Infinite words with uniform frequencies, and invariant measures

Sébastien Ferenczi 1 Thierry Monteil 2
2 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : For infinite words, we study the properties of uniform recurrence, which translates the dynamical property of minimality, and of uniform frequencies, which corresponds to unique ergodicity; more generally, we look at the set of invariant measures of the associated dynamical system. We present some achievements of word combinatorics, initiated by M. Boshernitzan, which allow us to deduce information on these invariant measures from simple combinatorial properties of the words. Then we review some known examples of words with uniform frequencies, and give important examples which do not have uniform frequencies. We finish by hinting how these basic notions have given birth to very deep problems and high achievements in dynamical systems.
Type de document :
Chapitre d'ouvrage
Berthé, V. and Rigo, M. Combinatorics, Automata and Number Theory, Cambridge University Press, pp.373-409, 2010, Encyclopedia of Mathematics and its Applications, 9780521515979
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804125
Contributeur : Gwenaël Richomme <>
Soumis le : lundi 25 mars 2013 - 08:46:07
Dernière modification le : jeudi 24 mai 2018 - 15:59:21

Identifiants

  • HAL Id : lirmm-00804125, version 1

Collections

Citation

Sébastien Ferenczi, Thierry Monteil. Infinite words with uniform frequencies, and invariant measures. Berthé, V. and Rigo, M. Combinatorics, Automata and Number Theory, Cambridge University Press, pp.373-409, 2010, Encyclopedia of Mathematics and its Applications, 9780521515979. 〈lirmm-00804125〉

Partager

Métriques

Consultations de la notice

210