
HAL Id: lirmm-00804362
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804362

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LPT - A Tool for Parametric TPN Validation
Karen Godary-Dejean, Romain Richard, Gregory Angles, David Andreu

To cite this version:
Karen Godary-Dejean, Romain Richard, Gregory Angles, David Andreu. LPT - A Tool for Parametric
TPN Validation. VECoS: Verification and Evaluation of Computer and Communication Systems, Aug
2012, Paris, France. �lirmm-00804362�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804362
https://hal.archives-ouvertes.fr

LPT - A Tool for Parametric Validation of TPN

Romain Richard
LIRMM - UMR 5506

161 rue Ada - CC 477
34095 Montpellier Cedex 5

France
romain.richard@lirmm.fr

Karen Godary-Dejean
LIRMM - UMR 5506

Université Montpellier 2
161 rue Ada - CC 477

34095 Montpellier Cedex 5
France

http://www.lirmm.fr/∼godary/
godary@lirmm.fr

Gregory Angles
DEMAR Team, INRIA

Université Montpellier 2
161 rue Ada - CC 477

34095 Montpellier Cedex 5
France

gregory.angles@lirmm.fr

David Andreu
DEMAR Team, INRIA

Université Montpellier 2
161 rue Ada - CC 477

34095 Montpellier Cedex 5
France

http://www.lirmm.fr/∼andreu/
andreu@lirmm.fr

This article deals with the problem of temporal and parametric formal validation for discrete event systems.
It particularly focuses on the time Petri nets formalism, for which the parametric property verification
with model checking is still a non resolved problem. A method is proposed, combining no parametric
timed model checking with classical iterative algorithms to avoid combinatory explosion of the analysis
process. Algorithms are proposed for the verification of several property types into two specific hypothesis,
depending on the parameters values. They have been implemented into a tool: LPT (Little Parametric Tool),
which has been used to validate a buffer management system to illustrate the given method.

Parametric formal validation, Model checking verification, Time Petri Nets

1. INTRODUCTION

This paper deals with the formal validation of
quantitative and parameterized temporal constraints
for embedded real time systems. These systems
are mostly critical ones, therefore specific validation
methods must be considered to ensure their correct
behaviour. Formal methods are used in a validation
step during the design process, to validate the
system behaviour before the implementation step.
The obvious advantage is the early error detection.
Furthermore, the use of formal methods provides
more validation possibilities than classical methods
(as simulation) because of the exhaustive nature of
the analysis. Particularly, the model checking allows
properties verification, checking the entire states
space of a formal model of the system Sifakis (1982).
This exhaustive analysis is then well adapted with
critical systems.

Furthermore, the real time dimension involves to
consider quantitative temporal constraints, in the
modelling as well as in the verification phases. For

example, a typical property to verify in such systems
is the respect of a maximal execution duration.
Quantitative time is considered in one way using
temporal extensions of modelling formalisms and
timed model checking techniques, as the Time Petri
Nets (TPN) Merlin (1974) which extend the PN with
the consideration of time intervals for the firing of
transitions; and in another way using model-checking
of timed temporal logic.

Finally, the embedded dimension could lead to
require parameters management. Even if the model
checking phase is done before the implementation
phase, the model must reflect the environment and
the hardware architecture of the system, which can
be represented as parameters of a global model. In
the design process, parameters could for example
represent a memory size, a number of components
or a clock frequency. However, Alur et al. (1993)
showed that the introduction of parameters within the
model leads to an undecidable analysis with model
checking. In a non parametric validation process,
the values of these parameters must be fixed before

the verification process, and the validation results
are then guaranteed only for these values. If the
environment, the relation with others systems or the
hardware target are modified, then the validation
process must be carried out again.

This paper proposes to avoid the complexity problem
combining non parametric timed model checking
with classical iterative algorithms. This allows to
insert a parametric dimension into the analysis
process without increasing the complexity. A first
version of this work has been presented in Godary
(2008)1, which considers only a very simple case
of parametric property: the maximum execution
time between two transitions execution. The current
article identifies and formalises other hypothesis
and property types which are not so trivial. For
each identified cases, analysis algorithms are given
and illustrated on a specific example. The main
contributions of this work are in one way the
identification of the singleton vs interval cases, which
highlights the importance of the initial hypotheses
to obtain confident validation results. In another
way, the implementation of these algorithms into an
analysis tool (Little Parametric Tool - LPT) allows
efficient parametric analysis of a TPN system with
one parameter, whereas existing parametric model-
checkers do not provide answer because of the
analysis complexity.

2. RELATED WORKS

We are interested in quantitative and parameterized
timed model checking. So, the first subject to tackle
is the model checking of quantitative properties.
The initial solution to verify such properties in
models expressed as timed automata (TA) has been
proposed in Alur and Dill (1994). The same article
proves the decidability of model checking of TCTL
(quantitative temporal logic) on the timed automata.
This method and some extensions are implemented
in several analysis tools such as UPPAAL Larsen
et al. (1997), which provides efficient validation
possibilities for quantitative validation of TA models.
For quantitative analysis of Time Petri Nets (TPN)
models, it was necessary to extend the traditional
state class graph method Berthomieu and Diaz
(1991) because it does not store information about
absolute dates of clocks, which prevents the analysis
of quantitative properties. Gardey et al. (2003)
proposes a different construction technique for the
state space: the zone graph, an adaptation of the
region graph used for TA Alur and Dill (1994).
Different analysis tools, such as Romeo Gardey
et al. (2005) or TINA Berthomieu and Vernadat
(2006), implement some of these graphs and allow
quantitative model checking for TPN.
1in french

On the contrary, the introduction of parameters in
model checking is still an open field. Parametric
Timed Automata (PAT) have been introduced in
Alur et al. (1993). Even if this article proves that
parametric model checking in the general case
is undecidable, the authors propose, to achieve
decidability, to consider a subset of parametrized
timed automata Alur et al. (1993). This solution is
also used by Hune et al. (2002) where the authors
identify a subclass of parametric timed automata
for which the analysis is decidable, and propose
an extension of the UPPAAL tool to analyse it.
To achieve more efficient analysis performances,
Wang (2000) defines a subset of PTA, the Statically
Parametric Automata SPA. Authors also consider
a subset of the TCTL logic, and properties thus
could be represented into SPA. Raskin and Bruyère
have proposed a solution in Bruyère et al. (2003)
for model-checking properties of logic TCTL set to
timed automata. These same authors have tried to
introduce parameters in the model but showed that
the analysis quickly becomes undecidable except
under certain circumstances (Bruyère and Raskin
(2007)). Howerver, to our knowledge, both the works
of Wang and of Raskin & al have not been implanted
into analysis tool. Finally, a recent inverse method is
presented in André et al. (2009) and implemented in
the tool IMITATOR II André (2010): given a PTA and
a reference valuation of the parameters, it provides
a constraint guaranteeing the same trace set. Even
if the parametric model checking problem remains
complex for TA models, analysis methods and tools
begin to appear.

Still resides the problem of introducing parameters
in the analysis process of TPN. As solution exists for
parametric analysis of the TAs, a first approach was
to change TPN in TA Cassez and Roux (2006) to use
the tools of the latter formalism. But the automatic
transformation is often based on a multiplication
of clocks (an automaton by transition from initial
TPN) which leads to a complex analysis of the
resulting TA. Delfieu et al. (2007) proposed an
approach which transforms the analysis parametric
problem in the verification of a set of inequalities
representing design constraints. This solution allows
an analysis set but deferring the problem on each
of the modules of a system without considering
the overall system. A recent approach Traonouez
et al. (2009) implemented in the Romeo tool offers
a solution to parametric model checking, allowing
the introduction of parameters in the temporal
information of the transitions. The parameters are
represented as supplementary constraints linked to
the clock constraints. This solution is decidable in
case of bounded parameters. However, their solution
is still confronted to efficiency problem in case of no-
trivial systems validation.

Thus, the analysis of temporal quantitative and
parametrized properties remains a problem, espe-
cially for the TPN. The introduction of parameters
leads to a complexity which does not fit with the limits
of technical and analytical existing tools.

The following section 3 defines the useful basic
formal definitions, and presents the different identi-
fied property types. Then section 4 deals with the
parametric validation for the singleton hypothesis,
defining this hypothesis, describing analysis algo-
rithms for each of the preceding identified properties
and illustrating the proposed method on a classic
observer-based verification model. Next, section 5
introduces the parametric validation in case of the
interval hypothesis, illustrating it through a buffer
management example. Finally, section 6 presents
the LPT analysis tool which implements proposed
algorithms, providing performances measured for
the case study validation. Section 7 concludes the
paper.

3. DEFINITIONS

We first discuss the terminology and formal notations
which are the basics of the definitions introduced in
the paper. Then this section presents the considered
property types, considering only one fixed parameter
into a transition firing interval of the TPN model.

3.1. Formal definitions

3.1.1. Basic notations
All over this paper, we will use these notations: the
system is called Y , the property ϕ, a parameter
valuation p and the set of the parameter valuations
Γ. Only when necessary other notations will be
explicitly given. We also remind that the model
checking problem allows to know if Y |= ϕ, which
means that Y satisfies ϕ. We also use Y 2 ϕ for the
contrary.

3.1.2. Temporal logic
Model checking of timed temporal logic is known to
be extremely sensitive to combinatorial explosion,
and few model checker allow timed properties
verification. The solution is to explicitly represent
the temporal constraint in a property model, and
then using a more classical temporal logic model
checking (as the observer model of Figure 2).

Thus, this paper focuses on properties expressed
with the Linear Temporal Logic (LTL). LTL consists
of the classical logic operators and the mood until

U and next X . It is defined by the following grammar:

ϕ ::== p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | Xϕ1

The properties could be completed with the Future
(F) and Globally (G) operators, which are a

combination of the initial operators. F ϕ means that
ϕ will be true one day, and G ϕ means that ϕ is
always true.

3.1.3. Parametric verification notations
We first remind the parametric model checking prob-
lem defined in Traonouez et al. (2009): “for a para-
metric system Y and a parametric specification ϕ, it
consists in checking whether there exists a valuation
p of the parameters such that Y satisfies ϕ for this
valuation, which is written [[Y]]p |= [[ϕ]]p”. Traonouez
et al. (2009) also defined the parametric synthe-
sis problem which “computes the set of valuations
Γ such that ∀p ∈ Γ, [[Y]]p |= [[ϕ]]p”. This article
deals with a very close problematic, without con-
sidering parameterized properties. Based on these
definitions, we introduce the parametric minimal
bounded analysis problem which computes the
minimal valuation pmin of the parameters such that:

∃pmin ∈ Γ | ∀p ∈ Γ, p ≥ pmin ⇐⇒ [[Y]]p |= ϕ

The parametric maximal bounded analysis prob-
lem computes in the same way the maximal valua-
tion.

3.2. Types of properties

3.2.1. Terminology
To find parameters’ values for which a property is
satisfied, the search range must be bounded. We
defined that, as shown Figure 1, the parameter value
will be sought into an interval [Min,Max]. Then we
have named Low the lowest value, and High the
highest value, for which the property is verified in this
search range. We obviously have Min ≤ Low and
High ≤Max.

Figure 1: General definition and type 2 property

3.2.2. Type 1
The first type of property is the simplest one: the
property value changes only once on the search
range. We then only have one of the bounds Low
or High. We formally defined this as:

[[Y]]p |= ϕ ⇐⇒ p ≥ Low

The symmetric situation is also a type 1 property:

[[Y]]p |= ϕ ⇐⇒ p ≤ High

We can illustrate for example the Low type 1 case
on Figure 1, by considering only the left part of the
figure2: the property is FALSE at the beginning of the
search range and until the Low value, then becomes
definitively TRUE after.

3.2.3. Type 2
The second type of property is the one illustrated
Figure 1: the property is always FALSE excepted
when the parameter value is in a specific interval:

[[Y]]p |= ϕ ⇐⇒ p ∈ [Low,High]

3.2.4. Type 3
Finally, the third type of property corresponds to the
generalisation of type 2: the property value forms
several intervals depending on the parameter value
(see an example in Figure 4). Supposing that there
are n intervals [Lowi, Highi], i ∈ [0, n] into the
search range ([Lowi, Highi] ⊂ [Min,Max]) so we
have:

[[Y]]p |= ϕ ⇐⇒ p ∈ [Lowi, Highi], ∀i ∈ [0, n]

3.3. Singleton vs interval hypotheses

The property types definitions are given for a specific
case: when the parameter value is constant, ie the
parameter keeps the same value for all the duration
of the system execution. This is called the singleton
hypothesis. But we can be interested in studying
when the parameter value can vary into an interval:
the interval hypothesis. Thus we have to define
precisely these two hypotheses.

Hypothesis on the parameter value: A system is
parameterized with the singleton hypothesis
when the parameter value could not vary
during the system execution. Such a system is
represented with the following notation:

[[Y]]Sa : [[Y]]p | p = a

On the contrary, if the parameter value could
vary dynamically into an interval during the
system execution, we have :

[[Y]]Ia,b : [[Y]]p | p ∈ [a, b]

We of course have: [[Y]]Sa ⇐⇒ [[Y]]Ia,a

Hypothesis on the verification process: The sin-
gleton and interval hypotheses could also be
applied to the verification process. The single-
ton verification is when a system verified a

2It is useful to note that the property type greatly depends on the
specified search range. For example if Max < High in Figure 1,
this is a type 1 case for the Low bound whereas in the contrary it
is a type 2 case.

property for each singleton parameter value,
whereas the interval verification considers all
the possible parameter values. Depending on
the parameter values, we can have simple
equivalences:

[[Y]][a] |=S ϕ ⇐⇒ [[Y]][a] |= ϕ

[[Y]][a,b] |=I ϕ ⇐⇒ [[Y]][a,b] |= ϕ

or more complex ones:

[[Y]][a,b] |=S ϕ ⇐⇒ ∀p ∈ [a, b] ∩ N, [[Y]][p] |= ϕ

To clarify the rest of the article, we will always
note explicitly if the verification is by singleton or by
interval.

The next section focuses on parametric validation
of the singleton case. The interval validation will be
explained in details section 5.

4. SINGLETON PARAMETRIC VALIDATION

This section firstly introduces the basic definition of
the parametric bounded analysis problem for the
singleton hypothesis. It then presents the algorithms
we propose to resolve the parametric verification
problem, with the singleton hypothesis, for each
property type defined section 3.2.

4.1. Formal singleton definitions

This paper considers parameters associated with a
transition firing interval. In the singleton case, the
parameter value must be fixed, then the firing instant
of the transition can not vary: the firing interval
becomes a fixed duration [p, p]. The parametric
model checking problem is then specific [[Y]]Sp |=S

ϕ and we can define the parametric minimal
bounded analysis problem in the singleton case:

∃SL ∈ Γ | ∀p ∈ Γ, p < SL ⇐⇒ [[Y]]Sp 2S ϕ (1)

and the parametric maximal bounded analysis
problem in the singleton case:

∃SH ∈ Γ | ∀p ∈ Γ, p > SH =⇒ [[Y]]Sp 2S ϕ (2)

The rest of this section presents the algorithms
proposed to answer to this analysis problem for the
previously identified property types in the singleton
case.

4.2. Type 1 singleton analysis

The parametric verification method presented in this
paper proposes an alternative to the parametric
model checking complexity problem, by the multiple
execution of the non parametric analysis with
different fixed values of the parameter.

4.2.1. Type 1 singleton analysis algorithm
The first analysis algorithm concerns the validation
of a type 1 property. It is based on an dichotomy
execution of a non parametric model checking
problem, verifying at each iteration if the system
satisfies the property for a fixed parameter value.
It then modifies the dichotomy interval depending
on the verification result and on the searched
bound. The algorithm given below3 searches the low
singleton bound SL, and one of its executions is
detailed in Figure 3.

Algorithm 1 Low singleton bound algorithm

1: procedure SLOW(Y, ϕ,Min,Max)
2: dLow ←Min
3: dHigh←Max
4: while (dHigh− dLow) > 1 do
5: mid← bdHigh+dLow

2 c
6: if [[Y]]Smid |=S ϕ then
7: dHigh← mid
8: else
9: dLow ← mid

10: end if
11: end while
12: return dLow
13: end procedure

Variables handled in all the algorithms are integers.
Indeed, the firing time interval bounds in the TPN
models must be integers in the toolbox we use for the
modelling and the non parametric model checking
(see section 6). However, the property verification is
done for all possible time values (model checking in
dense time).

4.2.2. Illustration example
This section presents a case study illustrating the
purpose of our work: the classic example of an
observer model (Figure 2). Indeed, observer model
is a very frequent technique used to convert complex
temporal logics verification in a reachability problem
which is adapted to more efficient model checking
algorithms.

The observer is used to verify the worst execution
time between two transitions: tstart and tend,
which represents the maximum execution time of
a suite of actions (we call it MaxTime). In this
model, the firing interval of the terror transition is a
duration. If this duration is higher than MaxTime, the
ERROR place could not be marked. To know the value
of MaxTime, it is necessary to find the minimal
value of the terror duration for which the ERROR

place is never marked.
3Only the essential instructions of the algorithms are given. For
example, the initial verification steps for the Min and Max values
are not given.

tstart

Action1

terror

t

[5,6] ActionN

tend [5,6]

Observer ERROR

start end

[11,11]

Figure 2: TPN model of a worst execution time verification

This is a parametric minimal bounded analysis
problem with the parameter p equal to the terror

duration and the property ϕ is a reachability one:
”G MERROR = 0”, with MERROR the marking of the
ERROR place. The parameter is a duration then it
can only has one fixed value: this is the singleton
hypothesis. When the p value is inferior or equal to
MaxTime, ϕ is FALSE; then when p is superior, the
property becomes definitely TRUE. Thus, we are in a
type 1 property case.

4.2.3. Example analysis
In this illustration example, the worst case execution
time of the set of actions, and then the wanted bound
is MaxTime = SL = 12. The execution of the
algorithm to find this bound is illustrated in Figure
3, supposing that the initial search range is [0, 15].
The algorithm begins to test the value 7 (middle of
the search range). As ϕ is not verified for this value
the algorithm replaces the search range with [7, 15].
In the same way, the values 11 and 13 are tested,
and the search range is reduced to [11, 13]. The
middle of this interval is 12, for which the property
is verified: the search range is reduced to [12, 13].
Then the minimal interval difference is reached: the
low singleton bound is SL = 12.

Figure 3: TPN model of a worst execution time verification

4.3. Type 2 singleton analysis: interval

The second algorithm does the parametric verifica-
tion for type 2 properties: the SL and SH bounds are
unknown. We can not use directly the first algorithm
because it could find a wrong result in specific
cases. For example, if we search a set of values
of a temporal parameter (for which the property is
verified) which is equal to the set [2, 5]. We assume

that we still search the SL bound in the [0, 15] search
range. As in the previous execution, the algorithm
starts checking the value 7 and find that the property
is not verified for this value. The main problem here
is that it thinks than all the values between 0 and 7
do not satisfy ϕ. It then changes the search range
to [7, 15] and continues. Finally, the tool concludes
there is no value of the parameter in the initial search
range for which the property is verified, which is
wrong.

So, we have developed a second algorithm, given
below. First, the function FIND(Y, ϕ,Min,Max) finds
one parameter value val for which the property is
satisfied: ∃val ∈ Γ | [[Y]]Sval |=S ϕ. FIND(..) is based
on a classical model checking problem, setting the
parameterized transition to [Min,Max] and verifying
”F MERROR = 0”. If the answer is TRUE, the trace is
recovered and analysed to extract the corresponding
parameter value val. If the property is a type 2 one,
this value is in the wanted interval: val ∈ [SL, SH].
Then, the first algorithm could be used to find SL

and SH bounds respectively in the [Min, val] and
[val,Max] search ranges.

Algorithm 2 Singleton type 2 interval algorithm

1: procedure SINT(Y, ϕ,Min,Max)
2: val← FIND(Y, ϕ,Min,Max)
3: SL ← SLOW(Y, ϕ,Min, val)
4: SH ← SHIGH(Y, ϕ, val,Max)
5: return SL and SH

6: end procedure

4.4. Type 3 singleton analysis: multi-intervals

Finally, the third algorithm does the analysis
of the type 3 properties which could be TRUE
during several intervals. This algorithm uses the
previous idea to find a value val for which
the property is verified, and exploits the first
algorithms to find the bounds. But in this case the
first algorithms could provide intermediate bounds.
Figure 4 illustrates it, with the property TRUE in [8, 10]
and [12, 16]. If FIND(Y, ϕ, 0, 18) returns val = 15, then
SLOW(Y, ϕ, 0, 15) finds SL = 12, like in section 4.2.
But this bound is not the real one: the interval [8, 10]
has been ignored because of the dichotomy.

The idea of the third algorithm is to verify, after
the achievement of the first SL (or SH) bound, if
there exist other parameter values for which the
property is verified, excluding the current interval.
As for the second algorithm, it is decomposed
into three sub-parts: the achievement of the val
example value, then the separate searches of the
SL and the SH values. The difference is that
the searches here are recursive. This algorithm

Figure 4: TPN model of a worst execution time verification

is then a general case for both type 2 and type
3 properties verification. The FIND(Y, ϕ,Min,Max)
function must be adapted for this case: it searches
a val value in the specified interval excluding the
extreme values: val ∈]Min,Max[. If no value is
found, it returns −1.

Algorithm 3 Singleton multi-intervals algorithm

1: procedure SMULTIINT(Y, ϕ,Min,Max)
2: val← FIND(Y, ϕ,Min,Max)
3: SL ← SLOWR(Y, ϕ,Min, val)
4: SH ← SHIGHR(Y, ϕ, val,Max)
5: return SL and SH

6: end procedure
7:
8: procedure SLOWR(Y, ϕ,Min,Max)
9: val← FIND(Y, ϕ,Min,Max)

10: if val = −1 then
11: return −1
12: end if
13: SL ← SLOW(Y, ϕ,Min, val)
14: return MIN(SL,SLOWR(Y, ϕ,Min, SL)
15: end procedure
16:
17: procedure SHIGHR(Y, ϕ,Min,Max)
18: val← FIND(Y, ϕ,Min,Max)
19: if val = −1 then
20: return −1
21: end if
22: SH ← SHIGH(Y, ϕ, val,Max)
23: return MAX(SH ,SHIGHR(Y, ϕ, SH ,Max)
24: end procedure

4.5. Discussion on the SL and SH definitions

The multi-interval case could lead to wonder about
the needed SL bound value. Equation 1 defines the
minimal low bound value, ie. there is no inferior value
for which the property is verified. But it could be
considered that the user needs to know the highest
low bound into the search range, or maybe the
average value of all the existing low bounds of the
intermediate intervals. The questions are the same
for the SH bound. This article presents solutions only
for the minimal low bound, and for the maximal high
bound, as described section 4.1. But the definition of

intermediate bounds will be useful:

∃S′L ∈ Γ | [[Y]]SS′
L
|=S ϕ and [[Y]]SS′

L−1
2S ϕ (3)

∃S′H ∈ Γ | [[Y]]SS′
H
|=S ϕ and [[Y]]SS′

H+1 2S ϕ (4)

We of course have:

S′L ≥ SL and S′H ≤ SH (5)

The intermediate singleton bounds could be ob-
tained using the non recursive SLOW(..) and
SHIGH(..) algorithms.

The following section 5 deals with the parametric
bound analysis problem with the more complex
interval hypothesis, and illustrates the proposed
methods for the validation of a specific case study.

5. INTERVAL PARAMETRIC VALIDATION

5.1. Limitations of the singleton parametric
hypothesis

The singleton hypothesis imposes that the parame-
ter always has the same value during the execution
of the model. When the parameter is the firing
instant of a transition, this hypothesis leads to a
[p, p] firing interval. It corresponds to a large number
of validation cases, when an observer is used to
model properties, which is a very common validation
technique. More generally, this corresponds to all
the models, as the one of Figure 2, where the
parameterized transition is fired only once.

However, some systems need latitude on the
parameter value. For example in the model of Figure
5, supposing that the receive function is implanted
into a micro-controller, it is difficult to respect a
precise time period. The firing interval of transition
receive must then be set to a more flexible one
[p1, p2] with p1 < p2. The interest of the parametric
validation is to obtain the bounded values of this
interval assuring that any period variation into this
interval does not lead to a buffer overflow.

Then, if the singleton hypothesis is not desired
nor realistic, the preceding analysis algorithms have
to be modified to allow the parametric bounded
analysis. The following sections introduce formal
definitions for the interval hypothesis, describe a
system following this hypothesis, give the parametric
validation results of this example, and finally detail
the analysis methods and algorithms used to solve
this parametric analysis problem.

5.2. Formal interval definition

In the interval case, the parameter value could vary
during the execution of the system. The model

is then modified to set the firing interval of the
parameterized transition as an interval [p1, p2]. Such
a parameterized model is noted [[Y]]Ip1,p2

, and the
parametric model checking problem in the interval
case is: [[Y]]Ip1,p2

|=I ϕ. This means that the model
verifies the property for all the parameter values
included in [p1, p2].

The parametric minimal bounded analysis prob-
lem in the interval case then computes the lowest
valuation IL such that:

∃IL ∈ Γ | ∀p ∈ Γ, p ≥ IL =⇒ [[Y]]IIL,p |=I ϕ (6)

In the same way we define the parametric maximal
bounded analysis problem in the interval case:

∃IH ∈ Γ | ∀p ∈ Γ, p ≤ IH =⇒ [[Y]]Ip,IH |=
I ϕ (7)

Explaining Γ as a [Min,Max] interval, equation 6
implies that ϕ is TRUE for all the combinations of
the parameter values in [IL,Max] .

∀p1, p2 ∈ [IL,Max] =⇒ [[Y]]Ip1,p2
|=I ϕ (8)

Respectively, equation 7 implies:

∀p1, p2 ∈ [Min, IH] =⇒ [[Y]]Ip1,p2
|=I ϕ (9)

For all these four equations, the inverse implications
are false. This will be illustrated section 5.4, with the
verification of a case study presented in the next
section.

5.3. Case study

This section presents a case study which will be
used to illustrate the parametric validation method in
the interval hypothesis. This is a buffer management
system: a buffer is periodically used by two cyclic
components which read or write objects. Only one
object is generated at a time, whereas the read
action concerns all the stored objects.

5.3.1. System model
Figure 5 presents a TPN model of the system.

• the object generation is modelled by the
transition send (top left of the figure) which is
periodically executed with a frequency equal to
the transition duration. The generated object is
represented by a token in the place pushOne.

• Similarly, the object reception is represented at
the top right by the transition receive.

• the buffer itself is modelled by two places: the
number of tokens in bufferSize represents
the free places remaining in the buffer, and
the number of tokens in buffer represents the
stored objects.

• the object storage is composed of two options:
either a place is available in the buffer, and then
the push transition is executed, or the buffer is
full and then the object is lost with an overflow

notification.

• all the objects are read at the same time when
there is a token in startPopAll. The reading
is done in several step: first, transition more is
fired once per stored object before the firing of
transition empty; then free is fired once, free1
is fired once per stored object, and finally
transition end concludes the reading process.

sender

send [500,500]

5

bufferSize

startPopAll

more

[1,1]

empty

[1,1]

count

readCompute

free1

[1,1]

free

[1,1]

end

[1,1]

freeMem

receive[500,3000]

buffer

receiver

push

[1,1]

pushOne

overflow

[1,1]

ERROR

Figure 5: TPN model of a buffering system

5.3.2. Parametric verification
This model could have several parameters: the
buffer size is represented as the marking of place
bufferSize; the packet generation frequency could
be represented by a parameter in the send transition
firing interval; finally, the packet reading frequency is
represented in the receive transition firing interval.
This article focuses in this last parameter. The
property we want to verify is the absence of object
loss. This property is integrated in the system
model by the ERROR place, which is marked if an
overflow appends. Thus, the property verification
becomes a reachability property, independent from
the parameter value.

The parametric problem in our example is to know
the maximal frequency value the receiver has to
respect to ensure that there is no object loss. The
property to verify is the same one as in section 4.2

(G MERROR = 0), but this time this is a parametric
maximal bounded analysis problem.

5.4. Case study validation

In an unusual way, this section presents the valida-
tion results before the presentation of the analysis
algorithm. Indeed, we think that understanding the
analysis results helps to understand the underlying
algorithm.

5.4.1. Verification results
Table 1 shows the numerical values of different
verification runs done for different parameter values
into the search range [500, 3000] of the Figure 5
model (the parameter is in the receive transition and
the verified property is ”G MERROR = 0”). These
results are represented Figure 6: singleton results
are represented as points, and intervals for which the
property is verified by lines.

no Parameter values [[S]]I |=I ϕ?
1 [p, p] ∀p ∈ [500, 2496] TRUE
2 [p, p] ∀p ∈ [2497, 2499] FALSE
3 [2500, 2500] TRUE
4 [p, p] ∀p ∈ [2501, 3000] FALSE

5 [p′, p] ∀p′ ∈ [2497, 2499] FALSE
6 [p′, p] ∀p′ ∈ [2501, 3000] FALSE
7 [p, p′] ∀p′ ∈ [2497, 2499] FALSE
8 [p, p′] ∀p′ ∈ [2501, 3000] FALSE

9 [p; 2492] ∀p ∈ [500, 2492] TRUE
10 [505; 2493] TRUE
11 [p; 2493] ∀p ∈ [500, 504] FALSE
12 [1004; 2494] TRUE
13 [p; 2494] ∀p ∈ [500, 1003] FALSE
14 [1503; 2495] TRUE
15 [p; 2495] ∀p ∈ [500, 1502] FALSE
16 [2002; 2496] TRUE
17 [p; 2496] ∀p ∈ [500, 2001] FALSE

Table 1: Verification results of the case study

Figure 6: Verification results of the case study

5.4.2. Results analysis
We could analyse these verification results:

• The real high singleton bound is SH = 2500,
so equation 2 guaranties that all the singleton

values superior to 2500 do not verify ϕ. This
justifies lines 3 and 4 of the table.

• There is only one intermediate high singleton
bound S′H = 2496, then according to equation
4, all the singleton values inferior or equal to
2496 verify ϕ, whereas the singleton values
included in [2497, 2499] do not verify it (lines 1
and 2).

• According to equation 7, all the intervals
including ”FALSE singleton values” do not verify
ϕ. This justifies lines 5 to 8 of the table.

• The high interval bound is IH = 2492 thus
equation 7 guaranties that all the interval
values in [500, 2492] verify ϕ (line 9).

• The others results are given to show that there
are several intervals of parameter values which
could satisfy the parametric maximal bounded
analysis problem, depending on the search
range. This is discussed in section 5.5.2.

• lines 11, 13, 15 and 17 also prove that the
reverse implication of equation 7 is false.

5.5. Interval analysis

This section presents the algorithm used to obtain
the high interval bound IH . The low interval bound
IL algorithm is similar.

5.5.1. Interval analysis algorithm
The interval high bound algorithm is also based
on a dichotomy search, using a non parametric
model checking analysis on a [Min,Max] interval.
The IH bound will be found varying maximal
bound of this interval with the dichotomy. This
solution is implemented in the following DIHIGH(..)
dichotomous function.

However, this solution could be a very long
process, as even the non parametric model checking
analysis could has an important complexity in the
interval case. Furthermore, the complexity could
be dependant on the search range: the more
the parameterized transition firing interval is large,
the more this transition could be concurrent with
other transitions, provoking interleavings. We then
propose to use the values of the singleton bounds
to reduce the search range. Equation 7 and 5 imply
that:

IH ≤ S′H ≤ SH , ∀S′H (10)

Thus, the search range to find the IH value could
be reduced to [Min, Sfound

H] into the DIHIGH(..)
function, with Sfound

H one of the S′H intermediate high
singleton bounds. In the worst case, the Sfound

H is
equal to the SH bound, but this still reduce the initial

search range. This solution is implemented into the
IHIGH(..) following algorithm.

Algorithm 4 High interval bound analysis algorithm

1: procedure IHIGH(Y, ϕ,Min,Max)
2: S′H ← SHIGH(Y, ϕ,Min,Max)
3: if [[Y]]IMin,S′

H
|=I ϕ then

4: return S′H . the singleton bound is the
same as the interval one

5: else
6: IH ← DIHIGH(Y, ϕ,Min, S′H)
7: return IH
8: end if
9: end procedure

10:
11: procedure DIHIGH(Y, ϕ,Min,Max)
12: Imax

H ←Max
13: Imin

H ←Min
14: while (Imax

H − Imin
H) > 1 do

15: mid← b I
max
H +Imin

H

2 c
16: if [[Y]]IMin,mid |=I ϕ then
17: Imin

H ← mid
18: else
19: Imax

H ← mid
20: end if
21: end while
22: return Imax

H

23: end procedure

5.5.2. Other valid intervals
The previous algorithm gives the IH high bound
which corresponds to the intervals including the Min
bound. For example in the case study, the IH given
bound is 2492, because this is the highest value
of the interval [500, 2492] for which the property
is verified for any values of the parameter in this
interval. It could not be 2493 because it exists a trace
including 500 and 2493 which leads to the ERROR
marking4.

However, [500, 2492] is not the only interval for which
the property is satisfied in the given initial search
range [500, 3000]. In fact, it exists at most (SH−IH)+
1 number of such intervals. For the case study, there
are 2496 − 2492 + 1 = 5 intervals, given Table 1 and
Figure 6. Such an interval is called a high interval
and is defined by:

• [Imin, Imax] ⊂ [Min,Max]

• Imin ∈ [Min, Imax], Imax ∈ [IH , SH]

• [[Y]]Ip1,p2
|=I ϕ ∀p1, p2 ∈ [Imin, Imax]

4This trace is not given here because it is composed of hundreds
of transitions.

All these high intervals could be found using
algorithms presented in this paper. Knowing the SH

and the IH bounds, a search of the IL bound gives
the minimal bound of the associated high interval.
This low bound search, done for each one of the
integer values belonging to [IH , SH], provides all the
high intervals.

Therefore a reflection could be done here to know
what is the most interesting interval. We could
imagine several possibilities. Supposing in one hand
that the receive function of the case study system
(figure 5) is done by a micro-controller which also
has to execute many other functionalities. One
important element could be to have the larger
temporal latitude to execute the receive task (leading
to [500, 2492]). Another element could be to include
the worst possible period (leading to [2001, 2496]).

6. LPT TOOL

6.1. Implementation

The software LPT (Little Parametric Tool) works with
Time Petri Nets models which respect the TINA
syntax. The TINA toolbox 5 is also used to execute
the non parametric model checking steps: [[Y]]Sp |=S

ϕ and [[Y]]Ip1,p2
|=I ϕ. tina is the tool used to build

the states graph, and selt is used to verify the
property in this graph. We also use plan to find
a single value of the parameter which verifies a
given property. Another specific step of the algorithm
is the modification of the system model setting a
specific value for the parameter. This function is
done by a classical textual management, as TINA
provides graphical as well as textual TPN models
representation.

The current version of LPT is implemented in java
language, as a plug-in of the Eclipse platform. It
is currently integrated to a larger project within
the Hilecop tool Andreu et al. (2008), a VHDL
code generator allowing the automatic translation
of Petri nets into VHDL components. An automatic
bridge from Hilecop to LPT as been done, to verify
properties on the same models as the one which
will be implemented. The final goal is to validate
the model in a generic way, with some hardware
architecture characteristics taken into account by
means of parameters. The LPT tool will be soon
available for free download6.

6.2. Performances

In this section, we compare performances between
a non parametric analysis with TINA, a parametric
5http://projects.laas.fr/tina//
6http://gforge-lirmm.lirmm.fr/gf/project/lpt/

validation with our tool LPT and a parametric
validation with the parametric version of Romeo.

We have used the same model for all the tests,
the one of section 5.3, modifying only the receive

firing interval. This model contains 10 places and 9
transitions. Its associated state graph could contain
thousands of places and transitions. The state graph
size depends on the value of the firing interval of
transition receive, the one we want to parameterize.
Table 2 gives representative results for different
parameter values. Several factors could influence
the graph size. First, the larger the firing interval
of receive is, the more this transition could be in
concurrence with other transitions. Then we could
imagine that the worst case is associated with the
largest firing interval. But the system has been
modelled with a specific construction (Figure 5.3.1):
the execution of the model is stopped as soon as
there is a buffer overflow. This modelling technique
is used to prevent the state graph becoming infinite
because of unbounded places. Then, some of the
state graphs could be very small because of an
immediate error scenario, as for the [500, 2500] firing
interval, whereas this scenario is not present in
[500, 2499].

Table 2: Case study graph size

search range states transitions
[500, 2497] 12832 17689
[2497, 2497] 12057 12087
[2499, 2499] 181 194
[500, 2499] 12840 17707
[500, 2500] 1204 1711
[500, 3000] 1097 1616

As we can see in Table 2 , it is not possible to a priori
predict the graph size of the model. The complexity
of the generated analysis graph basically depends
on the number of places and transitions of the model,
but also on its structural and behavioural complexity:
the well-known interleaving problem. Thus it is
difficult to know the complexity of the analysis.
Furthermore, the analysis performances depends
on the analysis tool implementation efficiency (for
example for the storage of the data structures), which
is independent of the theoretical complexity of the
analysis method.

Nevertheless, Table 3 gives some performances
measurements (in terms of analysis execution time)
to have a first idea of LPT efficiency, comparing with
TINA and Romeo performances. The verification
tests have been done on a 2, 66GHz Intel Core i7
processor with 4GB 1067MHz RAM memory. The∞
symbol means that the analysis process does not

provide a solution after more than 1 hour, whereas
0 means that the result is almost instantaneous.

Table 3: LPT Performances

search range TINA LPT Romeo

[500, 2497] 1s 5, 1s ∞
[2497, 2497] 1s 2, 4s 7, 3s

[2499, 2499] 0 0 0

[500, 2499] 1s 4, 9s ∞
[500, 2500] 0 4, 3s ∞
[500, 3000] 0 3, 6s ∞

It is difficult to exactly compare the LPT perfor-
mances with non parametric performances: the com-
parison with TINA is not really meaningful since a
non parametric analysis could not give the same
validation results. But it is useful to illustrate that
the complexity of the parametric analysis with LPT is
close to the one of a non parametric model checking
analysis. Indeed, algorithms which are implemented
in LPT are all based on a dichotomy, that’s why there
is a slight influence compared to a non parametric
verification. On each iteration in the algorithms, a
single non parametric state graph is generated (with
the TINA tools) which is limited in term of memory to
the maximum size of a non parametric analysis. So,
we do not use more memory than a non parametric
verification, we just take more time because of the
automation of the analysis.

On the contrary, the comparison with Romeo is
interesting, as this tool allow the same type of
analysis. Romeo is in fact more complete because
it is not reduced to only one parameter. But the
results of table 3 show that even with only one
parameter in the analysis process, the parametric
model checking is too complex to provide analysis
results in a realistic case study. On the contrary,
our solution implemented in the LPT tool gives a
result even in the most complex situation, when
the firing interval of the ”parameterized” transition is
large, leading to many interleavings with the other
transitions of the model.

Even these numerical values give an empirical
performance estimation, they show that LPT is a
solution to obtain parametric validation results for
real case studies, typically for industrial systems,
when it is mandatory to obtain a result, even for strict
validation hypotheses.

7. CONCLUSION

This article presents an analysis method for
the parametric formal validation of Time Petri
Nets models. The proposed algorithms have been

implemented in an analysis tool: LPT (Little
Parametric Tool). LPT implements algorithms to find
the minimal and maximal parameter values verifying
a given property. These algorithms are based on a
dichotomous execution of non parametric validation
to find the desired parameter values. Depending on
the initial hypotheses, several useful information on
the parameter values could be obtained.

The main characteristic of this work is that LPT
is really efficient in a practical way: it allows the
parametric validation of real systems with almost the
same complexity than the non parametric analysis.
This could be very interesting, especially in real-
life context where theoretical parametric verification
methods are often unusable because of their
complexity.

However, the non parametric model checking
problem is still confronted to combinatory explosion
risks for complex systems. Particularly if the systems
are substantially parallel, the interleaving problem
remains. It could be then necessary to study
abstraction and optimization techniques, in the
analysis process but also in the model itself, before
building the state graph.

Furthermore, the LPT analysis methods are limited
to strong hypotheses: only one parameter could
be considered, represented as the firing instant
associated to only one transition. Moreover, the
parameter values are exclusively integers. In the
current version of our analysis method, it is not
possible to introduce more than one parameter or
to consider it as a real, since it is the dichotomy
variable. Therefore, it could be interesting to consider
parametric model checking methods as well, trying
to optimize the parametric state graph, limiting the
considered cases and properties, but improving the
verification process efficiency.

ACKNOWLEDGEMENT

The work presented in this paper is a part of the
Babylone project7. Thus, the authors would like to
thank the DRIRE and the Conseil Régional Midi-
Pyrénées.

REFERENCES

Alur, R. and Dill, D. (1994). A theory of
timed automata, Theoretical Computer Science
126(2): 183–235.

Alur, R., Henzinger, T. and Vardi, M. (1993).
Parametric real-time reasoning, 25th Annual

7http://www.critical-openware.org/

Symposium on Theory of Computing, pp. 592–
601.

André, É. (2010). IMITATOR II: A tool for
solving the good parameters problem in timed
automata, Proceedings of the 12th International
Workshops on Verification of Infinite State
Systems (INFINITY’10), Vol. 39 of Electronic
Proceedings in Theoretical Computer Science,
Singapore, pp. 91–99.

André, É., Chatain, Th., Encrenaz, E. and Fribourg,
L. (2009). An inverse method for parametric timed
automata, International Journal of Foundations of
Computer Science 20(5): 819–836.

Andreu, D., Souquet, G. and Gil, T. (2008). Petri net
based rapid prototyping of digital complex system,
IEEE Computer Society Annual Symposium on
VLSI (ISVLSI08), Montpellier, France.

Berthomieu, B. and Diaz, M. (1991). Modeling
and verification of time dependent systems using
time petri nets, IEEE transactions on software
engineering 17(3): 259–273.

Berthomieu, B. and Vernadat, F. (2006). Time
petri nets analysis with tina, Proceedings of the
3rd international conference on the Quantitative
Evaluation of Systems.

Bruyère, V., Dall’Olio, E. and Raskin, J. (2003).
Durations,parametric model checking in timed
automata with presburger arithmetic, in LNCS
(ed.), Proceedings of the 20th Annual Symposium
on Theoretical Aspects of Computer Science
(STACS’03), Vol. 2607, Berlin.

Bruyère, V. and Raskin, J. (2007). Real-time
model-checking: Parameters everywhere, Journal
Logical Methods in Computer Science 3(1): 1–30.

Cassez, F. and Roux, O. (2006). Structural
translation from time petri nets to timed automata,
Journal of Systems and Software 79(10): 1456–
1468.

Delfieu, D., Sogbohossou, M., Traonouez, L. and
Revol, S. (2007). Parameterized study of
a time petri net, Cybernetics and Information
Technologies, Systems and Applications : CITSA
2007, Orlando, Florida, USA.

Gardey, G., Lime, D., Magnini, M. and Roux, O.
(2005). Romo: A tool for analyzing time petri nets
analysis, in S. Lecture Notes in Computer Science
(ed.), 17th International Conference on Computer
Aided Verification (CAV’05), Edinburgh, Scotland,
UK.

Gardey, G., Roux, O. and Roux, O. (2003). A zone-
based method for computing the state space of

a time petri net, in LNCS (ed.), Formal Modeling
and Analysis of Timed Systems (FORMAT’03),
Vol. 2791, Marseille, France, pp. 246–259.

Godary, K. (2008). Lpt : little parametric
tool, outil pour la validation d’une borne tem-
porelleparamétrée, Conférence Francophone In-
ternationale d’Automatique, Bucarest, Roumanie.

Hune, T., Romijn, J., Stoelinga, M. and Vaandrager,
F. (2002). Linear parametric model checking of
timed automata, Journal of Logic and Algebraic
Programming 52-53: 183–220.

Larsen, K., Pettersson, P. and Yi, W. (1997).
Uppaal in a nutshell, Journal of Software
Tools for Technology Transfer 1: 134–152.
www.uppaal.com.

Merlin, P. (1974). A study of the recoverability
of omputing systems, PhD thesis, Department of
Information and Computer Science, University of
California, Irvine, CA.

Sifakis, J. (1982). A unified approach for studying
the properties of transition systems, Theoretical
Computer Science 18: 227–258.

Traonouez, L.-M., Lime, D. and Roux, O. H. (2009).
Parametric model-checking of stopwatch petri
nets, 15(17): 3273–3304.

Wang, F. (2000). Parametric analysis of computer
systems, Form. Methods Syst. Des. 17(1): 39–60.

