d’un véhicule sous-marin au-

tonome. These, Université Montpellier II - Sci-
ences et Techniques du Languedoc, Dec. 2007.

[6] A. El Jalaoui, D. Andreu, and B. Jouven-
cel. Auv control architecture for control man-
agement of embedded instrumentation. In
4th IFAC Symposium on Mechatronic Systems
(Mechatronics’06), Heidelberg, Germany, Sept.
2006.

[7] A. El Jalaoui, D. Andreu, and B. Jouvencel.
Contextual management of tasks and instru-
mentation within an auv control software ar-
chitecture. In IEEE/RSJ IROS, Beijing, China,
Oct. 2006.

[8] H. Kooti, D. Mishra, and E. Bozorgzadeh.
Reconfiguration-aware real-time scheduling un-
der qos constraint. In Proceedings of the 16th
Asia and South Pacific Design Automation
Conference, ASPDAC ’11, pages 141–146, Pis-
cataway, NJ, USA, 2011. IEEE Press.

[9] A. Leicher, S. Busse, and J. Süß. Analysis
of compositional conflicts in component-based
systems. In T. Gschwind, U. Aßmann, and
O. Nierstrasz, editors, Software Composition,
volume 3628 of Lecture Notes in Computer Sci-
ence, pages 67–82. Springer Berlin / Heidelberg,
2005.

[10] R. Passama and D. Andreu. Contract: a soft-
ware environment for developing control archi-
tecture. In 6th National Conference on Con-
trol Architectures of Robots, page 16, Greno-
ble, France, May 2011. INRIA Grenoble Rhône-
Alpes.

15

	Introduction
	Presentation of ContrACT
	Architectural model
	The applicative real-time scheduler
	Limitation of ContrACT

	Proposed scheduler ameliorations
	Adapting duration parameters of modules
	Priority levels for the schemes
	A system for controlling the observation of and the reaction on temporal events
	Checking the schedulability of the scheme

	Proposed schemes ameliorations
	Internal switching
	Expression and Resolution of dependencies between schemes

	Discussion and Conclusion

