
HAL Id: lirmm-00804370
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804370

Submitted on 25 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault Tolerance in Control Architectures for Mobile
Robots: Fantasy or Reality?
Didier Crestani, Karen Godary-Dejean

To cite this version:
Didier Crestani, Karen Godary-Dejean. Fault Tolerance in Control Architectures for Mobile Robots:
Fantasy or Reality?. CAR: Control Architectures of Robots, May 2012, Nancy, France. �lirmm-
00804370�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804370
https://hal.archives-ouvertes.fr

Abstract—. Due to the future development of robotic
autonomous systems in human environment, the fault
tolerance paradigm will be a central issue in robotics.
This article presents a survey of fault tolerance concepts,
means and implementations in robotic architectures.

I. INTRODUCTION

Step by step fault tolerance in autonomous systems
becomes a key challenge for the next decades. As
point out in [1], systems and control science must
be able to propose in the near future efficient
control strategies optimizing the system's behavior
to accomplish intending functions, while satisfying
performance requirements and minimizing negative
effects (resources consumption, safety behavior,
etc.). But the increasing complexity of autonomous
systems evolving in open, complex, unstructured
and dynamic environment and interacting with
vulgum pecus humans implies that the realization of
sophisticated missions in a reliable way seems to
currently be a fantasy. Fault tolerance integration
will be a major part of the answer to the
development of reliable and secure autonomous
systems. The software aspect related to control
architecture will be an important constituent of the
fault tolerance deployment.

This paper is based on some relevant works and
analysis concerning robots reliability [2],
dependable concepts [3], fault tolerance in
engineering [4] [5] [6] [7] [8], fault tolerance in
autonomous (robotic) systems [9] [10] [11] [12]
[13], and fault tolerance issues [14] [15].

The next section presents through a wide analysis
of on-the-field missions, the existing practical
limitations of mobile robot reliability. Some basic
definitions concerning dependability are given
section III, with discussion about faults categories
and location. Then section IV reminds the fault
tolerance principles and section V exposes some of
the main techniques used in control engineering.
Next, sections VI and VII deal with fault tolerance
in robotics. Methods really deployed in robotics are

presented and analyzed before glancing at some
robotic control architectures. Finally the conclusion
highlights some important issues for fault tolerance
integration for autonomous robotic systems.

II. FAULT TOLERANT ROBOTS: A
FANTASY!

For many years J. Carlson works on fault tolerance
in mobile robotics [2] [15] [16] [17] [18]. In [2] a
detailed analysis of Unmanned Ground Vehicles in
the field missions is realized. This study covers 24
different robots (15 models), from 3.6 kg (Micro
Tracs from Inuktun©) to more than 27 tons (Panther
army tank)! These robots are developed by 7
manufacturers. The concerned applications are
Urban Search and Military Operations in Urban
Terrian. The analysis concerns mainly on the field
missions like during the World Trade Center
disaster or for demining in Bosnia. Depending on
the robot type, the communication with a distant
operator is ensured using wired or wireless means.

The Urban and Rescue missions analyze shows that
Inuktun© robots have a MTBF equal to 6.1 hours
and an availability ratio of 90% because that
encountered faults remain minors and easy to
repair. Irobot© robots have approximately the same
MTBF but the availability ratio was only equal to
36% because most of the failures are serious and
hard to repair. The army robot mission analysis
shows that there are only 1.16 failures per day, but
that most of them (95%) are terminal for the
mission.

It must be mention that the timing granularity of the
mission data collection is not always known. For
the World Trade Center missions, where a low
granularity is available, 1.4 minor failures are
observed per minute!

Concerning the physical failures location and
impact, Figure 1 shows the synthetic diagram
proposed by Carlson in [2]. It summarizes the range
probability of the physical components observed

Fault Tolerance in Control Architectures for Mobile Robots:
Fantasy or Reality?

D. Crestani, K. Godary-Dejean
Laboratoire Informatique Robotique Microélectronique de Montpellier

Université Montpellier Sud de France - CNRS
{godary, crestani}@lirmm.fr

during the studied missions and their impact on the
mission success.

The failures encountered during the different
analyzed missions are of several types. The most
common ones are the effectors' failures. For
example, pinion gear collecting dirt and debris,
tracks work off their wheels.

Sensors failures concern occluded camera, incorrect
lighting, lack of depth perception, hard external
conditions inducing moisture, dirt or mud on the
lenses. Power failures are sometimes encountered
due to low batteries or fuel problems (level, fuel
filters). The control system failures are often
encountered. It is a critical origin inducing
unresponsive robot, uncontrolled behavior or
system shutdown. The solution is to reboot the
system. The communication is also a critical
function because the wireless communication
remains problematic in the field (availability,
bandwidth) like for the World Trade Center and the
impact of its structural steel. Another result is that
failures have an important impact on the mission
success since most of them are terminal.

Fig. 1 Component failure probability (from [2])

This detailed analysis shows that the overall robot
reliability is quite low with 6 to 20 hours of MTBF.
Moreover it demonstrates that mobile robots must
cope with many faults and are not very
autonomously fault tolerant.

III. BASIC CONCEPTS

This part of the article reminds the basic concepts
related to dependability, and discusses about fault
and failure definition, taxonomy and location.

A. Basic definitions of dependable concepts (from [3])

This section presents some accepted definitions
used in the dependability and security communities
[3], and then clarifies the robotic point of view.

1) Concepts in computing engineering

• Dependability: Ability to avoid service failures
that are more frequent and more severe than
acceptable.

• Reliability: Continuity of correct service. It is
an attribute of dependability.

The means of dependability have been grouped into
4 categories:

• Fault prevention to prevent the occurrence of
the introduction of faults. Fault prevention
mainly depends on software development
methods ensuring easy maintainability,
analyzability and testability.

• Fault removal to reduce the number and
presence of faults. Fault removal concerns
mainly tests and formal validation.

• Fault forecasting to estimate the present
number, the future incidence, and the likely
consequences of faults.

• Fault tolerance to avoid service failures in the
presence of faults.

2) Concepts in robotics

Depending on the fault location Lussier in [9] [11]
proposes to distinguish two concepts:

• Robustness: Restrict the fault tolerance of the
treatment of adverse situations arising due to
the variability of the autonomous system
environment (unexpected obstacle, lighting
variability, etc.).

• Fault tolerance: Concerns only the ability to
deliver a correct service according to faults
affecting the autonomous system itself
(hardware or software fault).

B. Failure and fault: Definition, taxonomy and location

1) Definitions

• Failure (service failure): Event that occurs
when the delivered service deviates from the
correct service.

• Error: Part of the system's state that may lead
to a failure.

• Fault: Cause of an error.

Fig. 2. From fault to failure (from [3])

Figure 2 explains the way leading from a fault to a
failure. During design or operational phases,
systems are necessarily affected by internal or
external (coming from the environment) faults. So a
fault is a malicious entity which, once activated,
creates an error. This error is propagated through
the system until a failure occurs in the system
service. If the system is composed of several
synchronized sub-systems, the failure of one sub-
system service could become a fault for the
following sub-system.

2) Taxonomy

Many quite similar faults taxonomies have been
proposed in the literature [2] [3] [13] [17].

In robotics, human and physical faults are usually
distinguished (Figure 3). Human faults concern
system development and interaction faults, whereas
physical faults are decomposed into effector,
sensor, power, control system and communication
faults.

Fig. 3 Murphy faults taxonomy (from [17])

It is important to point out that a fault occurrence
can only be observed by the user when a failure is
detected. So, from Figure 2 it is easy to understand
that many (sub-)systems can be affected during the
error propagation without external signal of failure.
This observation puts in light that a failure is not
necessarily a fault. Thus, it is crucial to be able to
detect (detectability) as soon as possible a fault
activation and to deploy efficient diagnosis
mechanisms to get back to the original fault.

3) Fault Location

In [14] an in-depth analysis of autonomous systems
faults is proposed. Faults are spread through the
environment, the autonomous system and its
environment awareness (Figure 4). The following
types can be distinguished:

Concerning the environment:

• Exogenous event fault: The environment might
change in an unpredictable way. For example
the change can be caused by another agent,
indirectly by the autonomous system itself or an
inadequate model of the environment.

Concerning the autonomous system:

• Hardware fault: Effectors, sensors, embedded
control hardware faults.

• Software fault: Design and implementation
flaws, run-time faults.

• Knowledge fault: The embedded knowledge
about the world (initial or updated) is
inappropriate with the mission, leading to
inadequate decisions.

Concerning the environment awareness:

• Execution fault: The real outcome of an action
is not the expected one.

• Sensing fault: Sensors observations are
erroneous due to sensors shortcomings or
perception algorithms limitations.

Fig. 4 Autonomous system faults (adapted from [18])

A fault tolerant autonomous system would be able
to detect and react to all these possible encountered
faults.

IV. FAULT TOLERANCE PRINCIPLES

Zhang [4] defines a Fault Tolerant Control System
(FTCS) as a control system, which is able to
automatically maintain the system stability and an
acceptable performance when component failures
occur.

To reach these objectives, FTCS must generally
implement 4 main principles:

• Fault Detection: To detect that there is
something wrong in the system and that a fault
has occurred somewhere.

• Fault Isolation: To decide which component is
faulty and its location in the system.

• Fault Identification: To identify the fault and
its severity.

• Fault Recovery: To adapt the system controller
structure, according to the identified fault, to
maintain the system stability and an acceptable
performance.

In the literature the fault isolation and identification
steps are often merged into the single word
diagnosis.

These last principles allow the fault tolerance
execution. However, it must be notice that to be
able to detect a fault, it is necessary to be conscious
that this fault can occur. Therefore, fault
forecasting is an inescapable and preliminary step,
which cannot be avoided before undertaking a fault
tolerance process.

These general principles have generated an
important corpus of scientific researches concerning
Fault Detection and Diagnosis (FDD) in control
engineering over the last decades. Most of them can
potentially be used for robotic purpose.

V. FAULT TOLERANCE IN CONTROL
ENGINEERING: EFFICIENT BUT

UNSUFFICIENT

Fault Detection and Diagnosis require an inter-
disciplinary expertise. Many interesting and
complete bibliographical overviews have been
proposed [4] [5] [6] [7] [8].

A. Fault detection and diagnosis

Generally two main classes of FDD methods are
identified: model-based and data-based methods.

The quantitative model-based methods, widely
used in robotics, are mainly based on analytical
software redundancy. Many approaches performing
signal processing techniques have been proposed
for fault detection: state estimation observers or
Kalman filters based approaches, parameter
estimation oriented techniques or parity spaced
oriented methods.

The data-based oriented methods don't need an a
priori knowledge about the system behavior. They
only require a large amount of historical data to
extract a knowledge base which is used by the
diagnosis system. Expert systems, neural networks
using pattern recognition, or multivariate statistical
techniques like principal component analysis can be
used for example. The data-based methods can
easily handle a large amount of data and are mainly
used to control industrial processes. They are rarely
employed in robotics where a model-based
knowledge of the system can be easily addressed
and the amount of data is limited.

B. Recovery

Usually, passive and active fault tolerant
approaches can be distinguished for recovery.

Passive approaches don't need to previously have a
fault diagnosis. Robust control techniques like the
quantitative feedback theory, the CRONE control,

the H� synthesis or the adaptive control are used to
design a controller ensuring that the control-loop
remain stable and efficient from a performance
point of view. Unfortunately these methods can
only deal with few system's faults.

Active techniques need to know which fault affects
the system to adapt the controller design while
preserving the stability and a graceful performance.
Two main reconfiguration strategies can be used.
On the first hand some predefined control laws can
be selected to correct the impact of identified faults.
Then approaches using multiple models and
variable gain commands can be applied. On the
second hand, to react to the occurrence of a fault, an
on-line controller synthesis can be realized. Active
recovery approaches allow a better fault coverage
than passive methods.

C. Conclusion

For the development of fault tolerant robotics, the
works dedicated to control engineering are not able
to address all issues that must be considered:

• It is difficult to ensure that all the proposed
approaches always satisfy the real time
treatment of a fault occurrence. This point is
central for mobile robotic in a dynamic
environment.

• The tolerant control-loops integrating FDD and
recovery issues are efficient to deal with
sensors or actuators faults. But they are not able
to consider faults related to high-level
knowledge.

• Despite the efficiency of the control
engineering recovery mechanisms, the
proposed answers are not flexible enough to
manage the situations which must be handled
during complex missions.

So, the software aspect is the main dimension to be
considered to develop real fault tolerant mobile
robots. This is the place where the fault tolerant
principles must be integrated and managed. The
control architecture provides more flexibility,
expendability and adaptability capabilities than a
pure oriented computer engineering approach.

VI. FAULT TOLERANCE IN CONTROL
ARCHITECTURES: A FANTASY

Efficient autonomous robotics needs to merge
planning capabilities with reactive behaviors.
Hybrid control architectures decomposed in
planning (deliberative), executive and behavioral
(reactive) layers are often used. Component

oriented development permits to address fault
prevention issues.

A. Fault Tolerance principles in control architectures

1) Fault Detection and Diagnosis principles

In [9] [10] [11], four basic mechanisms are
identified to implement FDD in autonomous robots
architectures.

• Timing checks are frequently introduced for
timing fault detection. They supervise robot's
functionalities liveness using timers and watch-
dog principles.

• Reasonableness checks are commonly used in
robotics to verify the correctness of system's
variables according to algorithms constraints or
manufacturer specifications

• Safety bags checks are also frequently
implemented in robotic architectures to monitor
the system outputs and blocking erroneous
values to avoid unsafe behavior.

• Monitoring for Diagnosis is the most
attractive axis for fault detection leading to
many publications (see a survey in [19]). This
domain is strongly connected to the control
engineering techniques previously presented
section V. Mainly dedicated to hardware fault
detection, software redundancy using model-
based approaches is often used to detect sensors
or effectors failure.

2) Recovery principles

[3] presents a large analyze of the recovery
mechanisms proposed in computer science which
could be classified in error and fault handling.
Some of them are used in robotics. Focusing on
robotic control architectures, [11] and [13] identify
the following recovery means:

For the executive level:

• Specific treatment: When a known situation is
encountered, the hardware context or the
concerned algorithm is changed to treat the
identified fault.

• Action retry: The failed action is restarted
expecting that its execution context will get
better.

• Action retry using functional redundancy:
The failed action is restarted using a functional
alternative (if it exists).

• Modality switching: The failed action is
restarted using the most efficient and
operational functioning mode. It is an extension

of the previous principle, as it needs to have a
degree of redundancy. The redundancy can be
software or hardware.

For the planning level:

• Re-planning: It consists of developing a new
plan from the current situation facing adverse
situation, to the expected final situation. This
method is time consuming and the robot must
be placed into a safe state during re-planning.

• Plan repair: This is a faster solution than re-
planning, where the initial plan is locally
modified to overcome the encountered adverse
situation.

For the mission level:

• Autonomy adaptation: When recovery fails at
executive and planning levels, a human
assistance can be envisaged to pursue the
mission. In this last case, an interesting solution
is the adaptation of the autonomy level of the
robot [13].

B. Control architectures and fault tolerance

From [12] [13], this part analyses the fault tolerance
aspect in some classical robotic control
architectures and frameworks. The main results are
summarized in Table1.

CLARATY [20] has been developed by the NASA
to propose an efficient robotic software for space
mission. It is organized in two layers: the Decision
layer, which integrates the planning and executive
functionalities; and a Functional layer for
interfacing with hardware platform. For fault
tolerance purpose, each component may integrate a
state machine to monitor the state evolution, and
uses internal or external estimators for state
variables estimation. These means allow
implementing diagnostic and recovery mechanisms.
If the conflict cannot be handled locally, it is
considered by higher-level modules up to the
planner level. The CLEaR (Closed-Loop Execution
and Recovery) system is a hybrid controller
coordinating goal-driven and event-driven
approach. CLEaR integrates CASPER (Continous
Activity Scheduling, Planning, Execution and Re-
planning) and TDL (Task Description Language)
systems. TDL can implement exception handling
like action retry. CASPER implements plan repair
recovery.

CoolBOT [21] is a component-oriented system
dedicated to robotic purposes. Each component
implements a states machine and communicates by

forwarding information via event and data ports.
Exception handling permits to switch into a set of
error states. Hierarchical component variables
adaptation, backward error recovery and functional
redundancy can be used to manage error handling.

COTAMA FFT (COTAMA For Fault Tolerance)
[13] is a component-oriented architecture dealing
with fault tolerance. Observation modules are used
to monitor the identified faults occurrence. A
dedicated diagnosis module, using residues
analysis, identifies the fault and updates a database
of the modules' state. According to the detected
fault severity and the available resources, the
recovery is engaged using the modality switching
principle and autonomy adaptation.

The LAAS architecture [22] is dedicated for

autonomous robots. It is a 3 layers architecture. The
decisional level is dedicated to plans generation and
execution. At the execution control level, the R2C
component checks the validity of the requests of the
decisional layer [23]. Finally, the functional level
proposes modules generated with the GenoM tool,
and offers services to hardware and software
resources. The BIP software framework [24] allows
the design of a controller enforcing low-level safety
properties (ordering or synchronization violations,
data freshness). R2C checks that modules correctly
interact. It can verify some safety rules and may
stop unacceptable actions. IxTeT planner
component [25] implements re-planning and plan-
repair facilities. Moreover, FTplan [9] manages
some planning faults and proposes re-planning
alternatives.

Name
Fault

Forecasting
Detection Mean

Diagnosis
Mean

Recovery Mean

CLARATY No
State monitoring
State estimators

Unknown
if it exist

E.L.: Exception handling

P.L.: Plan repair

COOLBOT No Exceptions list
Unknown
if it exist

E.L.: Exception handling using
component variables adaptation,
backward error recovery or functional
redundancy

COTAMA FFT Yes
Observation modules

(All types of detection means)
Residue based

diagnosis

E.L.: Execution control
using modality switching

M.L. : Autonomy adaptation

LAAS No
Safety rules verification at module

and execution control level.

Planning faults detection

Unknown
if it exist

E.L.: Stop action

P.L.: Re-Planning – Plan-repair

MIRO No
Exceptions list

Guard
Unknown
if it exist

E.L.: Dynamic reconfiguration

ORCA No Action realization check
Unknown
if it exist

E.L.: Action retry - Dynamic
reconfiguration and redundancy

ORCCAD No
Properties verification
Exceptions handling

Model-based detection?
Unknown

E.L.: Parameterization – dynamic
reconfiguration – safe mode

IDEA No
Variables timelines monitoring

Non- nominal conditions detection
Unknown
if it exist

E.L.: Ad-hoc recovery – Pre-
compiled scripts using

P.L.: Local Re-Planning

PROCOSA No
Disruptive events detection

(engine failure, payload failure, etc.)
Unknown
if it exist

E.L.: Dynamic reconfiguration

P.L.: Re-Planning (proposed)

M.L.: Possible

RA Perhaps Failure mode identification module
Model based

diagnosis

E.L.: Module repairing -
Reconfiguration

P.L.: Re-Planning with degraded
capabilities

M.L.: Possible

3T No
Safety verification

Watchdog
Unknown
if it exist

E.L.: Resetting – dynamic
reconfiguration

P.L.: Re-Planning

E.L.: Executive Level – P. L.: Planning Level – M.L.: Mission Level

Tab. 1 Fault tolerance and robotic control architectures

MIRO [26] is an object-oriented middleware
dedicated for mobile robot applications. It is
structured into 3 architectural layers, interwoven
with two layers of the CORBA middleware. The
device layer provides interface for robots sensors
and actuators. The service layer provides active
service abstractions for sensors and actuators. The
framework layer specifies the robotic
functionalities. In this architecture there are some
handling capabilities and a list of exceptions
indicating hardware, service or load problems. Miro
also defines action patterns organized in behavior
hierarchies and guards. They notify external event
occurrences which can potentially induce a
dynamic reconfiguration.

ORCA [27] is a component-oriented open-source
framework for robotics. Components implement
algorithms and hardware interfaces. They
communicate using push, pull or query patterns via
TCP/IP or UDP protocols. Simple checks can be
done at low-level, like correct action realization, If
an action fails, a cleanup is simply realized. At
application level some dynamic reconfiguration
capabilities using redundant components are also
possible.

ORCCAD (Open Robotic Controller CAD) [28] is
a dedicated framework for the development of
robotic applications. The two basics concepts allow
the definition of a robotic action. The Robotic Task
(RT) which models basic robotic actions and where
control aspects are dominants. Robotic Procedure
(RP) merges Robotic Tasks to construct more
complex actions. RT and RP can be composed
hierarchically in structure of increasing complexity.
In RT the user can explicitly detailed the exceptions
he wants to deal with and the corresponding
recovery procedures: Parameters adaptation of a
control law, new RT application, safe mode
engaged. In [29] dedicated diagnosis modules are
used to detect sensors and motor faults. Moreover,
synchronous programming allows to verify crucial
properties like safety (any fatal exception handled),
liveness (RP reaches its goal in a nominal
situation), conflict detection, behavior verification.

IDEA (Intelligent Distributed Execution
Architecture) [30] is an agent based architecture.
All agents possess the same structure and behavior
(reactive planner, plan data-base, domain model,
plan runner). Agent communicates using the
communication services of the underlying

middleware. More recently a Remote Agent
functionality including mode recovery has been
introduced. IDEA introduces timelines for the
variables monitored. An inconsistency is reported
to the Plan Data base which can engaged recovery
action within the specified time boundaries. Non-
nominal conditions handling can be introduced in
the agent's central model. The flexibility of
planning capacities (Minimal/long horizon and
deliberative planning) can improve the system's
responsiveness to external adverse events using
local re-planning Recovery using pre-compiled
alternative solutions (scripts) is possible.

PROCOSA [31] is an asynchronous Petri net-based
software package dedicated for autonomous
systems control and monitoring. Petri nets allow the
description of the execution logic of the
autonomous systems behaviors including nominal
and disruptive phases. A Petri net player executes
the associated procedures and manages the
communications. The Petri net model permits to
verify some structural and behavioral properties.
PROCOSA takes care of unique faults occurrence
and engages adapted recovery means including
operator help. However the treatment remains
limited and not systematic.

RA (Remote Agent) architecture [32] has been
developed for autonomous spacecraft missions at
NASA. RA is based is based on a 3 layered abstract
machine: a planner/scheduler which plans actions
and schedules resources; an executive layer which
executes the defined plan; and a mode identification
(MI) and mode reconfiguration (MR) layer used for
diagnosis and fault recovery. MI is dedicated for
observation and MR for recovery. MR is
responsible for exiting from a failure mode using
component repairing or reconfiguration. Re-
planning with degraded capabilities can also be
envisaged. So RA was design for fault tolerance.

The NASA 3T [33] is a 3 layered architecture. The
decisional layer controls the long term capabilities.
A mediating layer achieves transitions toward the
reactive skills layer. Depending on the experimental
applications different fault tolerant capacities have
been developed. Remote Agent principle has also
been integrated in some 3T architecture
experiments. Concerning task scheduling faults a
generalized scheduler/reschedule is able to
reschedule a task (start, stop, resources, time
constraints) if a disruptive event occurs. For the

skill layer it is possible to detect that an expected
state has not be reached. The skills layer is also able
to manage a loss of communication using
watchdogs and keep some sub-systems in safe
mode. The mediating layer is able to handle non-
nominal situations and uses reconfiguring skills or
re-setting to manage their detection. Moreover the
3T architecture achieves safety behavior for
different autonomy modes (teleoperated, semi-
autonomous and autonomous).

C. Fault tolerance in control architectures: Current
limitations

First of all it must be noticed that all the presented
control architectures propose some means to
implement fault tolerance. However many
limitations can be identified:

• None of the proposed architectures but
COTAMA FFT seem to integrate explicitly a
preliminary fault forecasting step into the
design process. Without a systematic off line
approach of fault identification the fault
tolerance will be drastically limited.

• In most of the architectures, fault detection and
identification are roughly spread into the code.
There is no structured reasoning guiding their
implementation.

• Except for RA and COTAMA FFT the
diagnosis mechanisms are not explained in the
literature. This opacity denotes that the
diagnosis phase remains basic. It seems that
two important shortcomings are implicitly
realized. First, there is no distinction made
between faults and failures detection. Secondly,
only unique fault occurrence is considered.
These limitations hardly limit the relevance of
the recovery phase.

• Generally, few types of recovery methods are
proposed in a given architecture. No
architecture proposes recovery solutions at
executive, planning and mission levels.
Recovery mechanisms are rarely formalized
like in COTAMA FFT, RA, PROCOSA or
ORCCAD. Furthermore, the most common
recovery solution is to put the robot in a safe
state, without proposing most efficient recovery
solutions.

• Finally, few architecture complete fault
tolerance using fault removal techniques
(LAAS, ORCCAD).

Few research works have addressed the fault
tolerance as a central issue in control architecture.
There is a lake of global integration of fault
tolerance principles which are generally spread into
the software. There is a need of detection, diagnosis
and recovery reification in the control architecture
design. A framework for fault tolerance integration
would be useful.

VII. FAULT TOLERANCE FOR MOBILE
ROBOTS: FROM FANTASY TO REALITY

Most of the time, the fault tolerance paradigm is not
the central issue that is considered in the research
works. Thus, to develop fault tolerant robotics, a set
of open issues using Fault Detection Isolation and
Recovery principles (FDIR) can be identified.

Application domains for FDIR [14] [15]: The
development of fault tolerant robotics is clearly
domain (environment), safety and cost dependant.
The set of possible encountered faults is quite
different for airplanes, robotic manipulators or
autonomous mobile robots. The safety
consideration is different when FDIR concerns a
domestic or a companion robot. The associated
development costs are not comparable. Actually
due to a lack of self-confidence in architectural
FDIR principles, critical systems [34] (space,
avionic) often implement a large hardware
redundancy to deal with the fault tolerance issue.
Fault tolerant control architectures would be a nice
and flexible answer for FDIR. The design of such
architecture needs to be able to propose and
develop efficient and reliable methodologies,
concepts and software.

Design for FDIR [14]: The development of fault
tolerant robotics needs to consider the fault
tolerance issue from the beginning of the system
design. A fault tolerance control architecture cannot
be the unique answer. Software, but also hardware
and control aspects must be considered together to
implement the most efficient solutions for
reliability. So specific approaches for FDIR
integration and design would be proposed.

Fault tolerant control architecture design [13]:
The previous analysis demonstrates that, generally,
there is an important lack of fault tolerance
consideration into control architecture.

Fault forecasting is an essential and initial step
which must be realized to develop fault tolerant
architectures. It is central to identify the most

significant faults the robotic systems could
encounter within its application domain.

Fault detection and particularly monitoring for
diagnosis must consider more than actuators and
sensors faults to deal with situation awareness.
Moreover, noisy sensors problem (false or missed
detection) must be overcome to enhance sensors'
data reliability.

Fault diagnosis advanced techniques must be
really implemented in control architectures.
Moreover, these methods have to be more relevant
to prepare an efficient recovery. They must be able
to distinguish faults, errors and failures detection
and to deal with single and multiple faults
occurrences.

Fault recovery must be spread over the mission,
executive and planning architectural layers using
for example adaptive autonomy, modality or re-
planning capacities. Furthermore, the development
of adaptive behaviors could also consider the
mission performance aspects (trajectory accuracy,
speed, safety, etc.).

For us, the design of a fault tolerant control
architecture needs to reify the fault detection,
diagnosis and recovery principles. Moreover, as we
present in [13] and develop further, it is also crucial
to propose a fault tolerant methodology integrating
the forecasting step, and guiding the developer
during the control architecture design.

FDIR metrics and benchmarks [14]: A key point
to achieve fault tolerance is to be able to define, like
for integrated circuits "a certified" fault coverage.
So domain, objective, and comparable public
metrics must be defined. As well, realistic and
reproductive scenarios must be elaborate
considering pure simulation, hardware-in-the-loop,
laboratory or in-the-field environments.

VIII. CONCLUSION

This article proposes a general survey of the fault
tolerance issue in mobile robotics, focusing on
control architectures. It puts in light that this
objective needs to develop design methodologies
for FDIR, merging hardware, control engineering
and software knowledge. Due to its flexibility and
its adaptability, the design of fault tolerant control
architectures would be a central answer for fault
tolerance needs. However, nowadays, the fault
tolerance principles are neglected in the control

architecture design. So an important effort for fault
tolerance integration must be realized. Moreover, to
be industrially accepted, fault tolerant metrics must
be proposed and evaluate for specific application
domains and contexts of mobile robots.

REFERENCE
[1] HYCON2 – NoE leaders, "Position Paper on

Systems and Control in FP8", June 2011.
[2] J. Carlson and R. Murphy, “How UGVs physically

fail in the field,” IEEE Transactions on Robotics,
vol. 21, no. 3, pp. 423 – 437, June 2005.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C.
Landwehr, “Basic concepts and taxonomy of
dependable and secure computing,” IEEE
Transactions on dependable and secure computing,
vol. 1, no. 1, pp. 11–33, January-March 2004.

[4] Y. Zhang, J. Jiang, J., "Bibliographical review on
reconfigurable fault-tolerant control systems".
Annual Reviews in Control, 32(2), pp. 229–252,
2008.

[5] R. Isermann,. "Fault-Diagnosis Systems : An
Introduction from Fault Detection to Fault
Tolerance". Springer, 2006.

[6] Venkatasubramanian, V., Rengaswamy, R., and
Kavuri, S. N., "A review of process fault detection
and diagnosis: Part I: Quantitative model-based
methods", Computers and Chemical Engineering,
27(3), pp. 293–311, 2003.

[7] Venkatasubramanian, V., Rengaswamy, R., and
Kavuri, S. N., "A review of process fault detection
and diagnosis: Part II: Qualitative models and search
strategies", Computers and Chemical Engineering,
27(3), pp. 313–326, 2003.

[8] Venkatasubramanian, V., Rengaswamy, R., and
Kavuri, S. N., "A review of process fault detection
and diagnosis: Part III: Process history based
methods", Computers and Chemical Engineering,
27(3), pp. 327–346, 2003.

[9] B. Lussier, B., "Tolérance aux fautes dans les
systèmes autonomes", PhD Thesis, Institut National
Polytechnique de Toulouse, 2007.

[10] B. Lussier, R. Chatila, F. Ingrand, M.-O. Killijian,
and D. Powell, “On Fault tolerance and robustness
in autonomous systems” in proc. 3rd IARP
IEEE/RAS EURON Joint Workshop on Technical
Challenges for Dependable Robots in Human
Environments Manchester UK (2004).

[11] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F.
Ingrand, M.-O. Killijian, and D. Powell, “Fault
tolerance in autonomous systems: How and how
much?” in proc. of the 4th IARP EURON Joint
Workshop on Technical Challenges for Dependable
Robots in Human Environments. Nagoya, Japan:
IEEE/RAS, June 2005.

[12] A. Shakhimardanov, "Research and development of
fault tolerance and robustness in robotics: A
survey", B-IT Master Studies in Autonomous
Systems, University of Applied Sciences Bonn-
Rhein-Sieg, Fraunhofer Institute for Autonomous
Intelligent Systems, August 2006.

[13] B. Durand, "Proposition d'une architecture de
contrôle adaptative pour la tolérance aux fautes",
PhD Thesis, University of Montpellier 2, June 2011.

[14] G. Steinbauer, F. Wotawa, "On the evaluation and
certification of the robustness of autonomous
intelligent systems", 22nd International Workshop
of Principles of diagnosis (DX-2011), Murnau,
October 4-7, 2011.

[15] J. Carlson, "Technical report for the safety security
rescue research center", Robot Fault Diagnosis
Workshop, ICRA 2004, pp. 1-26, 2004.

[16] J. Carlson, "Analysis of how mobile robots fail in
field environments", Master's Thesis, University of
South California, 2004.

[17] J. Carlson, R. Murphy, "Reliability analysis of
mobile robots", ICRA'2003, pp. 274-281, 2003.

[18] J. Carlson, R. Murphy, A. Nelson, "Follow-up
analysis of mobile robot failures", ICRA'2004, pp.
4987-4994, 2004.

[19] Z. Duan, Z. Cai, J. Yu, "Fault diagnosis and fault
tolerant control for wheeled mobile robots under
unknown environments: A survey", IEEE
International Conference on Robotics and
Automation, pp. 3439–3444, Barcelona, Spain,
2005.

[20] I.A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A.
Diaz-Calderon, T. Estlin, R. Madison, J. Guineau,
M. McHenry, I. Shu, and D. Apfelbaum,
"CLARAty: Challenges and Steps Toward Reusable
Robotic Software," International Journal of
Advanced Robotic Systems, Vol. 3, No. 1, pp. 023-
030, 2006.

[21] A. C. Domingez-Brito, "CoolBOT: A Component-
Oriented Programming Framework for Robotics"
PhD Thesis, University of Las Plamas, Gran
Canaria, 2003.

[22] R. Alami, R. Chatila, S. Fleury, M. Gallab, F.
Ingrand, "An architecture for autonomy",
International Journal of Robotic Research, vol. 17,
1998.

[23] F. Py, F. Ingrand, "Real-time execution control for
autonomous systems", 2nd Embedded Real Time
Software, Toulouse, 2004.

[24] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, T.
H. Nguyen, "Toward a more dependable software
architecture for autonomous robots", Special issue
on Software Engineering for Robotics, IEEE
Robotics and Automation Magazine, 2009.

[25] S. Lemai-Chenevier, "IxTeT-eXeC: Plani
fication, reparation de plan et contrôle d'exécution
avec la gestion du temps et des ressources", PhD

Thesis, Institut National Polytechnique de Toulouse,
2004.

[26] H. Utz, S. Sablatnög, S. Enderle, G. Kraetzschmar,
"Miro – Middleware for mobile robot applications",
IEEE Transaction on Robotics and Automation, vol.
18, n°4, August 2002.

[27] A. Makarenko, A. Brooks, T. Kaupp, "ORCA:
Components for Robotics", IROS 2006, Workshop
on Robotic Standardization, Beijing, China, 2006.

[28] D. Simon, R. Pissard-Gibollet, S. Arias, "ORCCAD,
a framework for safe robot control design and
implementation", 1st National Workshop on Control
Architectures of Robots, pp. 131-144, Montpellier,
April 2006.

[29] D. Simon, "Hardware-in-the-loop test-bed of an
Unmanned Aerial Vehicle using Orccad", 6th
National Workshop on Control Architectures of
Robots, Grenoble, May 2011.

[30] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, C.
Plaunt, "IDEA: Planning at the core of autonomous
reactive agents",. Proceedings of the 3rd
International NASA Workshop on Planning and
Scheduling for Space, October 2002

[31] M. Barbier, J.F. Gabard, D. Vizcaino, O. Bonnet-
Torrès, "PROCOSA: A software package for
autonomous system supervision", 1st National
Workshop on Control Architectures of Robots, pp.
37-47, Montpellier, April 2006.

[32] N. Muscettola, P. Pandurang Nayak, B. C. Williams,
"Remote Agent: to boldly go where no AI system
has gone before", Artificial Intelligence, Vol. 130(1-
2), pp. 5-48, August 1998.

[33] D. Schreckenghost, P. Bonnasso, D. Kortenkamp, D.
Ryan "Three tier architecture for controlling space
life support systems", IEEE Symposium on
Intelligence in Automation and Robotics, 1998.

[34] X. Olive "FDI(R) for satellite at Thalès Alenia
space: How to deal with high availability and
robustness in space domain?", International
Conference on Control and Fault Tolerant Systems,
pp. 837-842, 2010.

