Finding Relevant Sequences With The Least Temporal Contradiction Measure: Application to Hydrological Data - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2012

Finding Relevant Sequences With The Least Temporal Contradiction Measure: Application to Hydrological Data

Extraction de motifs pertinents avec la mesure de la moindre contradiction temporelle : application à des données hydrologiques

Abstract

In this paper, we present a knowledge discovery process applied to hydrological data. To achieve this objective, we apply an algorithm to extract sequential patterns on data collected at stations located along several rivers. The data is pre-processed in order to obtain different spatial proximities and the number of patterns is estimated to highlight the influence of defined spatial relationship. We provide an objective measure of assessment, called the least temporal contradiction, to help the expert in discovering new knowledge. Such elements can be used to assess spatialized indicators to assist the interpretation of ecological and rivers monitoring pressure data.
Fichier principal
Vignette du fichier
Paper_AGILE_2012.pdf (953.26 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01585614 , version 1 (22-09-2019)

Identifiers

Cite

Hugo Alatrista Salas, Jérôme Azé, Sandra Bringay, Frédéric Flouvat, Nazha Selmaoui-Folcher, et al.. Finding Relevant Sequences With The Least Temporal Contradiction Measure: Application to Hydrological Data. AGILE: International Conference on Geographic Information Science, Apr 2012, Avignon, France. pp.197-202. ⟨hal-01585614⟩
877 View
50 Download

Share

Gmail Mastodon Facebook X LinkedIn More