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Abstract—. Due to the future development of robotic 
autonomous systems in human environment, the fault 
tolerance paradigm will be a central issue in robotics. 
This article presents a survey of fault tolerance concepts, 
means and implementations in robotic architectures. 

I. INTRODUCTION 

Step by step fault tolerance in autonomous systems 
becomes a key challenge for the next decades. As 
point out in [1], systems and control science must 
be able to propose in the near future efficient 
control strategies optimizing the system's behavior 
to accomplish intending functions, while satisfying 
performance requirements and minimizing negative 
effects (resources consumption, safety behavior, 
etc.). But the increasing complexity of autonomous 
systems evolving in open, complex, unstructured 
and dynamic environment and interacting with 
vulgum pecus humans implies that the realization of 
sophisticated missions in a reliable way seems to 
currently be a fantasy. Fault tolerance integration 
will be a major part of the answer to the 
development of reliable and secure autonomous 
systems. The software aspect related to control 
architecture will be an important constituent of the 
fault tolerance deployment. 

This paper is based on some relevant works and 
analysis concerning robots reliability [2], 
dependable concepts [3], fault tolerance in 
engineering [4] [5] [6] [7] [8], fault tolerance in 
autonomous (robotic) systems [9] [10] [11] [12] 
[13], and fault tolerance issues [14] [15]. 

The next section presents through a wide analysis 
of on-the-field missions, the existing practical 
limitations of mobile robot reliability. Some basic 
definitions concerning dependability are given 
section III, with discussion about faults categories 
and location. Then section IV reminds the fault 
tolerance principles and section V exposes some of 
the main techniques used in control engineering. 
Next, sections VI and VII deal with fault tolerance 
in robotics. Methods really deployed in robotics are 

presented and analyzed before glancing at some 
robotic control architectures. Finally the conclusion 
highlights some important issues for fault tolerance 
integration for autonomous robotic systems. 

II. FAULT TOLERANT ROBOTS: A 
FANTASY! 

For many years J. Carlson works on fault tolerance 
in mobile robotics [2] [15] [16] [17] [18]. In [2] a 
detailed analysis of Unmanned Ground Vehicles in 
the field missions is realized. This study covers 24 
different robots (15 models), from 3.6 kg (Micro 
Tracs from Inuktun©) to more than 27 tons (Panther 
army tank)! These robots are developed by 7 
manufacturers. The concerned applications are 
Urban Search and Military Operations in Urban 
Terrian. The analysis concerns mainly on the field 
missions like during the World Trade Center 
disaster or for demining in Bosnia. Depending on 
the robot type, the communication with a distant 
operator is ensured using wired or wireless means. 

The Urban and Rescue missions analyze shows that 
Inuktun© robots have a MTBF equal to 6.1 hours 
and an availability ratio of 90% because that 
encountered faults remain minors and easy to 
repair. Irobot© robots have approximately the same 
MTBF but the availability ratio was only equal to 
36% because most of the failures are serious and 
hard to repair. The army robot mission analysis 
shows that there are only 1.16 failures per day, but 
that most of them (95%) are terminal for the 
mission. 

It must be mention that the timing granularity of the 
mission data collection is not always known. For 
the World Trade Center missions, where a low 
granularity is available, 1.4 minor failures are 
observed per minute! 

Concerning the physical failures location and 
impact, Figure 1 shows the synthetic diagram 
proposed by Carlson in [2]. It summarizes the range 
probability of the physical components observed 
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during the studied missions and their impact on the 
mission success. 

The failures encountered during the different 
analyzed missions are of several types. The most 
common ones are the effectors' failures. For 
example, pinion gear collecting dirt and debris, 
tracks work off their wheels. 

Sensors failures concern occluded camera, incorrect 
lighting, lack of depth perception, hard external 
conditions inducing moisture, dirt or mud on the 
lenses. Power failures are sometimes encountered 
due to low batteries or fuel problems (level, fuel 
filters). The control system failures are often 
encountered. It is a critical origin inducing 
unresponsive robot, uncontrolled behavior or 
system shutdown. The solution is to reboot the 
system. The communication is also a critical 
function because the wireless communication 
remains problematic in the field (availability, 
bandwidth) like for the World Trade Center and the 
impact of its structural steel. Another result is that 
failures have an important impact on the mission 
success since most of them are terminal. 

 
Fig. 1 Component failure probability (from [2]) 

This detailed analysis shows that the overall robot 
reliability is quite low with 6 to 20 hours of MTBF. 
Moreover it demonstrates that mobile robots must 
cope with many faults and are not very 
autonomously fault tolerant. 

III. BASIC CONCEPTS 

This part of the article reminds the basic concepts 
related to dependability, and discusses about fault 
and failure definition, taxonomy and location. 

A. Basic definitions of dependable concepts (from [3]) 

This section presents some accepted definitions 
used in the dependability and security communities 
[3], and then clarifies the robotic point of view. 

1) Concepts in computing engineering 

•  Dependability: Ability to avoid service failures 
that are more frequent and more severe than 
acceptable. 

•  Reliability: Continuity of correct service. It is 
an attribute of dependability. 

The means of dependability have been grouped into 
4 categories: 

•  Fault prevention to prevent the occurrence of 
the introduction of faults. Fault prevention 
mainly depends on software development 
methods ensuring easy maintainability, 
analyzability and testability. 

•  Fault removal to reduce the number and 
presence of faults. Fault removal concerns 
mainly tests and formal validation. 

•  Fault forecasting to estimate the present 
number, the future incidence, and the likely 
consequences of faults. 

•  Fault tolerance to avoid service failures in the 
presence of faults. 

2) Concepts in robotics 

Depending on the fault location Lussier in [9] [11] 
proposes to distinguish two concepts: 

•   Robustness: Restrict the fault tolerance of the 
treatment of adverse situations arising due to 
the variability of the autonomous system 
environment (unexpected obstacle, lighting 
variability, etc.). 

•  Fault tolerance: Concerns only the ability to 
deliver a correct service according to faults 
affecting the autonomous system itself 
(hardware or software fault). 

B. Failure and fault: Definition, taxonomy and location 

1) Definitions 

•  Failure (service failure): Event that occurs 
when the delivered service deviates from the 
correct service. 

•  Error: Part of the system's state that may lead 
to a failure. 

•  Fault: Cause of an error. 

 
Fig. 2. From fault to failure (from [3]) 



Figure 2 explains the way leading from a fault to a 
failure. During design or operational phases, 
systems are necessarily affected by internal or 
external (coming from the environment) faults. So a 
fault is a malicious entity which, once activated, 
creates an error. This error is propagated through 
the system until a failure occurs in the system 
service. If the system is composed of several 
synchronized sub-systems, the failure of one sub-
system service could become a fault for the 
following sub-system. 

2) Taxonomy 

Many quite similar faults taxonomies have been 
proposed in the literature [2] [3] [13] [17]. 

In robotics, human and physical faults are usually 
distinguished (Figure 3). Human faults concern 
system development and interaction faults, whereas 
physical faults are decomposed into effector, 
sensor, power, control system and communication 
faults. 

 
Fig. 3 Murphy faults taxonomy (from [17]) 

It is important to point out that a fault occurrence 
can only be observed by the user when a failure is 
detected. So, from Figure 2 it is easy to understand 
that many (sub-)systems can be affected during the 
error propagation without external signal of failure. 
This observation puts in light that a failure is not 
necessarily a fault. Thus, it is crucial to be able to 
detect (detectability) as soon as possible a fault 
activation and to deploy efficient diagnosis 
mechanisms to get back to the original fault. 

3) Fault Location 

In [14] an in-depth analysis of autonomous systems 
faults is proposed. Faults are spread through the 
environment, the autonomous system and its 
environment awareness (Figure 4). The following 
types can be distinguished: 

Concerning the environment: 

•  Exogenous event fault: The environment might 
change in an unpredictable way. For example 
the change can be caused by another agent, 
indirectly by the autonomous system itself or an 
inadequate  model of the environment. 

Concerning the autonomous system: 

•  Hardware fault: Effectors, sensors, embedded 
control hardware faults. 

•  Software fault: Design and implementation 
flaws, run-time faults. 

•  Knowledge fault: The embedded knowledge 
about the world (initial or updated) is 
inappropriate with the mission, leading to 
inadequate decisions. 

Concerning the environment awareness: 

•  Execution fault: The real outcome of an action 
is not the expected one. 

•  Sensing fault: Sensors observations are 
erroneous due to sensors shortcomings or 
perception algorithms limitations. 

 
Fig. 4 Autonomous system faults (adapted from [18]) 

A fault tolerant autonomous system would be able 
to detect and react to all these possible encountered 
faults. 

IV. FAULT TOLERANCE PRINCIPLES 

Zhang [4] defines a Fault Tolerant Control System 
(FTCS) as a control system, which is able to 
automatically maintain the system stability and an 
acceptable performance when component failures 
occur. 

To reach these objectives, FTCS must generally 
implement 4 main principles: 

•  Fault Detection: To detect that there is 
something wrong in the system and that a fault 
has occurred somewhere. 

•  Fault Isolation: To decide which component is 
faulty and its location in the system. 

•  Fault Identification: To identify the fault and 
its severity. 

•  Fault Recovery: To adapt the system controller 
structure, according to the identified fault, to 
maintain the system stability and an acceptable 
performance. 

In the literature the fault isolation and identification 
steps are often merged into the single word 
diagnosis. 



These last principles allow the fault tolerance 
execution. However, it must be notice that to be 
able to detect a fault, it is necessary to be conscious 
that this fault can occur. Therefore, fault 
forecasting is an inescapable and preliminary step, 
which cannot be avoided before undertaking a fault 
tolerance process. 

These general principles have generated an 
important corpus of scientific researches concerning 
Fault Detection and Diagnosis (FDD) in control 
engineering over the last decades. Most of them can 
potentially be used for robotic purpose. 

V. FAULT TOLERANCE IN CONTROL 
ENGINEERING: EFFICIENT BUT 

UNSUFFICIENT 

Fault Detection and Diagnosis require an inter-
disciplinary expertise. Many interesting and 
complete bibliographical overviews have been 
proposed [4] [5] [6] [7] [8]. 

A. Fault detection and diagnosis 

Generally two main classes of FDD methods are 
identified: model-based and data-based methods. 

The quantitative model-based methods, widely 
used in robotics, are mainly based on analytical 
software redundancy. Many approaches performing 
signal processing techniques have been proposed 
for fault detection: state estimation observers or 
Kalman filters based approaches, parameter 
estimation oriented techniques or parity spaced 
oriented methods. 

The data-based oriented methods don't need an a 
priori knowledge about the system behavior. They 
only require a large amount of historical data to 
extract a knowledge base which is used by the 
diagnosis system. Expert systems, neural networks 
using pattern recognition, or multivariate statistical 
techniques like principal component analysis can be 
used for example. The data-based methods can 
easily handle a large amount of data and are mainly 
used to control industrial processes. They are rarely 
employed in robotics where a model-based 
knowledge of the system can be easily addressed 
and the amount of data is limited. 

B. Recovery 

Usually, passive and active fault tolerant 
approaches can be distinguished for recovery. 

Passive approaches don't need to previously have a 
fault diagnosis. Robust control techniques like the 
quantitative feedback theory, the CRONE control, 

the H� synthesis or the adaptive control are used to 
design a controller ensuring that the control-loop 
remain stable and efficient from a performance 
point of view. Unfortunately these methods can 
only deal with few system's faults. 

Active techniques need to know which fault affects 
the system to adapt the controller design while 
preserving the stability and a graceful performance. 
Two main reconfiguration strategies can be used. 
On the first hand some predefined control laws can 
be selected to correct the impact of identified faults. 
Then approaches using multiple models and 
variable gain commands can be applied. On the 
second hand, to react to the occurrence of a fault, an 
on-line controller synthesis can be realized. Active 
recovery approaches allow a better fault coverage 
than passive methods. 

C. Conclusion 

For the development of fault tolerant robotics, the 
works dedicated to control engineering are not able 
to address all issues that must be considered: 

•  It is difficult to ensure that all the proposed 
approaches always satisfy the real time 
treatment of a fault occurrence. This point is 
central for mobile robotic in a dynamic 
environment. 

•  The tolerant control-loops integrating FDD and 
recovery issues are efficient to deal with 
sensors or actuators faults. But they are not able 
to consider faults related to high-level 
knowledge. 

•  Despite the efficiency of the control 
engineering recovery mechanisms, the 
proposed answers are not flexible enough to 
manage the situations which must be handled 
during complex missions. 

So, the software aspect is the main dimension to be 
considered to develop real fault tolerant mobile 
robots. This is the place where the fault tolerant 
principles must be integrated and managed. The 
control architecture provides more flexibility, 
expendability and adaptability capabilities than a 
pure oriented computer engineering approach.  

VI. FAULT TOLERANCE IN CONTROL 
ARCHITECTURES: A FANTASY 

Efficient autonomous robotics needs to merge 
planning capabilities with reactive behaviors. 
Hybrid control architectures decomposed in 
planning (deliberative), executive and behavioral 
(reactive) layers are often used. Component 



oriented development permits to address fault 
prevention issues. 

A. Fault Tolerance principles in control architectures 

1) Fault Detection and Diagnosis principles 

In [9] [10] [11], four basic mechanisms are 
identified to implement FDD in autonomous robots 
architectures. 

•  Timing checks are frequently introduced for 
timing fault detection. They supervise robot's 
functionalities liveness using timers and watch-
dog principles. 

•  Reasonableness checks are commonly used in 
robotics to verify the correctness of system's 
variables according to algorithms constraints or 
manufacturer specifications 

•  Safety bags checks are also frequently 
implemented in robotic architectures to monitor 
the system outputs and blocking erroneous 
values to avoid unsafe behavior. 

•  Monitoring for Diagnosis is the most 
attractive axis for fault detection leading to 
many publications (see a survey in [19]). This 
domain is strongly connected to the control 
engineering techniques previously presented 
section V. Mainly dedicated to hardware fault 
detection, software redundancy using model-
based approaches is often used to detect sensors 
or effectors failure. 

2) Recovery principles 

[3] presents a large analyze of the recovery 
mechanisms proposed in computer science which 
could be classified in error and fault handling. 
Some of them are used in robotics. Focusing on 
robotic control architectures, [11] and [13] identify 
the following recovery means: 

For the executive level: 

•  Specific treatment: When a known situation is 
encountered, the hardware context or the 
concerned algorithm is changed to treat the 
identified fault. 

•  Action retry: The failed action is restarted 
expecting that its execution context will get 
better. 

•  Action retry using functional redundancy: 
The failed action is restarted using a functional 
alternative (if it exists). 

•  Modality switching: The failed action is 
restarted using the most efficient and 
operational functioning mode. It is an extension 

of the previous principle, as it needs to have a 
degree of redundancy. The redundancy can be 
software or hardware. 

For the planning level: 

•  Re-planning: It consists of developing a new 
plan from the current situation facing adverse 
situation, to the expected final situation. This 
method is time consuming and the robot must 
be placed into a safe state during re-planning. 

•  Plan repair: This is a faster solution than re-
planning, where the initial plan is locally 
modified to overcome the encountered adverse 
situation. 

For the mission level: 

•  Autonomy adaptation: When recovery fails at 
executive and planning levels, a human 
assistance can be envisaged to pursue the 
mission. In this last case, an interesting solution 
is the adaptation of the autonomy level of the 
robot [13]. 

B. Control architectures and fault tolerance 

From [12] [13], this part analyses the fault tolerance 
aspect in some classical robotic control 
architectures and frameworks. The main results are 
summarized in Table1.  

CLARATY [20] has been developed by the NASA 
to propose an efficient robotic software for space 
mission. It is organized in two layers: the Decision 
layer, which integrates the planning and executive 
functionalities; and a Functional layer for 
interfacing with hardware platform. For fault 
tolerance purpose, each component may integrate a 
state machine to monitor the state evolution, and 
uses internal or external estimators for state 
variables estimation. These means allow 
implementing diagnostic and recovery mechanisms. 
If the conflict cannot be handled locally, it is 
considered by higher-level modules up to the 
planner level. The CLEaR (Closed-Loop Execution 
and Recovery) system is a hybrid controller 
coordinating goal-driven and event-driven 
approach. CLEaR integrates CASPER (Continous 
Activity Scheduling, Planning, Execution and Re-
planning) and TDL (Task Description Language) 
systems. TDL can implement exception handling 
like action retry. CASPER implements plan repair 
recovery. 

CoolBOT [21] is a component-oriented system 
dedicated to robotic purposes. Each component 
implements a states machine and communicates by 



forwarding information via event and data ports. 
Exception handling permits to switch into a set of 
error states. Hierarchical component variables 
adaptation, backward error recovery and functional 
redundancy can be used to manage error handling. 

COTAMA FFT (COTAMA For Fault Tolerance) 
[13] is a component-oriented architecture dealing 
with fault tolerance. Observation modules are used 
to monitor the identified faults occurrence. A 
dedicated diagnosis module, using residues 
analysis, identifies the fault and updates a database 
of the modules' state. According to the detected 
fault severity and the available resources, the 
recovery is engaged using the modality switching 
principle and autonomy adaptation. 

The LAAS architecture [22] is dedicated for

autonomous robots. It is a 3 layers architecture. The 
decisional level is dedicated to plans generation and 
execution. At the execution control level, the R2C 
component checks the validity of the requests of the 
decisional layer [23]. Finally, the functional level 
proposes modules generated with the GenoM tool, 
and offers services to hardware and software 
resources. The BIP software framework [24] allows 
the design of a controller enforcing low-level safety 
properties (ordering or synchronization violations, 
data freshness). R2C checks that modules correctly 
interact. It can verify some safety rules and may 
stop unacceptable actions. IxTeT planner 
component [25] implements re-planning and plan-
repair facilities. Moreover, FTplan [9] manages 
some planning faults and proposes re-planning 
alternatives. 

Name 
Fault 

Forecasting 
Detection Mean 

Diagnosis 
Mean 

Recovery Mean 

CLARATY No 
State monitoring 
State estimators 

Unknown 
if it exist 

E.L.: Exception handling 

P.L.: Plan repair 

COOLBOT No Exceptions list 
Unknown 
if it exist 

E.L.: Exception handling using 
component variables adaptation, 
backward error recovery or functional 
redundancy 

COTAMA FFT Yes 
Observation modules 

(All types of detection means) 
Residue based 

diagnosis 

E.L.: Execution control 
using modality switching 

M.L. : Autonomy adaptation 

LAAS No 
Safety rules verification at module 

and execution control level. 

Planning faults detection 

Unknown 
if it exist 

E.L.: Stop action 

P.L.: Re-Planning – Plan-repair 

MIRO No 
Exceptions list 

Guard 
Unknown 
if it exist 

E.L.: Dynamic reconfiguration 

ORCA No Action realization check 
Unknown 
if it exist 

E.L.: Action retry - Dynamic 
reconfiguration and redundancy 

ORCCAD No 
Properties verification 
Exceptions handling 

Model-based detection? 
Unknown  

E.L.: Parameterization – dynamic 
reconfiguration – safe mode 

IDEA No 
Variables timelines monitoring 

Non- nominal conditions detection 
Unknown 
if it exist 

E.L.: Ad-hoc recovery – Pre-
compiled scripts using 

P.L.: Local Re-Planning 

PROCOSA No 
Disruptive events detection  

(engine failure, payload failure, etc.) 
Unknown 
if it exist 

E.L.: Dynamic reconfiguration 

P.L.: Re-Planning (proposed) 

M.L.: Possible 

RA Perhaps Failure mode identification module 
Model based 

diagnosis 

E.L.: Module repairing - 
Reconfiguration 

P.L.: Re-Planning with degraded 
capabilities 

M.L.: Possible 

3T No 
Safety verification 

Watchdog 
Unknown 
if it exist 

E.L.: Resetting – dynamic 
reconfiguration 

P.L.: Re-Planning 

E.L.: Executive Level – P. L.: Planning Level – M.L.: Mission Level 

Tab. 1 Fault tolerance and robotic control architectures 



 

MIRO [26] is an object-oriented middleware 
dedicated for mobile robot applications. It is 
structured into 3 architectural layers, interwoven 
with two layers of the CORBA middleware. The 
device layer provides interface for robots sensors 
and actuators. The service layer provides active 
service abstractions for sensors and actuators. The 
framework layer specifies the robotic 
functionalities. In this architecture there are some 
handling capabilities and a list of exceptions 
indicating hardware, service or load problems. Miro 
also defines action patterns organized in behavior 
hierarchies and guards. They notify external event 
occurrences which can potentially induce a 
dynamic reconfiguration. 

ORCA [27] is a component-oriented open-source 
framework for robotics. Components implement 
algorithms and hardware interfaces. They 
communicate using push, pull or query patterns via 
TCP/IP or UDP protocols. Simple checks can be 
done at low-level, like correct action realization, If 
an action fails, a cleanup is simply realized. At 
application level some dynamic reconfiguration 
capabilities using redundant components are also 
possible. 

ORCCAD (Open Robotic Controller CAD) [28] is 
a dedicated framework for the development of 
robotic applications. The two basics concepts allow 
the definition of a robotic action. The Robotic Task 
(RT) which models basic robotic actions and where 
control aspects are dominants. Robotic Procedure 
(RP) merges Robotic Tasks to construct more 
complex actions. RT and RP can be composed 
hierarchically in structure of increasing complexity. 
In RT the user can explicitly detailed the exceptions 
he wants to deal with and the corresponding 
recovery procedures: Parameters adaptation of a 
control law, new RT application, safe mode 
engaged. In [29] dedicated diagnosis modules are 
used to detect sensors and motor faults. Moreover, 
synchronous programming allows to verify crucial 
properties like safety (any fatal exception handled), 
liveness (RP reaches its goal in a nominal 
situation), conflict detection, behavior verification. 

IDEA (Intelligent Distributed Execution 
Architecture) [30] is an agent based architecture. 
All agents possess the same structure and behavior 
(reactive planner, plan data-base, domain model, 
plan runner). Agent communicates using the 
communication services of the underlying 

middleware. More recently a Remote Agent 
functionality including mode recovery has been 
introduced. IDEA introduces timelines for the 
variables monitored. An inconsistency is reported 
to the Plan Data base which can engaged recovery 
action within the specified time boundaries. Non-
nominal conditions handling can be introduced in 
the agent's central model. The flexibility of 
planning capacities (Minimal/long horizon and 
deliberative planning) can improve the system's 
responsiveness to external adverse events using 
local re-planning Recovery using pre-compiled 
alternative solutions (scripts) is possible. 

PROCOSA [31] is an asynchronous Petri net-based 
software package dedicated for autonomous 
systems control and monitoring. Petri nets allow the 
description of the execution logic of the 
autonomous systems behaviors including nominal 
and disruptive phases. A Petri net player executes 
the associated procedures and manages the 
communications. The Petri net model permits to 
verify some structural and behavioral properties. 
PROCOSA takes care of unique faults occurrence 
and engages adapted recovery means including 
operator help. However the treatment remains 
limited and not systematic.  

RA (Remote Agent) architecture [32] has been 
developed for autonomous spacecraft missions at 
NASA. RA is based is based on a 3 layered abstract 
machine: a planner/scheduler which plans actions 
and schedules resources; an executive layer which 
executes the defined plan; and a mode identification 
(MI) and mode reconfiguration (MR) layer used for 
diagnosis and fault recovery. MI is dedicated for 
observation and MR for recovery. MR is 
responsible for exiting from a failure mode using 
component repairing or reconfiguration. Re-
planning with degraded capabilities can also be 
envisaged. So RA was design for fault tolerance. 

The NASA 3T [33] is a 3 layered architecture. The 
decisional layer controls the long term capabilities. 
A mediating layer achieves transitions toward the 
reactive skills layer. Depending on the experimental 
applications different fault tolerant capacities have 
been developed. Remote Agent principle has also 
been integrated in some 3T architecture 
experiments. Concerning task scheduling faults a 
generalized scheduler/reschedule is able to 
reschedule a task (start, stop, resources, time 
constraints) if a disruptive event occurs. For the 



 

skill layer it is possible to detect that an expected 
state has not be reached. The skills layer is also able 
to manage a loss of communication using 
watchdogs and keep some sub-systems in safe 
mode. The mediating layer is able to handle non-
nominal situations and uses reconfiguring skills or 
re-setting to manage their detection. Moreover the 
3T architecture achieves safety behavior for 
different autonomy modes (teleoperated, semi-
autonomous and autonomous). 

C. Fault tolerance in control architectures: Current 
limitations 

First of all it must be noticed that all the presented 
control architectures propose some means to 
implement fault tolerance. However many 
limitations can be identified: 

•  None of the proposed architectures but 
COTAMA FFT seem to integrate explicitly a 
preliminary fault forecasting step into the 
design process. Without a systematic off line 
approach of fault identification the fault 
tolerance will be drastically limited. 

•  In most of the architectures, fault detection and 
identification are roughly spread into the code. 
There is no structured reasoning guiding their 
implementation. 

•  Except for RA and COTAMA FFT the 
diagnosis mechanisms are not explained in the 
literature. This opacity denotes that the 
diagnosis phase remains basic. It seems that 
two important shortcomings are implicitly 
realized. First, there is no distinction made 
between faults and failures detection. Secondly, 
only unique fault occurrence is considered. 
These limitations hardly limit the relevance of 
the recovery phase. 

•  Generally, few types of recovery methods are 
proposed in a given architecture. No 
architecture proposes recovery solutions at 
executive, planning and mission levels. 
Recovery mechanisms are rarely formalized 
like in COTAMA FFT, RA, PROCOSA or 
ORCCAD. Furthermore, the most common 
recovery solution is to put the robot in a safe 
state, without proposing most efficient recovery 
solutions.  

•  Finally, few architecture complete fault 
tolerance using fault removal techniques 
(LAAS, ORCCAD). 

Few research works have addressed the fault 
tolerance as a central issue in control architecture. 
There is a lake of global integration of fault 
tolerance principles which are generally spread into 
the software. There is a need of detection, diagnosis 
and recovery reification in the control architecture 
design. A framework for fault tolerance integration 
would be useful. 

VII. FAULT TOLERANCE FOR MOBILE 
ROBOTS: FROM FANTASY TO REALITY 

Most of the time, the fault tolerance paradigm is not 
the central issue that is considered in the research 
works. Thus, to develop fault tolerant robotics, a set 
of open issues using Fault Detection Isolation and 
Recovery principles (FDIR) can be identified. 

Application domains for FDIR [14] [15]: The 
development of fault tolerant robotics is clearly 
domain (environment), safety and cost dependant. 
The set of possible encountered faults is quite 
different for airplanes, robotic manipulators or 
autonomous mobile robots. The safety 
consideration is different when FDIR concerns a 
domestic or a companion robot. The associated 
development costs are not comparable. Actually 
due to a lack of self-confidence in architectural 
FDIR principles, critical systems [34] (space, 
avionic) often implement a large hardware 
redundancy to deal with the fault tolerance issue. 
Fault tolerant control architectures would be a nice 
and flexible answer for FDIR. The design of such 
architecture needs to be able to propose and 
develop efficient and reliable methodologies, 
concepts and software. 

Design for FDIR [14]: The development of fault 
tolerant robotics needs to consider the fault 
tolerance issue from the beginning of the system 
design. A fault tolerance control architecture cannot 
be the unique answer. Software, but also hardware 
and control aspects must be considered together to 
implement the most efficient solutions for 
reliability. So specific approaches for FDIR 
integration and design would be proposed. 

Fault tolerant control architecture design [13]: 
The previous analysis demonstrates that, generally, 
there is an important lack of fault tolerance 
consideration into control architecture. 

Fault forecasting is an essential and initial step 
which must be realized to develop fault tolerant 
architectures. It is central to identify the most 



 

significant faults the robotic systems could 
encounter within its application domain. 

Fault detection and particularly monitoring for 
diagnosis must consider more than actuators and 
sensors faults to deal with situation awareness. 
Moreover, noisy sensors problem (false or missed 
detection) must be overcome to enhance sensors' 
data reliability. 

Fault diagnosis advanced techniques must be 
really implemented in control architectures. 
Moreover, these methods have to be more relevant 
to prepare an efficient recovery. They must be able 
to distinguish faults, errors and failures detection 
and to deal with single and multiple faults 
occurrences. 

Fault recovery must be spread over the mission, 
executive and planning architectural layers using 
for example adaptive autonomy, modality or re-
planning capacities. Furthermore, the development 
of adaptive behaviors could also consider the 
mission performance aspects (trajectory accuracy, 
speed, safety, etc.). 

For us, the design of a fault tolerant control 
architecture needs to reify the fault detection, 
diagnosis and recovery principles. Moreover, as we 
present in [13] and develop further, it is also crucial 
to propose a fault tolerant methodology integrating 
the forecasting step, and guiding the developer 
during the control architecture design. 

FDIR metrics and benchmarks [14]: A key point 
to achieve fault tolerance is to be able to define, like 
for integrated circuits "a certified" fault coverage. 
So domain, objective, and comparable public 
metrics must be defined. As well, realistic and 
reproductive scenarios must be elaborate 
considering pure simulation, hardware-in-the-loop, 
laboratory or in-the-field environments. 

VIII. CONCLUSION 

This article proposes a general survey of the fault 
tolerance issue in mobile robotics, focusing on 
control architectures. It puts in light that this 
objective needs to develop design methodologies 
for FDIR, merging hardware, control engineering 
and software knowledge. Due to its flexibility and 
its adaptability, the design of fault tolerant control 
architectures would be a central answer for fault 
tolerance needs. However, nowadays, the fault 
tolerance principles are neglected in the control 

architecture design. So an important effort for fault 
tolerance integration must be realized. Moreover, to 
be industrially accepted, fault tolerant metrics must 
be proposed and evaluate for specific application 
domains and contexts of mobile robots. 
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