Finding Relevant Sequences With The Least Temporal Contradiction Measure: Application to Hydrological Data - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2012

Finding Relevant Sequences With The Least Temporal Contradiction Measure: Application to Hydrological Data

Extraction de motifs pertinents avec la mesure de la moindre contradiction temporelle : application à des données hydrologiques

Résumé

In this paper, we present a knowledge discovery process applied to hydrological data. To achieve this objective, we apply an algorithm to extract sequential patterns on data collected at stations located along several rivers. The data is pre-processed in order to obtain different spatial proximities and the number of patterns is estimated to highlight the influence of defined spatial relationship. We provide an objective measure of assessment, called the least temporal contradiction, to help the expert in discovering new knowledge. Such elements can be used to assess spatialized indicators to assist the interpretation of ecological and rivers monitoring pressure data.
Fichier principal
Vignette du fichier
Paper_AGILE_2012.pdf (953.26 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01585614 , version 1 (22-09-2019)

Identifiants

Citer

Hugo Alatrista Salas, Jérôme Azé, Sandra Bringay, Frédéric Flouvat, Nazha Selmaoui-Folcher, et al.. Finding Relevant Sequences With The Least Temporal Contradiction Measure: Application to Hydrological Data. AGILE: International Conference on Geographic Information Science, Apr 2012, Avignon, France. pp.197-202. ⟨hal-01585614⟩
891 Consultations
67 Téléchargements

Partager

More