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Abstract—Data aggregation is one of the key features used
in databases, especially for Business Intelligence (e.g., ETL,
OLAP) and analytics/data mining. When considering SQL
databases, aggregation is used to prepare and visualize data for
deeper analyses. However, these operations are often impossible
on very large volumes of data regarding memory-and-time-
consumption. In this paper, we show how NoSQL databases
such as MongoDB and itskey-value stores, thanks to the native
MapReduce algorithm, can provide an efficient framework
to aggregate large volumes of data. We provide basic mate-
rial about the MapReduce algorithm, the different NoSQL
databases (read intensive vs. write intensive). We investigate
how to efficiently modelize the data framework for BI and
analytics. For this purpose, we focus on read intensive NoSQL
databases using MongoDB and we show how NoSQL and
MapReduce can help handling large volumes of data.

keywords: Massive Data Sets, Data Aggregation, SQL,
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I. I NTRODUCTION

Many domains such as finance, health and environment
deal with very large data repositories. This is also the case
when considering web data and applications, for instance
for social networks. NoSQL (Not Only SQL) databases have
been recently introduced to cope with the challenging topic
of managing and analyzing such repositories (e.g. Cassandra,
MongoDB), and consider a non-relational model.

Most of the time, data mining in such domains requires
data aggregation as a pre-processing step. However, this
step could become quite complicated when manipulating
huge amounts of data, because of the resource and/or time
required. Moreover, it often induces a storage of these
aggregated data (pre-processing). In this paper, we explain
why using a NoSQL database could be a great solution by
comparing SQL and NoSQL aggregation. Data aggregation
is a key process in many domains and the optimization of
this step makes the workflow really simpler and faster. We
consider MongoDB1, as this is a fast and reliable database

1http://www.mongodb.org/

which can aggregate and retrieve data in a new and faster
way. Moreover, it allows to apply the MapReduce framework
which has been proposed to allow parallel computation when
considering large repositories.

The paper is organized as follows. Section II intro-
duces NoSQL databases and the CAP paradigm. Section III
presents the principle of the MapReduce algorithm and the
interest of such an algorithm for data processing. Section
IV describes the mongoDB implementation and the so
called “auto-sharding architecture” for aggregating dataand
presents different benchmarks. We also compare MySQL
and MongoDB data aggregation and retrieval. Related work
is detailed in Section V. Finally, we conclude in section VI.

II. SQL VS. NOSQL

In this section, we compare the classical relational model
(relying on SQL for queries) and NoSQL databases, by
first discussing the properties of such a model compared to
the classical ACID properties. We then compare the varied
NoSQL frameworks and solutions.

A. ACID vs. CAP

For most of database management systems (DBMS), the
ACID model ensures the database reliability [9]: information
has to beAtomic, which means that a fail of only one
part of an operation will result in the fail of the entire
operation; as only valid data can be written into the database,
information has to beConsistent(read and write errors
are avoided); multiple transactions at the same time do
not impact each others: this is theIsolation requirement,
and finally, information has to beDurable, which means
effectively stored into the database (and not queued into
memory).

Otherwise, there are many cases where such models
cannot be applied, for example in a distributed environment.
Thus, the key-value (Memcached, Redis), columns ori-
ented (Google BigTable, Cassandra) and document oriented
databases (MongoDB) are based on the BASE paradigm
and the CAP theorem. BASE stands for Basically Available,



Soft state, Eventually consistancy. It means that NoSQL
makes the choice to loose Consistency in order to improve
Availability and Performance.

Introduced by [2], and formally proven in [8] the CAP
(Consistency, Avaibility and Partition tolerance) problem
states that in shared-data systems only two of the three CAP
properties can be achieved at one moment in time, leading
to three possible configurations2:

• Consistency and Partition tolerance (i.e, HyperTable)
• Availability and Partition tolerance (i.e, Cassandra,

CouchDB, MongoDB)
• Consistency and Availability (hard to combine...)

Figure 1. The CAP Brewer Model

B. Strengths

We denote two main strengths of NoSQL (Not only SQL)
database systems. Firstly, these systems are more scalable
and better for cross-nodes operations [12]. It is adapted to
large volumes data processing in a distributed environment.
Indeed, since most NoSQL databases give up consistency
(and even if it is important to well design your database),
NoSQL offers great read/write operations, and are able to
aggregate data really faster.

Secondly, NoSQL systems are schema-less design [11].
The user does not have to think about his database evolution.
This model totally eases database updates.

C. Weaknesses

Many existing systems are working with SQL databases
[10]. If the user chooses to migrate to a NoSQL database,
he will have to take care about the migration management.
Indeed, in case of huge amounts of data, a migration induces
a process in order to “convert” from SQL data into NoSQL
data. For example, see Section IV where we describe the a
real case migration process.

2Notice that CouchDB (http://couchdb.apache.org/) support ACID con-
straints

When using NoSQL database systems, the user has to
recall that the main interest is not consistency [11]. If the
model does not require strict consistency, then loosing it
is not a real problem and the NoSQL solution becomes
more logical, as most of the NoSQL systems do not handle
transactions. As an illustration, web users are now used to
following an order process, and to discovering at the end
that the item is not available anymore. This is due to the
fact that more and more web systems are designed with
NoSQL. Otherwise, web users do not mind anymore about
the final availability of the order, showing that people are
used to loose consistency in online applications.

Finally, NoSQL databases are an emerging technology
[10], and companies or research centers such as Facebook,
Twitter, and Talend are longer to move to NoSQL databases
in order to manage all or part of their data.

D. NoSQL Databases Comparison

There are four main kinds of NoSQL databases, listed
below.

• Key-value storesystems store data as key-value pairs
in a structured or unstructured way.

• Column orienteddatabases store data as sparse tabular
data.

• Document orienteddatabases are organized as docu-
ments in collections. A collection contains quite similar
objects. This kind of database is schema-less since
the the number of fields is not limited and can be
dynamically added to a document

• Graph oriented databases store graph-oriented data
(e.g. social networks).

Key-value store databases are designed for caching
content. Column oriented databases as Cassandra are
suitable for intensive write frameworks, as they are
designed to handle constant growing databases. However,
thew provide less query/read possibilities. Document
oriented databases such as couchDB and mongoDB are
adapted for very large databases which do not change very
often (read intensive).

Table I shows a summary of different NoSQL systems. We
distinguish read intensive NoSQL Systems from write inten-
sive ones. In the first case, the system is more efficient during
the write process, leading to a less consistent database. This
is the case of Cassandra for example, which writes the data
without checking system consistency, and uses a versioning
system for ensuring consistency during the reading process.
In the second case, the system is more performant during the
reading process, leading to a weak consistent system. For
example, MongoDB is known to be eventually consistent,
and uses BSON (binary JSON) in order to store the data
together with a query optimized process and native drivers.
Finally, read intensive systems focus on hight efficiency



Name API Language Concurrency Replication Misc

Key-value store
Redis3 Several

languages
C In memory with time-defined

asynchronous saves on disk.
Master / Slave Handle lists, sets, sorted sets,

hashes, queues
Column store

Cassandra4

(Facebook,
Twitter)

many Thrift lan-
guages

Java Eventual consistency (Avail-
abity+Partition Tolerance)

MVCC marriage of Dynamo and
BigTable[4]

Hypertable5

(Rediff)
Thrift (Java,
PHP, Perl,
Python, Ruby,
etc.)

C++/HQL
(HyperTable
Query Language)

Strong consistency (Consis-
tency+Partition Tolerance)

MVCC High performance with a C++
implementation of Google’s
Bigtable, Commercial support

Document store
CouchDB6 REST Erlang/JSON Eventual consistency (Avail-

abity+Partition Tolerance)
MVCC Query Method using MapRe-

duce and Javascript functions,
Better durability

MongoDB7

(Foursquare,
Talend ETL)

Several drivers
with a dynamic
object-based
language for
querying

C++/BSON (bi-
nary JSON)

Eventual consistency (Avail-
abity+Partition Tolerance)

Master / Slave,
Update in Place
(atomic operation
at a single docu-
ment level)

Query Builder including a
Javascript MapReduce imple-
mentation, GridFS specifica-
tion

Table I
NOSQL DATABASE SYSTEMSCOMPARISON

when retrieving data, whereas write intensive systems focus
on efficiency storing the data in the time.

Some NoSQL systems (i.e, Cassandra, couchDB) have
a very interesting replication system called Multi-Version
Concurrency Control (MVCC) [1]. This system allows
the storage of different versions of the same data. It
then compares the different versions to merge them. It is
particularly useful in distributed databases handling multiple
simultaneous writing operations. It insures an “eventual
point-in-time consistency”, also called “weak consistency”
and avoids the use of locks. The main inconvenient is
that this kind of system has to periodically delete the old
entries (time loss). Others prefer a classical Master / Slave
replication which implied locks (i.e, mongoDB).

In this paper, we choose to use mongoDB8, for the
following reasons:

• MongoDB is read-intensive and we focus on read-
intensive data processing when dealing with data ag-
gregation and Business Intelligence;

• MongoDB is open-source and has a strong community;
• MongoDB is a consistent alternative to a Hadoop

environment since it is possible to use MapReduce
directly as a command to query the database;

• Drivers for MongoDB exist the most used languages;
• It is possible to build very complex queries (comparable

to SQL queries) with mongo, which is a real advantage
since it combines the scalability offered by NoSQL
databases and a complete and clear query interface to
retrieve data;

• MongoDB allows the user to easily managesharding

8http://www.mongodb.org

computations in a distributed environment, with the so-
calledauto-shardingfeature.

Database sharding is a method of horizontal partitioning
in a database or search engine. Each individual partition is
referred to as ashard or database sharded. For example,
Figure 2 shows a sharded environment with mongoDB:
each mongod (C1, C2, C3) is a mongo server instantiation
and each shard is a collection of replica sets (basically
Master / Slave replication which insures scalability and data
availability)

Figure 2. MongoDB Shard Clustering (www.mongodb.com)

The MongoDB Query Builder is complete and provides
similar functions to SQL (group/group by, sort/order by,
find/select) with a lot of useful operators ($in, $all).

Finally, MapReduce is also very scalable with Mongo.
This aspect is interesting, especially for further applications.
In the next section, we detail what MapReduce is, and why
this is useful in our framework.



III. T HE MAPREDUCE ALGORITHM

A. Map Reduce Overview

MapReduce [7] is a programming model for managing
large amounts of data (more than one terabyte) popularized
by Google in 2004. The main interest of this model is that
the two primitivesMap andReduceare easily parallelizable
and can perform on large sets of data. [5] It is perfectly
adapted to large scale distributed applications and large data
processing. In our case, it is adapted to process large sets of
data in a mongoDB database.

The Map primitive consists in processing a data list in
order to create key/value pairs. Then, theReduceprimitive
will process each pair in order to create new aggregated
key/value pairs.

map(k1, v1) = list(k2, v2) (1)

reduce(k2, list(v2)) = list(v3) (2)

List : (a; 2)(a; 4)(b; 4)(c; 5)(b; 2)(a; 1) (3)

After mapping : (a; [2, 4, 1]), (b; [4, 2]), (c[5]) (4)

After reducing : (a; 7), (b; 6), (c; 5) (5)

Equations (1), (2) show both map and reduce primitives.
As it is explained above, the map function process a data
list and return key-value pairs . Then the reduce function
will aggregate (SUM, AVG and so on) values to return new
key-value pairs. (Figure 3).

Equations (3), (4), (5) show a simple example which de-
scribes the different states after mapping and after reducing
in order to visualize the two processes.

Figure 3. MapReduce Execution Flow

For example, Hadoop9, an Apache open-source environ-
ment for distributed application, implements a MapReduce
framework. It is useful if the application is mostly build
around these two primitives and is easily parallelizable.

9http://hadoop.apache.org

B. MapReduce in MongoDB

MongoDB natively implements a MapReduce framework
into its system. There are some differences with the “Google
MapReduce”, for instance, it is possible to apply a finalize
function [12].

It is possible toconverta complex SQL query for aggre-
gating data in a Mongo MapReduce command.

IV. I MPLEMENTATION AND RESULTS

A. Modelization

It is interesting to compare SQL and NoSQL databases
modelizations. Let us take a simple example with a table
“Node” containing nodes information(id, sequence) and a
table “Relation” containing relations between nodes. For this
example, there are200, 000 nodes and around1, 500, 000
relations.

Node
id

value

Relation
id node1
id node2

Figure 4. Relational Database Modelization

As Figure 4 shows, a node could be related to several
other nodes (by two different ways). It means that if we
want to retrieve every related nodes of node(n), we have to
use a complex and expensive joint operation. In the same
way, if we want to aggregate data, the processing is heavy.

In a NoSQL modelization, you can choose how to mod-
elize your data because there is no explicit relations (in term
of constraints).

A first modelization consists in mapping to the SQL
model. There is a collection (understand ”Table” in the
NoSQL nomenclature in order to store quite similar objects)
called “Nodes” containing the nodes and another one called
“Relations” with “node1” and “node2” attributes to modelize
the whole relations.

Nodes
id

value

Relations
id

value 1
value 2

Figure 5. NoSQL Modelization Mapped on Relational DatabaseMod-
elization (Wrong Modelization)

This modelization is not relevant in a NoSQL database
because we loose the interest of such a system [10]. NoSQL
databases are not designed to emulate relationnal database.
There is no joint system so we have to think in a new way
to modelize our data.

Another modelization consists in using the strength of
NoSQL databases: arrays (and more generally complex types



attributes). Indeed, it is possible to store arrays or more
complex types as a simple attribute. In our modelization, we
now use only one collection called ”Nodes” and we store
the ”related nodes” in an array.

Nodes

id
value
relations [ ] value 1

value 2
...

value n

Figure 6. NoSQL Modelization Using Complex Type Attributes(Good
Modelizaton)

Thanks to this modelization, retrieving related nodes for
a specific one is instantaneous. The user has just to get this
node and is able to directly retrieve the related nodes in the
“relations” attribute.

B. Benchmarks

In this paper, we study three processes: firstly, the migra-
tion from a SQL database to a NoSQL (mongoDB) database.
Then, we compare an aggregation over1, 500, 000 rela-
tions (without using MapReduce but the Group function in
mongo). Finally, we test a classical cross-nodes computation
(calculate the intersection) which is a weakness in SQL
databases when processing large amounts of data.

We use the following SQL aggregation query:

SELECT COUNT(id)
FROM node
WHERE node.id = relation.idnode1
OR node.id = relation.idnode2;

Here are our observations:

• Migration on a single laptop from SQL to NoSQL took
around 15 hours (depending on your configuration)

• Aggregation without MapReduce (count in how many
relations is implied each node) took 3 hours with SQL,
and a few minutes with NoSQL

• Intersection was very complicated and time consuming
with SQL because we first have to retrieve each related
nodes for each node. With mongoDB, we avoid this
step thanks to the array attribute relations

C. The intersection algorithm showcase

This showcase focus on the strength of complex attributes
in NoSQL databases. We show how it is so powerful for
this specific example. Imagine we want to retrieve the
intersection of the relations for two nodes (it is also relevant
for n nodes). With mongoDB we just need to retrieve the
two sorted relations array and then to run Algorithm 1.

Algorithm 1 : Intersection
Data: Relation tables
Result: Intersection of relation tables

/* Suppose we retrieve the two sorted
relations array */

inter=array1

p1 = 02

p2 = 03

while p1 < count(relations1) and4

p2 < count(relation2) do
if relation1(p1) = relation2(p2) then5

inter = relation1(p1)6

p1 = p1 + 17

p2 = p2 + 18

end9

if relation1(p1) < relation2(p2) then10

p1 = p1 + 111

end12

if relation1(p1) > relation2(p2) then13

p2 = p2 + 114

end15

end16

V. RELATED WORK

The NoSQL databases arouse enthousiasm since 2009.
Researchers and companies start considering NoSQL as a
reliable technology which can be useful and adapted to
their needs, breaking the SQL supremacy. [10] is about the
promises around NoSQL databases. The author describe the
three main kinds of NoSQL databases, the pros and cons of
NoSQL databases and compare SQL and NoSQL databases
in order to explain how the NoSQL databases could be a
great alternative.

NoSQL databases were also analyzed and classified in
[11]. This Master Thesis tried to determine if the NoSQL
databases can replace a object-relational layer persistance
layer.

Dr. Rick Cattell10 has published a white paper [3] about
scalable SQL and NoSQL databases, considering the differ-
ences between the two systems in a very objective way. The
paper includes some predictions about the possible future of
NoSQL databases, considering that this kind of technology
is not a simple “passing fad” and underlining the power
of a such system for cross-nodes operations and scalable
databases.

The main interest of NoSQL databases for researchers
and companies is the scalability and the ability to be easily

10Rick Cattell is an independant consultant who worked as a distinguish
engineer at Sun Microsystems and as a researcher at XEROX PARC and
the Carnegie-Mellon University including topics domain such as database
systems and scalabity



implemented in a distributed environment. Google BigTable
was one of the very first NoSQL implementation [4] and
opens the way to new NoSQL distributed databases. Most
of the recent NoSQL databases implement the MapReduce
framework [6] in order to rapidly aggregate data in a dis-
tributed environment. We can quote MongoDB, a document-
oriented database which implements MapReduce as a simple
command and was experimented in [12].
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VI. CONCLUSION AND FUTURE WORK

In this paper, we focus on the basics of NoSQL databases
and how they could replace SQL systems for Business
Intelligence. We describe the interests of NoSQL systems,
especially the document-oriented databases, which are a
great alternative to most cases where SQL is chosen “by
default”. Thanks to a different modelizaton, this kind of
databases allows powerful scalable cross nodes operations,
which is the key feature in BI and so many domains.
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