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Univ. Montpellier 3 Paul Valéry, Montpellier, F-34199
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Abstract. We study length-k-overlap-free binary infinite words, i.e., binary infinite words which
can contain only overlaps xyxyx with |x| ≤ k− 1. We prove that no such word can be generated by
a morphism, except if k = 1. On the other hand, for every k ≥ 2, there exist length-k-overlap-free
binary infinite words which are not length-(k−1)-overlap-free. As an application, we prove that, for
every non-negative integer n, there exist infinitely many length-k-overlap-free binary infinite partial
words with n holes.
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1. Introduction

Repetitions, i.e., consecutive occurrences of a given factor within a word, and repetition-freeness have
been fundamental research subjects in combinatorics on words since the seminal papers of Thue [13, 14]
in the beginning of the 20th century (see also [2]). In particular, Thue and Morse independently showed
the existence of an overlap-free binary infinite word (the Thue-Morse word [8, 14]), i.e., an infinite word
using only two different letters and which does not contain any factor xyxyx with x a non-empty word.

However overlap-freeness is a very restrictive condition, in the binary case, because every binary
word of length at least 5 contains a square, and an overlap is just a square plus one single letter. So it
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is a natural question to know if the fact that words contain a restricted kind of overlaps gives interesting
families of words (similar questions are dealt with, e.g., in [12], [9]).

In the present paper we study the case where x must be of length at least k. Words which do not
contain any factor xyxyx with |x| ≥ k are called length-k-overlap-free binary infinite words. Note that
y may be empty, thus a length-k-overlap-free binary infinite word is also length-k-cube-free.

The paper is organized as follows. After general definitions and notations given in Section 2, the
notion of length-k-overlap-freeness is introduced in Section 3 where it is proved that no length-k-overlap-
free binary infinite word can be generated by a morphism, except if k = 1. In Section 4 we introduce the
concept of 0-limited square property (a word has this property if the squares it contains have a particular
form) to prove that, for every integer k, there exist length-k-overlap-free binary infinite words that are
not length-(k − 1)-overlap-free. In Section 5 we consider the particular case of length-k-overlap-free
words which do not contain cubes of some letters. Section 6 is then dedicated to an application to partial
words1.

2. Preliminaries

Generalities on combinatorics on words can be found, e.g., in [7].
Let A be a finite alphabet. The elements of A are called letters. A word w = a1a2 · · · an of length n

over the alphabet A is a mapping w : {1, 2, . . . , n} → A such that w(i) = ai. The length of a word w
is denoted by |w|, and ε is the empty word of length zero. For a word w and a letter a, |w|a denotes the
number of occurrences of the letter a in the word w. By a (right) infinite word w = a1a2a3 · · · we mean
a mapping w from the positive integers N+ to the alphabet A such that w(i) = ai. The set of all finite
words is denoted by A∗, infinite words are denoted by Aω and A+ = A∗ \ {ε}. A finite word v is a
factor of w ∈ A∗ ∪Aω if w = xvy, where x ∈ A∗ and y ∈ A∗ ∪Aω. Words xv and vy are respectively
called a prefix and a suffix of w.

A morphism on A∗ is a mapping f : A∗ → A∗ satisfying f(xy) = f(x)f(y) for all x, y ∈ A∗. The
morphism f is erasing if there exists a ∈ A such that f(a) = ε. Note that f is completely defined by the
values f(a) for every letter a on A. We can also apply morphisms to infinite words: if w = c0c1c2 . . . is
an infinite word then we define f(w) = f(c0)f(c1)f(c2) . . .

A morphism is called prolongable on a letter a if f(a) = aw for some word w ∈ A+ such that
fn(w) 6= ε for all integers n ≥ 1. This implies that fn(a) is a prefix of fn+1(a) for all integers n ≥ 0
and a is a growing letter for f , that is, |fn(a)| < |fn+1(a)| for every n ∈ N. Consequently, the sequence
(fn(a))n≥0 converges to the unique infinite word generated by f from the letter a,

fω(a) := lim
n→∞

fn(a) = awf(w)f2(w) · · · ,

which is a fixed point of f .
A morphism f : A∗ → A∗ generates an infinite word w from the letter a ∈ A if there exists p ∈ N

such that the morphism fp is prolongable on a. We say that the morphism f generates an infinite word
if it generates an infinite word from at least one letter.

1A preliminary version of this paper was presented at JORCAD’08 [11]. Some results about the case k = 2 appeared in [6].
But in these two papers, the 0-limited square property was replaced by the restricted square property, a much more restrictive
condition.
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A kth power of a word u 6= ε is the word uk prefix of length k · |u| of uω, where uω denotes the
infinite catenation of the word u, and k is a rational number such that k · |u| is an integer. A word w is
called k-free if there does not exist a word x such that xk is a factor of w. If k = 2 or k = 3, then we
talk about square-free or cube-free words, respectively. An overlap is a word of the form xyxyx where
x ∈ A+ and y ∈ A∗. A word is called overlap-free if it does not contain overlaps. Therefore, it can
contain squares but it cannot contain any longer repetitions such as overlaps or cubes. For example, over
the alphabet {a, b} the word abbabaa is overlap-free but it contains squares bb, aa, and baba. It is easy
to verify that there does not exist a square-free infinite word over a binary alphabet, but as we recall in
the next section there exist overlap-free binary infinite words.

Throughout this paper, we shall refer to the alphabets A = {a, b}, and B = {0, 1, 2}.

3. Length-k-overlap-free binary words

In [14], Thue introduced the morphism

µ : A∗ → A∗

a 7→ ab

b 7→ ba

The Thue-Morse word is the overlap-free binary infinite word

t := lim
n→∞

µn(a) = abbabaabbaababbaba · · ·

generated by µ from the letter a (see, e.g., [1] for other definitions and properties, see also [2] for a
translation of the contribution of Thue to the combinatorics on words). Another overlap-free binary
infinite word is t′, the word generated by the morphism µ from the letter b. Note that the word t′ can be
obtained from the word t by exchanging all the a’s and b’s.

We generalize the notion of overlap with the following definition.

Definition 3.1. A length-k-overlap is a word of the form xyxyx where x and y are two words with
|x| = k. A word is length-k-overlap-free2 if it does not contain length-k-overlaps.

For example, the word baabaab is not overlap-free (take x = b, y = aa) but it is length-2-overlap-
free while the word baabaaba is not (take x = ba, y = a).

It is important to note that a length-k-overlap-free word can contain a3k−1 for each letter a. More
generally, a length-k-overlap-free word can contain `-powers u` where the value of `, which can be
greater than k, depends on the word u. For example, the word u = ababababab, which is a 5-power,
is length-3-overlap-free. In contrast, the word v = abaabaaba, which is only a 3-power and whose
length is smaller than |u|, is a length-3-overlap thus not being length-3-overlap-free! This peculiarity is
one reason for restricting the definition, for example to the case of cube-free words. However, such a

2While it is not exactly the same, this notion of length-k-overlap-freeness resembles that of k-bounded overlaps introduced by
Thue in [14]. Note also that length-k-overlap-freeness is inappropriately called k-overlap-freeness in [6] and [11].
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restriction seems to be very drastic and it is generally enough to avoid the powers of letters. In Section 5,
we study the change in our results when restricting to the case of words without a3 and we will see that
the results are not very different.

By definition, it is evident that every length-k-overlap-free word is also length-k′-overlap-free for
k′ ≥ k. Note that a word is length-1-overlap-free if and only if it is overlap-free. So, an overlap-free
infinite word is a length-k-overlap-free infinite word for every positive integer k.

It is a well-known important property that t and t′ are the only overlap-free binary infinite words
which are generated by morphisms (see, e.g., [5], [10]). Since length-k-overlap-freeness does not imply
length-`-overlap-freeness for ` < k, length-k-overlap-freeness is weaker than overlap-freeness when
k ≥ 2. Therefore, we might suppose that there exist binary infinite words, generated by morphisms, that
are length-k-overlap-free for some k ≥ 2 but that are not overlap-free (therefore different from t and
t′). In fact, rather surprisingly, for that property, length-k-overlap-freeness does not give more than only
length-1-overlap-freeness.

Theorem 3.2. Let k ∈ N+ and letw be a length-k-overlap-free binary infinite word. Thenw is generated
by a morphism if and only if w = t or w = t′.

Proof:
The only if part is obvious since t = µω(a) and t′ = µω(b) are length-k-overlap-free for every positive
integer k.

Conversely, as we have already seen, if an overlap-free (k = 1) binary infinite word w is generated
by a morphism then w = t or w = t′. Thus it remains to prove that an infinite word which contains an
overlap but is length-k-overlap-free for some integer k ≥ 2 cannot be generated by a morphism.

Assume, contrary to what we want to prove, that an infinite wordw over A which contains an overlap
but is length-k-overlap-free for some integer k ≥ 2, is generated by a morphism f . Then there exists
a positive integer r such that f r is prolongable on the first letter of w. Without loss of generality we
may assume that this first letter is the letter a. In particular, w begins with (f r)n(a) for every n ∈ N.
Moreover, by definition a is a growing letter for f r, which implies that there exists a positive integer N0

such that |f rN0(a)| ≥ k.
If f(b) = ε or if |f(a)|b = 0 (which means f(a) = ap, p ≥ 2, because a is a growing letter for f ),

then w is the periodic word (f(a))ω which contains arbitrarily large powers of f(a).
If f(b) = bp, p ≥ 2, or if f r(a) ends with b and f(b) = b (which implies that f rn(a) ends with bn

for every integer n), then w contains arbitrarily large powers of b.
If f(a) ends with a and begins with abpa, p ≥ 1, and f(b) = b, then w, which begins with (f r)2(a),

contains a factor auaua with u = bp.
If w contains an overlap auaua as a factor, then f rN0(auaua) is also a factor of w.
The only remaining case is w contains an overlap bubub as a factor and f(b) = xay for some words

x, y ∈ A∗. Then f rN0(bubub) contains the factor f rN0(a)f rN0(yux)f rN0(a)f rN0(yux)f rN0(a).
Consequently, since f rN0(w) = w (because w = (f r)ω(a)), in all cases w contains a length-k-

overlap, which contradicts with the hypothesis.

Remark. Although the case of alphabets with more than two letters is out of the scope of the present
paper, one can notice that Theorem 3.2 is no more true if we consider larger alphabets. Indeed, over a
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3-letter alphabet it is possible, for every integer k ≥ 2, to find length-k-overlap-free words that are not
length-(k − 1)-overlap-free and that are generated by morphisms.

For example, let us consider the morphism

µc : (A ∪ {c})∗ → (A ∪ {c})∗

a 7→ ac3(k−1)b

b 7→ ba

c 7→ c

This morphism is obtained from the morphism µ by adding c3(k−1) at the middle of µ(a). Since µ is
an overlap-free morphism, the only overlaps in the word µωc (a) are powers of the letter c. Therefore the
word µωc (a) is length-k-overlap-free but not length-(k − 1)-overlap-free.

4. The 0-limited square property

We have seen with Theorem 3.2 that the Thue-Morse words t and t′ are the only length-k-overlap-free
binary infinite words generated by morphisms, whatever be the value of k. So it is natural to ask about the
existence of length-k-overlap-free binary infinite words with k ≥ 2 which are not length-`-overlap-free
for ` < k. The answer is given in the present section where a family of such words is characterized.

Before this, we have to recall some works of Thue.

In order to prove the existence of infinite cube-free words over a two-letter alphabet from square-free
words over three letters, Thue used in [13] the mapping

δ : B∗ → A∗

0 7→ a

1 7→ ab

2 7→ abb

Six years later he proved the following result.

Proposition 4.1. [14] [2] Let u ∈ Aω and v ∈ Bω be such that δ(v) = u. The word u is overlap-free if
and only if the word v is square-free and does not contain 010 nor 212 as a factor.

Thue also remarked that if the word δ(w) is not overlap-free for a square-free wordw (thus containing
010 or 212) then every overlap xyxyx in δ(w) is such that x is a single letter. Therefore, it suffices to
prove the existence of a square-free ternary infinite word containing either 010 or 212 over B to obtain
a length-2-overlap-free binary infinite word that is not overlap-free. Here again such a word is found in
[14].

Let τ be the morphism
τ : B∗ → B∗

0 7→ 01201

1 7→ 020121

2 7→ 0212021
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Proposition 4.2. [14] The word τω(0) is square-free and it contains 212 as a factor.

Now, to prove the existence, for every integer k ≥ 2, of length-k-overlap-free binary infinite words
that are not length-(k − 1)-overlap-free, we generalize Thue’s idea with the following notion.

Definition 4.3. An infinite word v over B has the 0-limited square property if

• the word v does not contain 00 as a factor,

• whenever v contains a non-empty square rr as a factor, then, in v, the factor rr is preceded (if it is
not a prefix of v) and followed by the letter 0.

Note that if a word v ∈ Bω has the 0-limited square property then v is overlap-free and if v contains a
non-empty square rr as a factor, the word r does not begin nor end with the letter 0.

The following corollary is straightforward from Proposition 4.2 because each square-free word ob-
viously has the 0-limited square property.

Corollary 4.4. The word τω(0) has the 0-limited square property.

Now, let k, p be two integers with k ≥ 2 and 1 ≤ p ≤ k − 1. We associate to (k, p) the mapping

δk,p : B∗ → A∗

0 7→ ak−p

1 7→ ak−pbp

2 7→ ak−pbp+1

Of course, δ2,1 = δ thus our affirming that this is a generalization of Thue’s idea.

Theorem 4.5. Let u ∈ Aω and v ∈ Bω be such that δk,p(v) = u. If the word v has the 0-limited square
property then the word u is length-k-overlap-free.

Proof:
Suppose that u is not length-k-overlap-free. Since u = δk,p(v), the following cases are possible:

• u contains a factor akxakxak

If |x|b = 0, or if x = zx′ with |z| ≥ k − 2p + 1 and |z|b = 0 then u contains ak−pak−pa which
means that v contains 00.

Henceforth, u contains a factor anakamx′akamx′ak with n+m+k = 2(k−p), i.e., k−p = n+
m+p, and x′ begins with the letter b. Therefore, u contains a factor an+m+pak−px′ap+mak−px′ap+map+n,
which implies that v contains a factor 0yy where y is such that δk,p(y) = ak−px′ap+m (in partic-
ular, y 6= ε). But in this case, y necessarily ends with 0 because p+m ≥ p ≥ 1. Therefore, either
yy is followed by the letter 0 implying that v contains 00 as a factor, or yy is not followed by the
letter 0.

• u contains a factor anbp+1amxanbp+1amxanbp+1am with n + m = k − p − 1 (this includes the
case where u contains bkxbkxbk when p = k − 1)

In this case, v contains a factor 2y2y2 with δk,p(y2) = amxanbp+1.
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• u contains a factor anbpamxanbpamxanbpam with n+m = k − p
Here, two cases are possible.

1. m 6= 0

Then u contains a factor bpamxanbpamxanbpak−p, which implies that v contains a square
yy, preceded by 1 or 2, with δk,p(y) = amxanbp.

2. m = 0 (then n = k − p)
Then u contains a factor ak−pbpxak−pbpxak−pbp, which implies that v contains a square yy,
followed by 1 or 2, with δk,p(y) = ak−pbpx.

• u contains a factor bnak−pbmxbnak−pbmxbnak−pbm with n+m = p

Here again, two cases are possible.

1. m 6= 0

Then u contains a factor ak−pbmxbnak−pbmxbnak−pbp, which implies that v contains a
square yy, followed by 1 or 2, with δk,p(y) = ak−pbmxbn.

2. m = 0 (then n = p)
Then u contains a factor bpak−pxbpak−pxbpak−p, which implies that v contains a square yy,
preceded by 1 or 2, with δk,p(y) = ak−pxbp.

In all the cases v has not the 0-limited square property.

The conditions given in Definition 4.3 are not sufficient to guarantee that the word v has the 0-
limited square property when u = δk,p(v) is length-k-overlap-free. For example, the word v = 0τω(0)
contains only one square, the factor 00 which v begins with. But, since the word τω(0) has the 0-limited
square property, the word δk,p(τω(0)) is length-k-overlap-free which implies that δk,p(v) is also length-k-
overlap-free (otherwise, δk,p(v) begins with a length-k-overlap whose prefix is ak−pak−pak−p, implying
that δk,p(τω(0)) contains an occurrence of this factor ak−pak−pak−p from which τω(0) contains 00, a
contradiction). However, it is possible to obtain an equivalence by giving conditions on the words u
and v.

Corollary 4.6. Let u, an infinite word over A, which does not contain the factor a2(k−p)+1, and v, an
infinite word over B which does not begin with a square, be such that δk,p(v) = u. The word u is
length-k-overlap-free if and only if the word v has the 0-limited square property.

Proof:
Let u and v be as in the statement. It is of course equivalent that u does not contain the factor a2(k−p)+1

and v does not contain the factor 00, thus our assuming that 00 is not a factor of v.
From Theorem 4.5, it suffices to prove the necessary condition.
Let rr be a factor of v with r 6= ε. According to the hypothesis, rr is not at the beginning of v which

means that in v, rr is preceded (and followed) by at least one letter.

• If r begins with the letter 0 then, since 00 is not a factor of v, r does not end with 0. Thus
δk,p(r) = ak−psbp. For the same reason, rr is preceded by the letter 1 or by the letter 2, so δk,p(rr)
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is preceded by bp.Whatever be the letter following rr, δk,p(rr) is followed by ak−p. Consequently,
u contains the factor bpδk,p(rr)ak−p = bpak−psbpak−psbpak−p, a length-k-overlap. This implies
that u is not length-k-overlap-free.

• If r ends with the letter 0 then, since v does not contain 00 as a factor, r does not begin with 0,
which implies that δk,p(r) begins with ak−pbp. Moreover, in v, the factor rr is followed either by 1
or by 2. Then u contains the factor δk,p(rr)ak−pbp = ak−pbpsak−pbpsak−pbp, a length-k-overlap.
This implies that u is not length-k-overlap-free.

• Now if r begins with 1 or 2, and rr is not followed by 0 then δk,p(r) begins with ak−pbp and
δk,p(rr) is followed by ak−pbp, which means that u is not length-k-overlap-free.

• Finally, if r ends with 1 or 2, and rr is not preceded by 0 then δk,p(r) begins with ak−p and ends
with bp, and δk,p(rr) is preceded by bp. This implies that, since δk,p(rr) is followed by ak−p, u is
not length-k-overlap-free.

Consequently, if u is length-k-overlap-free then v has the 0-limited square property (remark that here
the word u is also [2(k − p) + 1]-free).

Theorem 4.5 gives the first part of the answer to the question we asked at the beginning of this
section by showing the existence of length-k-overlap-free binary infinite words for every integer k ≥ 2.
It remains to prove that some words u satisfying Theorem 4.5 can effectively be constructed containing
length-(k − 1)-overlaps. This is done by using again Thue’s morphism τ .

Proposition 4.7. For every integer k ≥ 2, the word δk,k−1(τ
ω(0)) is length-k-overlap-free but not

length-(k − 1)-overlap-free.

Proof:
Since from Corollary 4.4 the word τω(0) has the 0-limited square property, the word δk,k−1(τω(0)) is
length-k-overlap-free from Theorem 4.5.

Now, we know from Proposition 4.2 that τω(0) contains 212 as a factor. Therefore, δk,k−1(τω(0))
contains the factor δk,k−1(212) = abkabk−1abk, which implies that the length-(k−1)-overlap bk−1abk−1abk−1

is a factor of δk,k−1(τω(0)).

5. Strongly length-k-overlap-free binary words

A length-k-overlap-free binary infinite word must contain occurrences of a2 or b2 (or both). For if it
were not the case the word would be (ab)ω or (ba)ω which obviously contains length-k-overlaps for
every k ∈ N.

As mentioned after Definition 3.1, the particular case of length-k-overlap-free binary infinite words
without x3 for some letter x ∈ A is of interest. We define such words as follows.

Definition 5.1. A word over A is x-strongly length-k-overlap-free if it is length-k-overlap-free and if
it does not contain x3, where x is a letter. A word is strongly length-k-overlap-free if it is x-strongly
length-k-overlap-free for every letter x ∈ A.
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For example, the word a5 is length-2-overlap-free; it is b-strongly length-2-overlap-free, but it is not
strongly length-2-overlap-free because it contains a3 thus being not a-strongly length-2-overlap-free.

Notice that there exists effectively strongly length-k-overlap-free words that are not length-(k − 1)-
overlap-free: for example, from Proposition 4.2, the word δ(τω(0)) is strongly length-2-overlap-free
without being overlap-free.

Since every strongly length-k-overlap-free binary infinite word is length-k-overlap-free and since the
Thue-Morse words t and t′ are cube-free, Theorem 3.2 remains true in the present case.

Theorem 5.2. Let k ∈ N+ and let w be a strongly length-k-overlap-free binary infinite word. Then w is
generated by a morphism if and only if w = t or w = t′.

It is obvious that µ(u) does not contain neither a3 nor b3, whatever be the value of u. This implies that
if µ(u) is a length-k-overlap-free binary infinite word then it is indeed strongly length-k-overlap-free.
Let us recall the two lemmas used by Thue to prove that the Thue-Morse word t is overlap-free.

Lemma 5.3. Let Σ = {ab, ba}. If u ∈ Σ∗ then aua 6∈ Σ∗ and bub 6∈ Σ∗.

Lemma 5.4. A word u ∈ A∗ ∪Aω is overlap-free if and only if the word µ(u) is overlap-free.

The following result is an extension of Lemma 5.4.

Proposition 5.5. Let w ∈ A∗ ∪Aω and let k ∈ N+. The word w is length-k-overlap-free if and only if
the word µ(w) is strongly length-(2k − 1)-overlap-free.

Proof:
If k = 1, the equivalence is true from Lemma 5.4, thus our assuming that k ≥ 2.

If the word w is not length-k-overlap-free then it contains a factor XYXYX with |X| = k. This
implies that µ(w), which contains the factor µ(X)µ(Y )µ(X)µ(Y )µ(X) with |µ(X)| = 2k, is not
length-(2k − 1)-overlap-free.

Conversely, if the word µ(w) is not length-(2k−1)-overlap-free then it contains a factorXxY XxY Xx
where X,Y ∈ A∗, |X| = 2k − 2, and x ∈ A.

If |Y | is even then Y 6= ε. For if not µ(w) would contain XxXxXx which implies that both X and
xXx are in Σ∗, a contradiction with Lemma 5.3. So, let Z ∈ A∗ and y, z ∈ A be such that Y = Zyz.
Then XxY XxY Xx = XxZyzXxZyzXx which implies that both X , xZy, yz, zXx, and Z are
elements of Σ∗.

From Lemma 5.3, X ∈ Σ∗ and zXx ∈ Σ∗ imply x 6= z, and Z ∈ Σ∗ and xZy ∈ Σ∗ imply x 6= y.
Therefore, y = z which contradicts with yz ∈ Σ∗.

Consequently, |Y | is odd so |XxY XxY Xx| is odd, and two cases are possible depending on
whether, in µ(w), the factor XxY XxY Xx appears at an even index or at an odd index.

• µ(w) = µ(w1)XxY XxY Xxyµ(w2) for a letter y.

In this case, by definition of µ, the letter y is also the first letter of Y . This implies thatXxY XxY Xxy =
µ(ZY ′ZY ′Z) with µ(Z) = Xxy. Since |Xxy| = 2k, |Z| = k and the word w is not length-k-
overlap-free.
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• µ(w) = µ(w1)yXxY XxY Xxµ(w2) for a letter y.

In this case, since k ≥ 2 one has X 6= ε, so let X = zX ′, z ∈ A, X ′ ∈ A+. Then
yXxY XxY Xx = yzX ′xY zX ′xY zX ′x, and by definition of µ, the letter y is also the last
letter of Y . This implies that yzX ′xY zX ′xY zX ′x = µ(ZY ′ZY ′Z) with µ(Z) = yzX ′x. Since
|yzX ′x| = 2k, |Z| = k and the word w is not length-k-overlap-free.

Now, we consider the mapping δk,k−1 (k ≥ 2) already used above. Since δk,k−1 is defined by
δk,k−1(0) = a, δk,k−1(1) = abk−1, δk,k−1(2) = abk, it is straightforward that if u ∈ A∗ ∪ Aω is such
that u = δk,k−1(v) for some v ∈ B∗ ∪Bω then u contains a3 if and only if v contains 00. Consequently,
from Theorem 4.5, if u ∈ Aω and v ∈ Bω are such that u = δk,k−1(v) then u is a-strongly length-k-
overlap-free whenever v has the 0-limited square property. We have seen above that if k = 2, i.e., in the
case of Thue’s original mapping δ, the word u is strongly length-2-overlap-free.

Now we notice that, in the case of δk,k−1, the statement of Corollary 4.6 can be simplified because
2(k − p) + 1 = 3 when p = k − 1.

Corollary 5.6. Let u ∈ Aω, and v, an infinite word over B which does not begin with a square, be such
that δk,k−1(v) = u. The word u is a-strongly length-k-overlap-free if and only if the word v has the
0-limited square property.

In this section we have seen that we obtain results similar to those given in Section 4 when adding
the condition that words over A do not contain cubes of some single letter, in particular when using the
mapping δk,k−1. In the next section we give another interesting use of this mapping.

6. Length-k-overlap-free binary partial words

A partial word u of length n over an alphabet A is a partial function u : {1, 2, . . . , n} → A. This means
that in some positions the word u contains holes, i.e., “do not know”-letters. The holes are represented
by �, a symbol that does not belong to A. Classical words (called full words) are only partial words
without holes. Partial words were first introduced by Berstel and Boasson [3] (see the survey [4], and the
references therein).

Similarly to finite words, we define infinite partial words to be partial functions from N+ to A. We
denote by A∗� and Aω

� the sets of finite and infinite partial words, respectively.
A partial word u ∈ A∗� is a factor of a partial word v ∈ A∗� ∪Aω

� if there exist words x, u′ ∈ A∗� and
y ∈ A∗� ∪Aω

� such that v = xu′y with u′(i) = u(i) whenever neither u(i) nor u′(i) is a hole �. Prefixes
and suffixes are defined in the same way.

For example, let u = ab�bba�a. The length of u is |u| = 8, and u contains two holes in positions 3
and 7. Let v = aa�bb�ba�abbaa�. The word v contains the word u as a factor in positions 3 and 8. The
word u is a suffix of the word v.

Note that a partial word is a factor of all the (full) words of the same length in which each � is replaced
by any letter of A.We call these (full) words the completions of the partial word. In the previous example,
if A = {a, b}, the partial word u has four completions: ababbaaa, ababbaba, abbbbaaa, and abbbbaba.
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Let k be a rational number. A partial word u is k-free if all its completions are k-free. Overlaps,
length-k-overlaps, overlap-freeness, and length-k-overlap-freeness of partial words are defined in the
same manner.

In [6] it is proved that overlap-free binary infinite partial words cannot contain more than one hole,
when length-2-overlap-free binary infinite partial words can contain infinitely many holes. Here we
complete this last result by the following theorem.

Theorem 6.1. For every integer k ≥ 2 and for every non-negative integer n, there exist infinitely many
length-k-overlap-free binary infinite partial words containing n holes, and being not (k−1)-overlap-free.

Proof of Theorem 6.1 is constructive and needs some preliminaries.

The word τω(0) contains an infinite number of occurrences of τ(01):

τω(0) = τ(01)u1τ(01)u2 · · ·u`τ(01)u`+1 · · · , ui ∈ B+

=
∏∞

`=1 τ(01)u`

=
∏∞

`=1 01201020121u`.

For every integer n ≥ 0, let Yn be the word obtained from τω(0) by replacing 102 by 22 in n (not
necessarily consecutive) occurrences of τ(01). Of course Y0 = τω(0).

Proposition 6.2. For every n ∈ N, the word Yn has the 0-limited square property.

Proof:
In [6], it is proved that the occurrences of 22 are the only squares in the word Yn. Consequently, Yn
does not contain 00 as a factor. Moreover, Yn contains no squares but those 22 obtained from τω(0)
by replacing the factor 102 by 22 in n occurrences of τ(01), that is in n factors 01020. This implies
that each of these 22 is preceded and followed by the letter 0. Therefore, since the word Yn fulfills the
conditions of Definition 4.3 it has the 0-limited square property.

Corollary 6.3. For every integers k ≥ 2 and p, 1 ≤ p ≤ k − 1, and for every integer n ≥ 0, the word
δk,p(Yn) is length-k-overlap-free.

Proof:
By Proposition 6.2, the word Yn has the 0-limited square property which implies, by Theorem 4.5, that
δk,p(Yn) is length-k-overlap-free.

In particular, for every integer n ≥ 0, the words δk,k−1(τω(0)) and δk,k−1(Yn) are length-k-overlap-
free.

Proof of Theorem 6.1:

δk,k−1(τ(01)) = δk,k−1(0120)δk,k−1(102)δk,k−1(0121)

= δk,k−1(0120)abk−1aabkδk,k−1(0121)
(1)
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and

δk,k−1(0120 22 0121) = δk,k−1(0120)δk,k−1(22)δk,k−1(0121)

= δk,k−1(0120)abk−1babkδk,k−1(0121)
(2)

Let us define Zn to be the word obtained from δk,k−1(τ
ω(0)) by replacing n (not necessarily consec-

utive) occurrences of δk,k−1(τ(01)) by δk,k−1(0120)abk−1 � abkδk,k−1(0121).
From Corollary 6.3, and equations (1) and (2) above, for every integer n ≥ 0, the word Zn is length-

k-overlap-free. Moreover, from Proposition 4.7, Zn is not length-(k − 1)-overlap-free.

Corollary 6.4. For every integer k ≥ 2, there exist infinitely many length-k-overlap-free binary infinite
partial words which are not length-(k − 1)-overlap-free and which contain infinitely many holes.

Proof:
Considering the words Zn defined in the proof of Theorem 6.1, and making n tend to infinity, we deduce
that the word

∏∞
`=1 δk,k−1(0120)abk−1 � abkδk,k−1(0121)u` has the required property.

Now, we can choose to leave out a finite number of substitutions of the factor 102 by 22. Since the
number of such choices is infinite, the result follows.
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