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firstname.lastname@univ-nc.nc

Abstract. Health risks management such as epidemics study produces
large quantity of spatio-temporal data. The development of new meth-
ods able to manage such specific characteristics becomes crucial. To
tackle this problem, we define a theoretical framework for extracting
spatio-temporal patterns (sequences representing evolution of locations
and their neighborhoods over time). Classical frequency support doesn’t
consider the pattern neighbor neither its evolution over time. We thus
propose a new interestingness measure taking into account both spatial
and temporal aspects. An algorithm based on pattern-growth approach
with efficient successive projections over the database is proposed. Exper-
iments conducted on real datasets highlight the relevance of our method.

1 Introduction

In everyday life, we can observe many phenomena occurring in space and time
simultaneously. For example, the movements of a person associate spatial infor-
mation (e.g. the departure and arrival coordinates) and temporal information
(e.g. the departure and arrival dates). Other applications, with more complex
dynamics, are much more difficult to analyze. It is the case of spread of infectious
disease, which associates spatial and temporal information such as the number of
patients, environmental or entomological data. Yuang in [13] describes this con-
cept of dynamics as a set of dynamic forces impacting the behavior of a system
and components, individually and collectively.

In this paper, we focus on spatio-temporal data mining methods to better
understand the dynamics of complex systems for epidemiological surveillance. In
the case of dengue epidemics, public health experts know that the evolution of the
disease depends on environmental factors (e.g. climate, areas with water points,
mangroves...) and interactions between human and vector transmission (e.g. the
mosquito that carries the disease). However, the impact of environmental factors
and their interactions remain unclear.
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To address these issues, spatio-temporal data mining provides highly relevant
solutions through the identification of relationships among variables and events,
characterized in space and time without a priori hypothesis. For example, in our
context, we will discover combinations of changes in environmental factors that
lead epidemic peaks in specific spatial configurations. We will show in the related
works section that existing methods are not completely adapted to our problem.
For this reason, we have define new spatio-sequential patterns, based on an ex-
tension of sequential patterns, to link the spatial and temporal dimension. An
example of pattern in the dengue context is: frequently over the past 10 years,
if it rains in an area and if there is standing water and high temperatures in the
neighborhood, then there is an increase number of mosquitoes in adjacent areas,
followed by an increase of dengue cases. It can be used for analysis by health
care professionals, to better understand how environmental factors influence the
development of epidemics. Such patterns are very interesting because they en-
able to capture evolution of areas considering their events and events in adjacent
zones. However, they are very difficult to mine because the search space is very
large. Proposing scalable methods to find these patterns are consequently very
challenging. We have defined an interestingness measure to overcome this prob-
lem of scalability and an efficient algorithm based on pattern-growth approach.

In section 2, we review existing spatio-temporal data mining methods and
we show that these methods are not suitable for our problem. In section 3, we
detail our theoretical framework. In section 4, we present our algorithm called
DFS-S2PMiner. In section 5, we present experiments on real datasets. The paper
ends with our conclusions and future perspectives.

2 Related work

In this related work section, we are not concerned by the trajectories problematic
addressed in [1, 3]. We only focus on methods analyzing the evolution and the
interaction of objects or events characteristics through space and time. Early
work addressed the spatial and temporal dimensions separately. For example,
Han et al. in [4] or Shekhar et al. in [10] looked for spatial patterns or co-location,
i.e. subsets of features (object-types) with instances often identified as close in
space. In our context, an example of co-location is within a radius of 200 m,
mosquitoes nests are frequently found near ponds. On the contrary, other authors
as Pei et al. in [9] have studied temporal sequences which only take into account
the temporal dimension. Tsoukatos et al. in [11] have extended these works to
represent sets of environmental features evolving in time. They extract sequences
of characteristics that appear frequently in areas, but without taking into account
the spatial neighborhood. An example of pattern obtained is: in many areas,
heavy rain occurs before the formation of a pond, followed by the development
of mosquito nest. If these two types of methods, only spatial or temporal, can
be very relevant for epidemiological surveillance, they do not capture relations
such as: often, a heavy rain occurs before the formation of a pond followed in a
close area by the development of mosquito nests. In [12], Wang et al. focus on the
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extraction of sequences representing the propagation of spatiotemporal events
in predefined time windows. They introduce two concepts: Flow patterns and
Generalized Spatiotemporal Patterns in order to extract precisely the sequence
of events that occur frequently in some locations. Thus, the authors will be able
to identify patterns of the form: dengue cases appear frequently in area Z1 after
the occurrence of high temperatures and the presence of ponds in area Z2.

However, Huang et al. in [7] found that all the patterns discovered with others
approaches are not all the time relevant because they may not be statistically sig-
nificant and in particular not ”dense” in space and time. They therefore proposed
an interestingness measure taking into account the spatial and temporal aspects
to extract global sequence of features. However, they study the events one after
another. They don’t take into account the interactions such as often heavy rain
and the occurrence of ponds are presented before the development of mosquito
nests. Celik et al. in [2], proposed the concept of Mixed-Drove Spatiotemporal
Co-occurrence Patterns, i.e. subsets of two or more different event-types whose
instances are often located in spatial and temporal proximity (e.g. an event-type
is heavy rain and an instance is heavy rain in zone Z1 the 10/17/2011 ). For
similar reasons than Huang, they have proposed a specific monotonic composite
interest measure based on spatial and temporal prevalence measures. However,
they do not extract the frequent evolutions of event-types over time (events of
each instance occur necessarily in the same time slot). For example, we can only
extract patterns such as: heavy rain, ponds and development of mosquito nests
are frequently found together in lots of time slots. Finally, approaches proposed
by Wang, Huang and Celik cannot capture the evolution of areas with regard to
their set of event-types and the sets of event-types of their neighbors.

In this paper, we describe a method for extracting spatio-temporal sequences
of patterns (i.e. sequences of spatial sets of events) called S2P (Spatio-Sequential
Patterns). We aim at identifying relationships such as: the presence of dengue
cases in an area is often preceded of high temperatures and the presence of wa-
ter tanks in a neighboring area. Thus, we will deal with the developments and
interactions between the study area and its immediate environment. Moreover,
as this type of patterns are very difficult to mine, because of the huge generated
search space, we will introduce an interestingness measure to make our approach
scalable.

3 Spatio-Sequential Patterns: Concepts and Definitions

3.1 Preliminaries

A spatio-temporal database is a structured set of information including geo-
graphic components (e.g. neighborhoods, rivers, etc.) and temporal components
(e.g. rain, wind). Such a database is defined as a triplet DB = (DT, DS, DA)
where DT is the temporal dimension, DS the spatial dimension and DA =
{DA1

, DA2
, . . . , DAp} a set of analysis dimensions associated with attributes. The

temporal dimension is associated with a domain of values denoted dom(DT) =
{T1, T2, . . . , Tt} where ∀i ∈ [1..t], Ti is a timestamp and T1 < T2 < . . . < Tt. The
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spatial dimension is associated with a domain of values denoted dom(DS) =
{Z1, Z2, . . . Zl} where ∀i ∈ [1..l], Zi is a zone. We define on dom(DS) a neigh-
borhood relationship, denoted Neighbor by:

Neighbor(Zi, Zj) = true if Zi and Zj are neighbors, false otherwise (1)

Each dimension DAi (∀i ∈ [1..p]) in the set of analysis dimensions DA, is asso-
ciated with a domain of values denoted dom(Ai). In these domains, the values
can be ordered or not.

To illustrate the definitions, we use a sample of weather database, Table 1,
which represents weather in three cities on three consecutive days. The table
lists temperature (Temp), precipitation (Prec), wind speed (Wind) and gusts in
Km/h. The three cities are associated by a neighborhood relationship described
in Figure 1.

Table 1: Weather changes in three cities :
Z1, Z2 et Z3 on December 22, 23, 24, 2010.

City Date Temp Prec Wind Gusts

Z1 12/22/10 Tm Pm Vm -
Z1 12/23/10 Tm Pm Vl -
Z1 12/24/10 Tl Pm Vm 55
Z2 12/22/10 Tm Pm Vm -
Z2 12/23/10 Tl Pm Vl -
Z2 12/24/10 Tl Pl Vm -
Z3 12/22/10 Tl Pm Vs 75
Z3 12/23/10 Tm Ps Vl -
Z3 12/24/10 Tl Ps Vs 55

Z1

Z2

Z3

Fig. 1: Neighboring
cities.

In Table 1, DT = {Date}, DS = {City} and DA = {Temp, Prec,Wind,
Gusts}. The domain of the temporal dimension is dom(DT) =
{12/22/10, 12/23/10, 12/24/10} with 12/22/10 < 12/23/10 < 12/24/10.
The domain of spatial dimension is dom(DS) = {Z1, Z2, Z3} with
Neighbor(Z1, Z2) = true, Neighbor(Z1, Z3) = true and Neighbor(Z2, Z3) =
false. Finally, for the analysis dimensions Temp and Gusts, the domains are
respectively dom(Temp) = {Tm, Tl, Ts} and dom(Gusts) = {55, 75}.

3.2 Spatio-sequential patterns

Definition 1. Item and Itemset. Let I be an item, a literal value for the
dimension DAi , I ∈ dom(DAi). An itemset, IS = (I1I2 . . . In) with n ≤ p, is a
non empty set of items such that ∀i, j ∈ [1..n],∃k, k′ ∈ [1..p], Ii ∈ dom(DAk),
Ij ∈ dom(ADA′

k

) and k 6= k′.

All items in an itemset are associated with different dimensions. An itemset
with k items is called k-itemset.

We define the In relationship between zones and itemsets which describes
the occurrence of itemset IS in zone Z at time t in the database DB:
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In(IS, Z, t) is true if IS is present in DB for zone Z at time t. In our example,
consider the itemset IS = (TmPmVl) then In(IS, Z1, 12/23/10) is true as the
itemset (TmPmVl) occurs for zone Z1 on 12/23/10 (see Table 1).

We now define the notion of interaction with neighbor zones.

Definition 2. Spatial itemset. Let ISi and ISj be two itemsets, we say that
ISi and ISj are spatially close iff ∃Zi, Zj ∈ dom(DS), ∃t ∈ dom(DT ) such that
In(ISi, Zi, t) ∧ In(ISj , Zj , t) ∧Neighbor(Zi, Zj) is true. A pair of itemsets ISi
and ISj that are spatially close, is called a spatial itemset and denoted by
IST = ISi · ISj.

To facilitate notations, we introduce a n-ary group operator for itemsets to
be assigned by the operator · (near), denoted []. The θ symbol represents the
absence of itemsets in a zone. Figure 2 shows the three types of spatial itemsets
that we can build with the proposed notations. The dotted lines represent the
spatial dynamics.

(a) (b) (c)

Fig. 2: Graphical representation of spatial itemsets (a) IS1 · IS2 (b) θ · IS2 (c) IS1 ·
[IS2; IS3].

The spatial itemset IST = (Tm · (VlPm)) describes that events Tm and VlPm
occur in neighboring zones at the same time. The spatial itemset IST = (θ ·
[Tm;Pl]) indicates that Tm and Pl occur in two different zones neighbor to a
zone where no event appears.

Definition 3. Inclusion of spatial itemset. A spatial itemset IST = ISi ·ISj
is included, denoted ⊆, in another spatial itemset I ′ST = IS′k · IS′l, iff ISi ⊆ IS′k
and ISj ⊆ IS′l.

The spatial itemset IST = (TmPm · Vl) is included in the spatial itemset
I ′ST = (TmPm · Vl55) because (TmPm) ⊆ (TmPm) and (Vl) ⊆ (Vl, 55).

We now define the notion of zones evolution according to their spatial neigh-
borhood relationship.

Definition 4. Spatial Sequence. A spatial sequence or simply S2 is an ordered
list of spatial itemsets, denoted s = 〈IST1IST2 . . . ISTm〉 where ISTi , ISTi+1 satisfy
the constraint of temporal sequentiality for all i ∈ [1..m− 1].

A S2 s = 〈(Tm)(θ · [Pl;Vs])(Vl · [Pl;Tl])〉 is illustrated in figure 3 for the zone
Z1, where the arrows represent the temporal dynamics and the dotted lines
represent the environment.
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Fig. 3: Example of the spatio-temporal dynamic.

A relationship generalization (or specialization) between S2’s is defined as
follows:

Definition 5. Inclusion of S2. A S2 s = 〈IST1
IST2

. . . ISTm〉 is more specific
than a S2 s′ = 〈I ′ST1

I ′ST2
. . . I ′STn〉, denoted s � s′, if there exists j1 ≤ . . . ≤ jm

such that IST1
⊆ I ′STj1 , IST2

⊆ I ′STj2 , . . . , ISTm ⊆ I
′
STjm

.

A S2 s = 〈(TlPm ·PlVs)(55)〉 is included in the S2 s′ = 〈(TlPm ·PlVs)(55 ·Vs)〉
because (TlPm · PlVs) ⊆ (TlPm · PlVs) and (55) ⊆ (55 · Vs).

For a specific zone, we note sZ the associated spatial data sequence in the
database DB. sZ contains or supports a spatial sequence s if s is a subsequence
of sZ . The support of a spatial sequence s is thus defined as the number of zone
supporting s. If the support of the spatial sequence is greater than a user-defined
threshold, the sequence is frequent and corresponds to a spatio-sequential
pattern (S2P ). Nevertheless, in a spatio-temporal context, we need to define a
more precise and suitable prevalence measure, as explained in the next section.

3.3 Spatio-temporal participation

The proposed spatio-sequential pattern allow to tackle both spatial and temporal
issues. In order to manage in an efficient way the mining of such patterns, a new
filtering measure has to be defined. To highlight the participation of an item in a
spatial sequence, we propose an adaptation of the participation index [6] which
is a combination of two measures: spatial participation index and temporal
participation index taking into account respectively the spatial dimension and
the number of occurrences in time.

Definition 6. Spatial participation ratio Let s be a spatial sequence and I
be an item of s, the spatial participation ratio for I in s, denoted by SPr(s, I)
is the number of zones which contain s divided by the number of zones where the
item I appears in the whole database:

SPr(s, I) = Supp(s)
Supp(I)

Definition 7. Spatial participation index Let s = 〈IST1 , IST2 , . . . ISTn〉 be
a spatial sequence, the spatial participation index of s denoted SPi(s) is the
minimum of spatial participation ratio:
SPi(s) = MIN∀I∈dom(A),I∈s {SPr(s, I)}
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Definition 8. Temporal participation ratio Let s be a spatial sequence and
I be an item of s, the temporal participation ratio for I in s denoted TPr(s, I)
is the number of occurrences of s (i.e. the number of instances over time) divided
by the total number of occurrences of I:

TPr(s, I) = NbOccurrences(s)
NbOccurrences(I)

Definition 9. Temporal participation index Let s = 〈IST 1 , IST 2 , . . . ISTn〉
be a spatial sequence, the temporal participation index of s denoted TPi(s) is
the minimum of temporal participation ratio:
TPi(s) = MIN∀I∈dom(Ai),I∈s {TPr(I, s)}

We define the spatio-temporal participation index of a spatial sequence
s, STPi(s), as:

STPi(s) = 2 ∗ SPi(s) ∗ TPi(s)
SPi(s) + TPi(s)

(2)

Given a spatio-temporal database DB, the problem of spatio-sequential pat-
tern mining is to find all spatial sequences whose spatio-temporal participation
index is greater than a user-specified threshold min stpi.

Note that the predicate ”STPi is greater than a user-threshold” is antimono-
tonic. If a spatio-sequential pattern s is not frequent, all patterns s′ such as s
is included in s′ (s � s′), are also not frequent. This property is used in our
pattern mining algorithm to prune the search space and quickly find frequent
spatio-sequential patterns.

4 Extraction of spatio-sequential patterns

In this section, we propose an algorithm called DFS-S2PMiner to extract
spatio-sequential patterns considering both spatial and temporal aspects. DFS-
S2PMiner adopts a depth-first-search strategy based on successive projections of
the database such as FP-Growth [5] and Prefixspan [8] for scalability purpose.
Specifically, this algorithm is based on the pattern-growth strategy used in [5].
The principle of this approach is to extract frequent patterns without a can-
didate generation step. This approach recursively creates a projected database,
associates it with a fragment of frequent pattern, and ”mines” each projected
database separately. The frequent patterns are extended progressively along a
depth-first exploration of the search space.

First, we introduce the definition of the projection of a spatio-temporal
database used in the algorithm. Let s be a spatio-sequence of the database DB.
The projection of database DB w.r.t. s, denoted DB|s, is the set of suffixes of
s in DB.

The algorithm 1 describes our recursive algorithm DFS-S2PMiner. First, the
set of frequent items I and θ · I, denoted F1, is extracted from the projected
database DB|α (line 1 of Algorithm 1). These items constitute extensions of
sequence α. Note that in the first recursive call, DB|α corresponds to the initial
database DB (since α = {}). Then, for each of these items X ∈ F1, we extend
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the spatio-sequential pattern α with X (lines 3 and 4). Two types of extension
are possible : 1) adding X to the last spatial itemset of the sequence α (line 3)
or 2) inserting X after (i.e. the next time) the last spatial itemset of α (line 4).
We check the measure of interest for these two spatio-sequential patterns (lines
5 and 9) and record frequent ones in the set of solutions F (lines 6 and 10). For
each frequent pattern, the algorithm then performs another projection of the
database using DB|α and recursively extends the pattern by invoking again the
algorithm (lines 7 and 11). The algorithm stops when no more projections can
be generated.

Algorithm 1 DFS-S2PMiner

– Main routine
Require: A spatio-temporal database DB and a user-defined threshold min stpi
Ensure: A set of frequent spatio-sequential patterns F
α← {}
Call Prefix-growthST(α,min stpi,DB|α, F )

– Prefix-growthST (α,min stpi,DB|α, F )
Require: a spatio-sequential pattern α , the user-defined threshold min stpi, the projection DB|α

of the spatio-temporal database on α, and F a set of frequent spatio-temporal patterns;
1. F1 ← {a set of frequents items I and θ · I on DB|α, with I ∈

⋃
i∈[1..p] dom(DAi ) }

2. for all X ∈ F1 do
3. β ← αX
4. δ ← α(X)
5. if STPi(β) ≥ min stpi then
6. F ← F ∪ β;
7. Prefix-growthST(β,min stpi,DB|β , F )
8. end if
9. if STPi(δ) ≥ min stpi then

10. F ← F ∪ δ;
11. Prefix-growthST(δ,min stpi,DB|δ, F )
12. end if
13. end for

We use our running example (Table 1 and Figure 1) with min stpi = 2/3 to
illustrate this algorithm.
Iteration 1 (α = {})

– Extraction on frequent items and spatial items (line 1). The first
step is to extract frequent items and frequent spatial items from DB, let:

F1 ={Pm : 3, Tm : 3, Vm : 2, Vl : 3, Tl : 3, 55 : 2, θ · Tm : 3,

θ · Pm : 3, θ · Vm : 3, θ · Vl : 3, θ · Tl : 3, θ · 55 : 3}

– Extension of current sequence α (lines 3-4).
– STPi processing and Recording solutions (lines 5-6 and 9-10).
– Projection and Recursive call (lines 7 and 11). For each frequent

item I and θ · I, the algorithm calculates the corresponding projection of
the database. For example, for the frequent item Pm, we obtain the follow-
ing projection (see Table 2). Each of these projected database is used in a
recursive call to find its frequent super-sequences.
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Table 2: Projected database of 〈(Pm)〉

Zones Sequences Neighbors Neighbor sequences

Z1 S1 = 〈( Vm)(TmPmVl)(TlPmVm55)〉 Z2 S2 = 〈( Vm)(TlPmVl)(TlPlVm)〉
Z3 S3 = 〈( Vs75)(TmPsVl)(TlPsVs55)〉

Z2 S2 = 〈( Vm)(TlPmVl)(TlPlVm)〉 Z1 S1 = 〈( Vm)(TmPmVl)(TlPmVm55)〉
Z3 S3 = 〈( Vs75)(TmPsVl)(TlPsVs55)〉 Z1 S1 = 〈( Vm)(TmPmVl)(TlPmVm55)〉

Iteration 2 (α = 〈(Pm)〉)

– Extraction on frequent items and spatial items (line 1). The first
recursive call will build the super-sequences with the prefix 〈(Pm)〉 from the
projected database of Table 2. Specifically, the algorithm will find frequent
items in the projected database (line 1) and extend 〈(Pm)〉 (line 2 - 4). The
frequent items obtained from DB|〈(Pm)〉 are: {Vm : 2, Tm : 2, Pm : 2, Vl :
3, Tl : 3, 55 : 2, θ · Vm : 3, θ · Tl : 3, θ · Pm : 3, θ · Vl : 3, θ · Tm : 3, θ · 55 : 3}

– Extension of current sequence α (lines 3-4). The first frequent item
found is 〈Vm〉 : 2. Therefore, we can build two spatial sequences: 〈(PmVm)〉
(line 3) and 〈(Pm)(Vm)〉 (line 4).

– STPi processing and Recording solutions (lines 5-6 and 9-10). The
spatio-sequential pattern 〈(Pm)(Vm)〉 with STPi = 2/3 is frequent (line 9).

– Projection and Recursive call (lines 7 and 11). Thus, the algorithm
uses this pattern to make a new projection (see Table 3) and to recursively
search all frequent super-sequences with the prefix 〈(Pm)(Vm)〉.

Table 3: Projected database of 〈(Pm)(Vm)〉

Zones Sequences Neighbors Neighbor sequences

Z1 S1 = 〈(TmPmVl)(TlPmVm55)〉 Z2 S2 = 〈(TlPmVl)(TlPmVm)〉
Z3 S3 = −

Z2 S2 = 〈(TlPmVl)(TlPlVm)〉 Z1 S1 = 〈(TmPmVl)(TlPmVm55)〉
Z3 S3 = ∅ Z1 S1 = 〈(TmPmVl)(TlPmVm55)〉

Iteration 3 (α = 〈(PmVm)〉)

– Extraction on frequent items and spatial items (line 1). The frequent
items obtained for DB|〈(PmVm)〉 are: {Vm : 2, Pm : 2, Vl : 2, Tl : 2, θ · Vm :
3, θ · Tl : 3, θ · Pm : 3, θ · Vl : 3, θ · 55 : 3}.

– Extension of current sequence α (lines 3-4). For example, the spatial
item θ ·Pm : 3 is one of the frequent items. In this case, the algorithm builds
the spatio-sequential pattern 〈(Pm)(Vm)(θ · Pm)〉.

– STPi processing and Recording solutions (lines 5-6 and 9-10). This
pattern is frequent with a STPi = 1 because 〈θ · Pm〉 appears in all times
and zones (see Table 3).
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– Projection and Recursive call (lines 7 and 11). When all frequent
items are projected, the algorithm goes through another branch of the search
space, i.e. patterns beginning with 〈(Tm)〉 (see set F1)

The algorithm thus proceeds generally in the same way whether items are
spatial or not. The main difference is how to compute the support. The support
of a spatial item is the number of zones where the item occurs at least once
in their neighborhood (so we have θ · Vl : 3 in Table 2). Notice that when the
algorithm extends a pattern of type 〈(IST1

)(IST2
)...(ISTk ·X)〉 with a common

item θ · Y , the operator of n-ary group is used to represent the sequence as
〈(IST1

)(IST2
) . . . (ISTk · [X;Y ])〉.

5 Experiments

The approach proposed in this paper has been integrated in a Java prototype,
and it has been experimented on two real datasets. The first one represents the
evolution of dengue infection in a city during an epidemic (26 dates). The city is
divided in 81 districts each one characterized by 12 epidemic and environmental
attributes (e.g. number of dengue cases, precipitation per day or presence of
pools). The second dataset is a record of biological indicators in the Saône rivers,
for example, IBGN (Standardized Global Biological Index) and IBD (Biological
Diatom Index). These indicators are associated with hydrological stations along
the watercourse and raised up made by some stations along the watersheds of
the Saône. This dataset includes 815 samples associated to 223 stations (zones)
and 10 attributes.

We compared our approach with the work proposed by Tsoukatos [11] since
it is the closest work. Indeed, this work extracts sequences of itemsets repre-
senting the evolution of each zone individually (but without taking into account
neighbors as in our approach). Experiments have been done on an Intel Core I5
processor with 4G of RAM on Linux.

First, a qualitative evaluation of the results was done. We compared the
patterns obtained by our approach with the ones obtained by the DFS Mine
algorithm of Tsoukatos on the dengue dataset.

For example, both approaches could find classical sequential patterns such
as ”few pools, few precipitations and few graveyard are followed by few dengue,
few precipitations and wind”. However, our approach could also find complex
patterns such as ”few pools, few precipitations and few graveyard, followed by
few pools and few precipitations in neighbor zones, are followed by few dengue
in neighbor zones”. This example gives an idea of the richness of our patterns
by enabling to highlight the influence of neighbor areas.

When using the spatio-temporal participation index as measure of interest,
we can’t compare any further the extracted patterns since prevalence measures
are different. While the approach of Tsoukatos keeps sequences occurring in many
zones but not necessarily several times, our approach keeps sequences occurring
in many zones and several times. The interest of our proposal is to consider the
temporal weight of patterns.
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Second, a quantitative evaluation of our approach was done. We compared
the execution time of our algorithm with the DFS Mine algorithm proposed
by Tsoukatos in [11]. Figure 4 shows execution times of DFS Mine (classical
support) and DFS-S2PMiner algorithms (using classical support and spatio-
temporal participation index) on the studied datasets for several thresholds.
Execution times are relatively similar while our approach is doing more complex
processing. Indeed, as shown by figure 5, the STPi measure allows an efficient
pruning of the search space, even for the large dataset of the Saône river.

(a) (b)

Fig. 4: Execution runtime of DFS Mine and DFS-S2PMiner algorithms on (a) Dengue
dataset (b) River dataset

6 Conclusion & Perspectives

In this paper, we propose a new concept of spatio-temporal patterns called
spatio-sequential patterns (S2P). This concept enables to analyze the evolution
of areas considering their set of features and their neighboring environment. An
example application of these patterns is the study of the spatiotemporal spread
of dengue w.r.t. epidemic, district and environmental data. A formal framework
is established to define S2P generically. To extract these patterns, we propose
a generic method called DFS-S2PMiner based on a depth-first strategy. A new
prevalence measure has been defined to cope with the limits of the classical sup-
port w.r.t. spatial and temporal aspects. Our proposal has been experimented on
two real datasets. Results show the interest of the approach to extract efficiently
rich spatio-temporal patterns.

Among possible future developments, we plan to extend the concept of neigh-
borhood to n neighborhoods while allowing scalability. No new definitions are
needed but an heuristic exploration of the search space may be required.
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(a) (b)

Fig. 5: Number of patters extracted by DFS Mine and DFS-S2PMiner algorithms on
(a) Dengue dataset (b) River dataset
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