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Abstract

Supertree methods combine a collection of source trees into a single
parent tree or supertree. For almost all such methods, the terminal
taxa across the source trees have to be non-nested for the output su-
pertree to make sense. Motivated by Page, the first supertree method
for combining rooted source trees where the taxa can be hierarchically
nested is called AncestralBuild. In addition to taxa labeling the
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leaves, this method allows the rooted source trees to have taxa labeling
some of the interior nodes at a higher taxonomic level than their de-
scendants (for example, genera versus species). However, the utility of
AncestralBuild is somewhat restricted as it is mostly intended to
decide if a collection of rooted source trees is compatible. If the initial
collection is not compatible, then no tree is returned. To overcome this
restriction, we introduce here the MultiLevelSupertree (MLS) su-
pertree method whose input is the same as that for AncestralBuild,
but which accommodates incompatibilities amongst rooted source trees
using a MinCut-like procedure. We show that MLS has several desir-
able properties including the preservation of common subtrees amongst
the source trees, the preservation of ancestral relationships whenever
they are compatible, as well as running in polynomial time. Further-
more, application to a small test data set (the mammalian carnivore
family Phocidae) indicates that the method correctly places nested
taxa at different taxonomic levels (reflecting vertical signal), even in
cases where the input trees harbor a significant level of conflict between
their clades (i.e. in their horizontal signal).
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Introduction

Supertrees were first described formally by Gordon (1986). However, it was
not until Purvis (1995) that the full potential for supertrees to yield large,
comprehensive phylogenetic hypotheses was realized. Purvis (1995) used
the then recently described supertree technique Matrix Representation with
Parsimony (MRP) (Baum, 1992; Ragan, 1992) to combine partial estimates
of primate phylogeny from 112 papers drawn from the literature to derive
one of the first, complete species-level phylogenies for the order. Since then,
this literature-based application of supertree construction has been used
increasingly for a wide variety of taxonomic groups (for a now outdated list,
see Bininda-Emonds (2004)).

Such “traditional” supertree analyses often confront problems related to
taxonomic differences between published papers. Differences can arise either
because of the use of different names for the same entity (typically different
species synonyms) or because the trees include terminal taxa at different
taxonomic levels (e.g., trees with families versus species as terminal taxa).
The former problem is comparatively trivial, with an effective solution being
to standardize all taxon names according to an explicit synonymy list (see
Bininda-Emonds et al. (2004)).

By contrast, combining source trees with taxa at different taxonomic
levels (possibly with taxa labeling internal nodes such as those given in Fig-
ure 1) is more problematic—most existing supertree techniques are unable
to deal with hierarchically-nested terminal taxa in the complete taxon set
drawn across all source trees. For example, most supertree methods have no
option but to place the taxa Canis lupus, Canis, and Mammalia as terminal
taxa such that these three nested taxa could end up as sister taxa within a
clade or, possibly, not even closely related to one another. Both solutions
are nonsensical in light of taxonomic information.

The best solution to this problem to date has been to analogously stan-
dardize the taxon names to remove any instances of nested terminal taxa.
This seems to be acceptable when one is standardizing names to the highest
taxonomic level. Based on explicit taxonomic information, Canis lupus can,
for instance, be easily assigned to Canis, which, in turn, can be assigned
to Mammalia. Standardizing names to the lowest taxonomic level, as has
usually been the case to derive the most inclusive supertrees possible, is
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Figure 1: Two trees for spiders and related taxa. Internal nodes labeled by
higher-level taxa (in comparison to the labels at the tips) are indicated with
a circle, while taxa common to both trees are enclosed in boxes. These
two trees, taken from Page (2004), were originally obtained from study
S1x6x97c14c42c30 in TreeBASE (http://www.treebase.org).
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more problematic. Which taxon best represents Mammalia, especially if
several different mammal species are present among all source trees? Two
solutions have been used, both of which have inherent limitations. The first
is to represent the higher-level taxon by having all its constituent taxa form
an extra, unresolved node. This solution, however, strongly presupposes
the monophyly of the higher-level taxon and also includes information not
potentially found in the source work (Bininda-Emonds et al., 2004). An
alternative solution has been to use a single taxon in the form of the “type
taxon” of the higher-level taxon (as advocated by Bininda-Emonds et al.
(2004)). For instance, Canis lupus is the type species of the genus Canis
and so could be used to represent it. Similarly, Canis is the type genus
of Canidae. But, because no type taxa exist for taxa beyond the genus
and family levels in botany and zoology, respectively (e.g., no type or even
nominal taxon exists for Mammalia), this solution only works at the lowest
taxonomic levels unless subjective decisions are made.

Inspired by problems posed by Page (2004), the supertree method An-

cestralBuild (Daniel and Semple, 2004; Berry and Semple, 2006) offers
a more appealing solution to the problem of nested terminal taxa. Ances-

tralBuild is unique among supertree methods because it can incorporate
hierarchically-nested information in the form of internal node labels on the
rooted source trees to derive the supertree. As such, the nestings are re-
solved based purely on information already present in the source trees and
not on assumptions of the investigator. Like the Build algorithm (Aho
et al., 1981) on which it is based, AncestralBuild runs in polynomial
time, but can only combine (ancestrally) compatible sets of rooted source
trees (i.e., ones for which a supertree exists that preserves all groupings of
taxa and all ancestral relationships in the set). In the case of incompati-
bility amongst the source trees, AncestralBuild returns the answer “not
ancestrally compatible”.

In this paper, we generalize AncestralBuild to a supertree method
whose input is the same as that for AncestralBuild, but which allows for
incompatibilities amongst the rooted source trees. Called MultiLevelSu-

pertree (MLS), this generalization retains many desirable and provable
properties. These properties include the preservation of relationships com-
mon to all source trees, producing a supertree that is consistent with all of
the source trees if the source trees are compatible, and running in polynomial
time. Moreover, based on a simple empirical data set as a proof-of-concept,
we show that it works at least as well as the most commonly-used supertree
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method (MRP), producing trees with reasonable clades.

For the reader familiar with Build and its generalization MinCutSu-

pertree (Semple and Steel, 2000; Page, 2002), the way in which MLS

resolves topological conflicts in the source trees is reminiscent of the way
in which MinCutSupertree resolves such conflicts. Thereby, unlike for
most supertree methods (see Wilkinson et al. (2004)), it is also possible to
document a number of desirable properties for MLS. However, in general,
both MinCutSupertree and MLS will produce different supertrees as the
computation used for this resolution is performed on different graphs and
MLS can also potentially make use of more information. For more discussion
about MinCutSupertree, see Page (2002).

The paper is organized as follows. The next section contains a high-level
description of MLS and its properties, while the two sections after that
together with the appendix, formally presents MLS and establishes these
properties. The paper can be read independently of these latter sections and
so a reader may prefer to skip these sections on a first read. The next two
sections discuss the possibility of using an additional source tree to provide
a taxonomic framework, and detail the implementation of MLS, which is
freely available at

http://www.atgc-montpellier.fr/supertree/mls/.

These details include various options that are available to the end-user. The
paper ends with an analysis of the application of MLS to a data set of the
phocid seals, including comparisons with previous studies, and with a brief
discussion.

High-Level Description of MultilevelSupertree

and its Properties

The purpose of this section is to provide a high-level description of Mul-

tiLevelSupertree and its properties. The formal details including veri-
fication of these properties is given in the subsequent two sections and the
appendix.

The input to MultiLevelSupertree (MLS) is a collection of rooted
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Figure 2: A collection P of rooted semi-labeled trees. For the purposes of a
later more-detailed example, each tree has been assigned weight 1.

source trees with overlapping, but not necessarily identical taxon sets. Apart
from one exception, the output is a supertree. The source trees need not be
compatible (i.e., a supertree that simultaneously infers all of the ancestral
relationships described by each of the source trees need not exist). Moreover,
unlike traditional supertree methods, MLS allows the rooted source trees to
have taxa labeling some of the interior nodes, thereby incorporating vertical
(hierarchical) as well as horizontal taxon overlap. Here, a taxon labeling
an interior node is at a higher taxonomic level than its descendants. To
illustrate, the two rooted trees shown in Figure 1 are allowable source trees
to MLS. Like the rooted source trees, the supertree returned by MLS may
have some of its taxa labeling interior nodes. The one exception where a
supertree is not returned by MLS is when the vertical relationships of the
rooted source trees imply that there is a pair of taxa each of which is an
ancestor and descendant of the other (“cyclic-descendancy”).

We next give a high-level description of MLS with the help of a “toy”
example. Suppose that the input to MLS is the collection of rooted source
trees T1, T2, and T3 shown in Figure 2. In an initial, preprocessing stage,
MLS assigns distinct new labels to each unlabeled node in each of the source
trees. In our example, the three rooted trees T ′

1 , T
′
2 , and T ′

3 in Figure 3 have
been obtained from T1, T2, and T3, respectively, through such assignments.
Intuitively, these new labels act as “ancestral placeholders” and allow for
the construction of a single “descendancy graph” that encodes all of the
taxonomic relationships and is the next step in the preprocessing stage.

Rather than describe the descendancy graph in general, we describe its
construction for our example. The nodes of the descendancy graph, which
we call “label” nodes, consist of the taxa and new labels of T ′

1 , T
′
2 , and T ′

3 .
The descendancy graph uses edges and arcs (directed edges) to represent
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Figure 3: A collection P ′ of rooted fully-labeled trees obtained from the
collection P shown in Figure 2 by adding distinct new labels.
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Figure 4: The descendancy graph of the collection P ′ shown in Figure 3.
Arcs are shown as dashed lines with an arrow showing the direction of the
arc, while edges are shown as solid lines.

horizontal and vertical taxonomic relationships, respectively. An edge joins
two nodes precisely if the nodes are siblings in at least one of T ′

1 , T
′
2 , and

T ′
3 , whereas an arc joins two nodes precisely if the tail node of the arc is

the parent of the head node of the arc. Because of the placeholders, the
resulting graph displays all the taxonomic relationships of T ′

1 , T
′
2 , and T ′

3 ,
and therefore of T1, T2, and T3. The descendancy graph for our example
is shown in Figure 4. It is at this step that MLS checks for any cyclic
descendancies in the form of any directed cycles in the descendancy graph.
The descendancy graph in Figure 4 has no such cycles.

To complete the preprocessing stage, MLS “weights” the descendancy
graph, which merely encodes topological relationships and makes no dis-
tinction whether or not these relationships are supported by one, some, or
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Figure 5: The weighted-descendancy graph of the collection P ′ shown in
Figure 3. The node bd|c is a triple node; together with its incident arcs, it
represents the relationship bd|c amongst the taxa b, d, and c supported by
each of the trees in P ′. Except for the arcs (bd|c, b) and (bd|c, d), and the
edges {b, d}, {b, c}, {c, d}, and {a, c}, all edges and arcs have weight 1. For
simplicity, these latter weights are omitted from the weighted-descendancy
graph. Again, arcs are shown as dashed lines with an arrow showing the
direction of the arc and edges are shown as solid lines.

all source trees. To this end, MLS weights each edge and arc with the
number of trees amongst T ′

1 , T
′
2 , and T ′

3 that support the non-descendant
or descendant relationship represented by the edge. As an illustration, the
non-descendant relationship between taxa a and c in T ′

2 is also supported
by T ′

1 , but not by T ′
3 where taxon a is missing. Thus, the edge joining nodes

a and c in the descendancy graph is given weight 2. If all trees display a
descendant relationship between two taxa, or a non-descendant relationship
between two or amongst three taxa, then these relationships are given weight
infinity such that they must hold in the supertree returned by MLS. The
resulting “weighted-descendancy graph” of T ′

1 , T
′
2 , and T ′

3 in our example
is shown in Figure 5. For the reader familiar with “rooted triples”, note
that a new node (called a “triple” node) has been adjoined to the original
descendancy graph. This node and its two incident arcs represent the fact
that the relationship bd|c amongst taxa b, d, and c is supported by each of
the trees T ′

1 , T
′
2 , and T ′

3 .
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Although it is not implemented in the current version of MLS, the use
of the weighted-descendancy graph means that MLS can easily be extended
to account for differential support between and within trees, something that
has been demonstrated to be beneficial for MRP-based supertree analysis
(Bininda-Emonds and Sanderson, 2001). Currently, MLS assumes that all
trees (with one exception; see next section) and all nodes within those trees
are equally well supported.

Once the preprocessing stage is complete, MLS calls its one and only
subroutine Free where essentially all the computation is done. Taking the
weighted-descendancy graph of T ′

1 , T
′
2 , and T ′

3 as input, Free outputs a su-
pertree that attempts, if possible, to display all the topological relationships
inferred by T ′

1 , T ′
2 , and T ′

3 . In constructing this supertree, Free begins
at the root and recursively works its way towards the tips of the supertree.
Guiding this process and paralleling this recursion, Free recursively disman-
tles the inputted weighted-descendancy graph. At each step, the algorithm
finds a node in the graph with no arcs directed towards it and no incident
edges called a “free” node, which corresponds to the generation of a new
node in the supertree. When this node is removed from the graph, the dis-
connected parts of the graph are analyzed separately; each one giving rise to
a subtree connected to the above mentioned node in the supertree. If there
are no topological conflicts amongst T ′

1 , T
′
2 , and T ′

3 , then Free returns a
supertree that displays all the topological relationships amongst T ′

1 , T
′
2 , and

T ′
3 . By contrast, Free resolves any conflict amongst the input trees using

the information encoded in the weighted-descendancy graph. Such conflicts
arise when the algorithm can not find a free node at some step when decom-
posing the graph. The process for resolving these conflicts involves finding
a solution to an optimization problem (in particular, a minimum-weight cut
in a graph). This process is referred to as “freeing a node” and the idea is
to contradict as few as possible inter-taxa relationships as given by T ′

1 , T
′
2 ,

and T ′
3 when producing the supertree for them, in which case the resulting

supertree will not display all the topological relationships among these trees.
In either case, once the supertree is returned by Free, it is stripped of its
new labels, and the resulting tree is returned by MLS.

Having given a high-level description of MLS, we end this section with
a high-level description of some of its properties (proofs can be found in the
Appendix).

(i) If there are no topological conflicts amongst the initial collection of
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rooted source trees, then MLS returns a supertree whose inter-taxa
relationships are consistent with each of the input trees (i.e. no inter-
taxa relationship inferred by an input tree conflicts with any relation-
ship inferred by the supertree).

(ii) If there is a subset of taxa common to each of the input trees and this
common subset induces the same inter-taxa relationships in each of
the input trees, then MLS applied to this input returns a supertree
that preserves these particular inter-taxa relationships.

(iii) MLS runs in time that is polynomial in the number of input trees and
the total number of taxa amongst the input trees.

Formal Description of MultiLevelSupertree

In this section, we formally present MultiLevelSupertree (MLS), while
the next section and the Appendix formally describes and verifies its proper-
ties. Together with the Appendix, this and the next section may be skipped
on a first reading if the reader is satisfied with the high-level description of
MLS given in the previous section and prefers to read the implementation
and application to data set sections.

Much of the notation and terminology replicates that which can be found
in Berry and Semple (2006) or Semple and Steel (2003). To avoid repetition,
we will assume that the reader is familiar with standard graph-theoretic and
phylogenetic notation and terminology.

Semi-labeled Trees

Extending the notion of a rooted phylogenetic tree, a rooted semi-labeled
tree T on a taxa set X is an ordered pair (T ;φ) consisting of a rooted tree
T with root node ρ, and a map φ from X into the node set V of T such that

(i) for all non-root nodes v of degree at most two, φ assigns v an element
of X, and

(ii) if ρ has degree zero or one, then φ also assigns ρ an element of X.

11
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The taxa set X is the label set of T and is often denoted L(T ). We say
that T is singularly labeled if each node of T is assigned at most one taxa
in X. Furthermore, T is fully-labeled if each node is assigned an element
of X. To illustrate, each of T1, T2, and T3 in Figure 2 is a rooted semi-
labeled tree. Moreover, L(T1) = {a, b, c, d, g}. In the context of this paper,
all rooted semi-labeled trees except possibly the supertree returned by MLS

are singularly labeled. The label set of a collection P of rooted semi-labeled
trees is the union of the label sets of the trees in P and is denoted by L(P).

For a collection P of source trees, it is frequently the case that each of
the trees in P are assigned a specific weight. This weighting allows one to
account for some trait of the primary data such as dependence amongst data
sets or to rate the source trees on the basis of some optimality score. It also
allows to represent some data sets by a set of equally optimal trees instead
of a single tree as happens regularly in maximum parsimony analyses. To
this end, P is said to be weighted if each tree T in P has been assigned a
real-valued weight w(T ).

Descendancy and Compatibility

Let T be a rooted semi-labeled tree, and let v be a non-root node of T of
degree 1 or 2. The tree that is obtained from T by contracting v is the
tree resulting from contracting the edge incident with v if v has degree 1 or
replacing v and its two incident edges with a single edge if v has degree 2.

Let T = (T ;φ) be a rooted semi-labeled tree on X, and let a, b ∈ X. We
say that a is a descendant of b (or, alternatively, b is an ancestor of a) if the
path from φ(a) to the root of T includes φ(b). Symbolically, we denote this
relationship by b ≤T a. Note that a is both a descendant and an ancestor
of itself. If, in addition, φ(a) 6= φ(b), then we denote the relationship by
b <T a. If a is a descendant of b in T and {φ(a), φ(b)} is an edge in T , then
a is a child of b (or, alternatively, b is the parent of a). Furthermore, we say
that a and b are not comparable if neither a is a descendant of b nor b is a
descendant of a, in which case we denote this by a||T b. In the case that a

and b are not comparable, the node of T that is the last common node on
the paths from the root of T to φ(a) and from the root of T to φ(b) is called
the most recent common ancestor of a and b, and is denoted by mrcaT (a, b).
If a is not comparable to b in T , and a and b have the same parent, then a

and b are siblings.

12
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c b da

g, h

Figure 6: The rooted semi-labeled tree returned by MLS in the running
example when applied to the collection P of trees shown in Figure 2.

Let T be a rooted semi-labeled tree on X and let T ′ be a rooted semi-
labeled tree on X ′, where X is a subset of X ′. We say that T ′ ancestrally
displays T if, up to contracting non-root nodes of degree 2, the minimal
rooted subtree of T ′ connecting the nodes assigned elements in X is a re-
finement of T and, for all a, b ∈ X, whenever a is a descendant of b in T , it is
still a descendant in the resulting subtree. Note that refinement means that
T can be obtained from the minimal rooted subtree of T ′ connecting the
nodes assigned elements in X by contracting edges. A collection P of rooted
semi-labeled trees is ancestrally compatible if there is a rooted semi-labeled
tree that ancestrally displays each of the trees in P, in which case we say
that this tree ancestrally displays P. To illustrate, the rooted semi-labeled
tree shown in Figure 6 ancestrally displays the tree T3 in Figure 2.

Mixed Graphs.

Amixed graph is a graph that contains both edges and arcs. For convenience,
we sometimes refer to the edges and arcs as links when there is no need to
make a distinction. The (connected) arc components of a mixed graph G are
the maximal sub-graphs obtained from G by masking the edges of G and
whereby nodes u and v are in the same component if, ignoring the directions
of the arcs, there is a path from u to v. Ignoring the edges incident with
u, the in-degree of a node u in G is the number of arcs directed into u. Let
u and v be two nodes in G. We say that u and v are edge-adjacent (resp.
arc-adjacent) if there exists an edge (resp. arc) joining u and v. Ignoring
the direction of the arcs, a path from u to v consisting of arcs is called an
arc-path. Additionally, if we are always moving with the direction of the
arcs when traversing the path, then the arc-path is a directed path from u to
v. A directed cycle is a directed path in the which the first and last nodes

13
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are the same.

Let D be a mixed graph with node set V , arc set A, and edge set E. Let
V ′, A′, and E′ be subsets of V , A, and E, respectively. The mixed graph
obtained from D by deleting each of the arcs and edges in A′∪E′ is denoted
by D\(A′ ∪ E′). Note that A′ or E′ could be empty. The mixed graph
obtained from D by deleting each of the nodes in V ′ together with their
incident arcs and edges is denoted by D\V ′. Furthermore, the subgraph of
D whose node set is V ′, and whose arc and edge sets are

{(c, a) : a, c ∈ V ′ and (c, a) ∈ A}

and
{{a, b} : a, b ∈ V ′ and {a, b} ∈ E}

is denoted by D|V ′.

Weighted-descendancy graph

Central toMLS is the weighted-descendancy graph, a mixed graph which, as
mentioned earlier in the paper, encodes all of the relevant information given
by the initial collection of source trees. Let P be a collection of weighted
rooted semi-labeled trees with L(P) = X. We say that P ′ has been obtained
from P by adding distinct new labels if we replace each tree T = (T ;φ) in P
with a rooted fully-labeled tree T ′ obtained by assigning an arbitrary label
not in X to each node of T not assigned a label under φ so that, across all
trees in P, no two added labels are the same. For example, recalling our
“toy” example from earlier in the paper, the collection P ′ = {T ′

1 ,T
′
2 ,T

′
3}

shown in Figure 3 has been obtained from the collection P = {T1,T2,T3} of
rooted semi-labeled trees shown in Figure 2 by adding distinct new labels.
We will continue with this example as a way of illustrating MLS.

Let X ′ = L(P ′) and note that X ⊆ X ′. The descendancy graph D(P ′)
of P ′ is the mixed graph whose node set is X ′, and whose arc and edge sets
are

{(b, a) : a is a child of b in some T ∈ P ′}

and

{{a, b} : a and b are siblings in some T ∈ P ′},

14
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respectively. Figure 4 shows the descendancy graph corresponding to the
collection P ′ of rooted fully-labeled trees shown in Figure 3. Note that the
definition of the descendancy graph given here differs from that given by
Berry and Semple (2006) and Daniel and Semple (2004), but coincides with
the so-called restricted descendancy graph in Berry and Semple (2006). If
D(P ′) contains a directed cycle, then, as the added new labels only appear
once, the label set of P contains a sequence of nested taxa that is cyclic.
Such cycles are due to vertical conflicts between taxa in source trees and we
refer to them as cyclic-descendancies.

Now weight the trees in P ′ with weight function w so that the weight
of each tree is the same as that of its counterpart in P. The weighted-
descendancy graph of P ′, denoted Dw(P

′), is the graph that is obtained
from D(P ′) by assigning the weight

∑

T ∈ P ′; b <T a

w(T )

to each arc (b, a) and the weight

∑

T ∈ P ′; b||T a

w(T )

to each edge {a, b}, and then making the following modifications:

(i) If there are labels a, b ∈ X such that a, b ∈ L(T ) and b <T a for all
T ∈ P, then replace the weight of the arc (b, a) with weight ∞ if (b, a)
is an arc in D(P ′); otherwise add the new arc (b, a) with weight ∞.

(ii) If there are labels a, b ∈ X such that a, b ∈ L(T ) and b||T a for all
T ∈ P, then replace the weight of the edge {a, b} with weight ∞ if
{a, b} is an edge in D(P ′); otherwise add the new edge {a, b} with
weight ∞.

(iii) If there are labels a, b, c ∈ X such that the rooted triple ab|c is ances-
trally displayed by every tree in P, then add the new node ab|c, and
the new arcs (ab|c, a) and (ab|c, b) each with weight ∞.

Continuing our running example, suppose that each of the trees shown in
Figure 2 has weight 1. Then the weighted-descendancy graph of the collec-
tion P ′ shown in Figure 3 is the mixed graph shown in Figure 5.
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Freeing nodes

The weighted-descendancy graph illustrates relationships amongst the taxa.
While MLS works on this graph, what it is effectively doing is starting
at the roots of the trees in the initial collection and working towards their
leaves, at the same time building the supertree from its root to its leaves. As
part of this process, it wants to continually recognize nodes of the weighted-
descendancy graph (or one of its subgraphs) that, in a certain sense, are
not constrained by the other nodes. We call such nodes “free”. At the first
iteration, free nodes will correspond to the root of the supertree and, in
subsequent iterations, to roots of subtrees of the supertree as the top-down
process continues. Ultimately, free nodes will correspond to the leaves of
the supertree.

Continuing with the notation of the previous subsection, we call a node
of Dw(P

′) a label node if it is an element of X ′; otherwise, we call it a triple
node. A label node x of Dw(P

′) is said to be free if it has in-degree zero
and no incident edges. For example, in Figure 5, bd|c is a triple node and,
furthermore, both u1 and v1 are label nodes that are free.

Let A and E denote the arc and edge sets of Dw(P
′), respectively. Let

A′ and E′ be (possibly empty) subsets of A and E, respectively. We say
that A′ ∪ E′ has finite weight if

∑

a∈A′

w(a) +
∑

e∈E′

w(e)

is finite. A label node x of in-degree zero is said to be freed by A′ ∪ E′ if
A′ ∪ E′ has finite weight and the mixed graph obtained from Dw(P

′) by
deleting each of the arcs and edges in A′ ∪ E′ has the property that each
of the remaining edges incident with x joins two distinct arc components.
Furthermore, a triple node ab|c of Dw(P

′) is said to be freed by A′ if A′ has
finite weight and the mixed graph obtained from Dw(P

′) by deleting each of
the arcs in A′ has the property that c is not in the same arc component as a
and b. Because of the requirement that A′ has finite weight, neither of the
arcs incident with ab|c in Dw(P

′) are in A′ and so if A′ frees ab|c, then a and
b are in the same arc component of Dw(P

′)\A′. In the upcoming description
of MLS, we refer to a minimum-weight subset of A ∪ E that frees either a
label node or a triple node as a minimum-weight cut. As we shall see in the
next section, the reason for this definition is that the task of selecting such
subsets can be viewed as finding a minimum-weight cut in a certain graph.
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For simplicity, the above definitions are in terms of the weighted-
descendancy graph of P ′. However, in the description of MLS, we are also
interested in subgraphs of this graph. The above definitions extend to such
graphs in the obvious way.

MultiLevelSupertree

We now give a formal description of MLS.

Algorithm: MLS(P)
Input: A collection P of weighted rooted semi-labeled trees with L(P) = X .

Output: A rooted semi-labeled tree T with label set X or the statement P contains

cyclic-descendancies.

1. Construct a collection P ′ of weighted rooted fully-labeled trees from P by adding
distinct new labels.

2. Construct the descendancy graph D(P ′) of P ′. If D(P ′) contains a directed
cycle, then halt and return P contains cyclic-descendancies

3. Construct the weighted-descendancy graph Dw(P
′) of P ′.

4. Call the subroutine Free(Dw(P
′)).

5. Return the semi-labeled tree that is returned by Free(Dw(P
′)) with the added

labels removed, and unlabeled vertices of degree 1 and unlabeled non-root ver-
tices of degree 2 contracted.

Algorithm: Free(Gw)
Input: A subgraph Gw of Dw(P

′).
Output: A rooted fully-labeled tree T ′ with root node v′.

1. (a) Let Q denote the set of triple nodes ab|c in Gw, where a and b are nodes
in Gw, but c is not a node in Gw. Reset Gw to be the graph Gw\Q.

(b) Find the node sets, S1,S2, . . . ,Sk say, of the arc components of Gw.

(c) If k = 1, then go to Step 2. Otherwise, for each i ∈ {1, 2, . . . , k}, call
Free(Gw |Si). Return the tree whose root node is unlabeled and which has
T ′

1
, T ′

2
, . . . , T ′

k
(the trees returned by the recursive calls) as child subtrees.

2. (a) Let S0 denote the set of free nodes of Gw. If S0 is empty, then go to Step 3.
If S0 comprises exactly one node labeled ℓ with out-degree zero, then return
the tree composed of just one leaf labeled ℓ. Otherwise, go to Step 2b
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a c b d

g, h, v2

u2, v3, w

u1, v1

Figure 7: The rooted semi-labeled tree returned by Free in the running
example when applied to the weighted-descendancy graph shown in Figure 5.

(b) Reset Gw to be the graph Gw\S0.

(c) Find the node sets, S1,S2, . . . ,Sk say, of the arc components of Gw.

(d) For each i ∈ {1, 2, . . . , k}, call Free(Gw |Si). Return the tree whose root
node is labeled by S0 and which has T ′

1
, T ′

2
, . . . , T ′

k
(the trees returned by

the recursive calls) as child subtrees.

3. (a) Let S0 denote the set of label nodes of Gw that can be freed with a
minimum-weight cut. If S0 is empty, then go to Step 4. Otherwise go
to Step 3b.

(b) Reset Gw to be the graph obtained from itself by deleting, for each element
x in S0, a minimum-weight set of edges and arcs that frees x.

(c) Reset Gw to be the graph Gw\S0. Go to Step 5.

4. (a) Let S0 denote the set of rooted triple nodes of Gw that can be freed with
a minimum-weight cut. Select one element ab|c in S0.

(b) Reset Gw to be the graph obtained from itself by deleting a minimum-
weight set of arcs that frees ab|c. Go to Step 5.

5. (a) Find the node sets, S1,S2, . . . ,Sk say, of the arc components of Gw.

(b) For each i ∈ {1, 2, . . . , k}, call Free(Gw |Si). Return the tree whose root
node is labeled by S0 and which has T ′

1
, T ′

2
, . . . , T ′

k
(the trees returned by

the recursive calls) as child subtrees.

✷

Before detailing some formal remarks, we illustrate MLS by applying it
to the collection P of rooted semi-labeled trees shown in Figure 2, where
each tree has weight 1. Suppose that Step 1 constructs the collection P ′ of
rooted fully-labeled trees shown in Figure 3. Then Step 2 constructs the
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descendancy graph D(P ′) as shown in Figure 4. As D(P ′) has no cyclic-
descendancies, MLS constructs the weighted-descendancy graph Dw(P

′) as
instructed in the next step and as shown in Figure 5. In the first iteration
of Free, Dw(P

′) is unchanged at the end of Step 1. At Step 2a, u1 and
v1 are identified as the only free nodes. Deleting these nodes results in one
arc component and Free is called in Step 2d just for the mixed graph, Gw

say, obtained from Dw(P
′) by deleting u1 and v1. In the second iteration,

Gw is unchanged at the end of Steps 1 and 2. At Step 3, h, v2, and g are
identified as the only nodes that can be freed with a minimum-weight cut.
Here the weight of such a cut is 1. For each of h and v2, the edge {h, v2} is
a minimum-weight cut, while for g the edge {g, c} is a minimum-weight cut.
The subroutine Free now deletes the edges and arcs of a minimum-weight
cut for each of h, v2, and g. For the purposes of the illustration, we have
chosen to delete the edges {h, v2} and {g, c}. This deletion together with
the deletion of h, v2, and g results in the creation of three arc components in
Step 5. These components have node sets {a}, {c}, and {u2, v3, w, b, d, bd|c}.
Recursive calls to Free investigate these three components separately. The
subtrees returned by the three recursive calls are used as child subtrees of the
root node labeled by the labels g, h, and v2 at Step 5 in the second iteration
of Free. The tree eventually returned by Free is shown in Figure 7, while
the tree returned by MLS is shown in Figure 6.

Remarks

1. For convenience, we have implicitly assumed in the description of the
algorithm that the mixed graph Dw(P

′) initially inputted to the subrou-
tine Free is arc connected. Allowing for Dw(P

′) to not be arc connected
can be easily accommodated by calling Free on each arc component of
Dw(P

′) and then returning the tree whose maximal proper subtrees are
the trees returned by each of these calls to Free at the beginning of
Step 5 in MLS.

2. To determine whether D(P ′) has a cyclic-dependancy, one has to deter-
mine whether D(P ′) has any directed cycles. It is well-known that this
can be done by continually finding nodes of in-degree zero and deleting
the resulting nodes. If at some stage before the null graph is reach, there
is no such node, then D(P ′) has a directed cycle. On the other hand, if
one can always find such a node, then there is no directed cycles and so
no cyclic-descendancies.

3. MLS is well-defined, that is, it either returns a rooted semi-labeled tree
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T with label set X or the statement P contains cyclic-descendancies.
This fact is not immediately clear, as it relies the property that there is
always a non-empty set of free nodes, or label or triple nodes that can
be freed at each iteration of Free, and will be established in the next
section (and Appendix).

4. MLS extends the algorithm AncestralBuild. Recall from the intro-
duction that AncestralBuild determines in polynomial-time whether
or not a collection of rooted semi-labeled trees is ancestrally compatible.
Ignoring the weights and rooted triple nodes of the weighted-descendancy
graph, AncestralBuild can be obtained from MLS by removing the
initial check for cyclic-descendancies, replacing Free with the subrou-
tine Free′, and changing Step 5 of MLS appropriately depending on the
outcome of Free′:

Algorithm: Free′(G)
Input: A subgraph G of D(P ′).
Output: A rooted fully-labeled tree T ′ with root node v′ or the statement P is

not ancestrally compatible.

1. Let S0 denote the set of free nodes of G. If S0 is empty, then halt and return
P is not ancestrally compatible. If S0 comprises exactly one node labeled ℓ

with out-degree zero, then return the tree composed of just one leaf labeled
ℓ.

2. Reset G to be the graph G\S0.

3. Find the node sets, S1,S2, . . . ,Sk say, of the arc components of G.

4. For each i ∈ {1, 2, . . . , k}, call Free′(G|Si). Return the tree whose root
node is labeled by S0 and which has T ′

1
, T ′

2
, . . . , T ′

k
(the trees returned by

the recursive calls) as child subtrees.

Note that Free′ is simply Free with Steps 1, 3, 4, and 5 removed
and Step 2a modified in the case S0 is empty. The check for cyclic-
descendancies is implicitly included in finding nodes of in-degree zero.
Observe that it is the simple check of finding at least one free node at
each iteration that decides whether or not P is ancestrally compatible.

5. Lastly, an alternative weighting scheme to quantify the weight of a cut
is to count the (weighted) number of trees in P ′ whose topological sig-
nal is conflicted if one were to delete the links of the cut. The idea
is to resolve a conflict situation by contradicting the smallest possible
(weighted) number of source trees. However, optimizing such a cut is an
NP-hard problem. For completeness, a proof of this hardness is included
in the appendix.
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Properties of MLS

This section establishes some theoretical properties of MLS. The first result
says that MLS is well-defined; its proof is in the appendix.

Proposition 1 Let P be a collection of rooted semi-labeled trees with
L(P) = X. Then MLS applied to P either returns a rooted semi-labeled
tree with label set X or the statement P contains cyclic-descendancies.

The next consideration is whether the running time of MLS is poly-
nomial in the size of the initial collection P of rooted semi-labeled trees.
It follows from the second remark after the description of MLS that one
can decide in polynomial time whether the descendancy graph has cyclic-
descendancies. Thus, as the weighted-descendancy graph is being reduced at
each iteration of the subroutine Free, the only other part of the algorithm
that needs to be considered is the time it takes to find a minimum-weight
cut to free a label or triple node in Steps 3 and 4 of Free. The next two
lemmas show that finding such cuts is equivalent to finding a minimum-
weight cut in an associated network. Since finding the latter is well-known
to be polynomial time (e.g., Hao and Orlin (1994)), it follows that MLS is
polynomial time.

Let P ′ be a collection of weighted rooted fully-labeled trees, and let Gw

be a subgraph of the weighted-descendancy graph of P ′ with node, arc, and
edge sets V , A, and E, respectively. Since the weighted-descendancy graph
initially inputed to Free contains no directed cycles, we may assume that
Gw contains no directed cycles.

We first show the above-mentioned equivalence for freeing label nodes.
The equivalence for freeing triple nodes is simpler and given afterwards. Let
x be a label node of Gw with in-degree zero that is not free. Thus, in Gw,
there is at least one edge incident with x. Let {x, y1}, {x, y2}, . . . , {x, yk}
denote the edges of Gw incident with x, where k ≥ 1. Let N denote the
graph obtained from Gw by deleting the edges of Gw, replacing each arc
(a, b) with the edge {a, b}, adding a new node x′ and, for each edge {x, yi} in
Gw, adding a new edge {x′, yi} with weight w({x, yi}). Finding a minimum-
weight subset of A∪E that frees x in Gw is equivalent to finding a minimum-
weight cut in N that separates x and x′, that is, a subset of edges in N whose

21



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

removal puts x and x′ into two separate components and, amongst all such
subsets, the sum of the weights of the edges is minimized. In particular,
identifying each edge of N with its counterpart in Gw (either an arc or an
edge depending on how it was derived) and using this set-up, we have the
following lemma.

Lemma 2 Let S be a subset of A∪E. Then S is a minimum-weight subset
of A ∪ E that frees x if and only if S is a minimum-weight cut in N that
separates x and x′.

Proof. First suppose that S is a minimum-weight subset of A ∪ E that
frees x in Gw. Then, for each edge {x, yi}, either

(i) x is not edge-adjacent to yi in Gw\S, or

(ii) x and yi are in separate arc components in Gw\S.

Consider N\S. If (i) holds, then there is no edge joining x′ and yi in N\S,
while if (ii) holds, then there is no path in N\S from x to yi using only edges
derived from A. Combining these two implications for all yi, we deduce that
in N\S there is no path from x to x′. Thus the weight of a minimum cut
in N that separates x and x′ is at most the weight of S.

Now suppose that S is a minimum-weight cut in N that separates x and
x′. Then, for each yi, either

(I) there is no edge joining x′ and yi in N\S, or

(II) there is no path from x to yi in N\S.

By combining (I) and (II) for all yi, it follows that S is a subset of A ∪ E

that frees x in Gw. Thus the minimum weight of such a subset is at most
the weight of S. The lemma now follows. ✷

The equivalence for freeing triple nodes is really just a straight transla-
tion of the problem in terms of minimum-weight cuts. Let ab|c be a triple
node of Gw that is not free. Now let N denote the graph obtained from
Gw by deleting the edges of Gw and replacing each arc (a, b) with the edge
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{a, b}. Finding a minimum-weight subset of A that frees ab|c is equivalent
to finding a minimum-weight cut in N that separates ab|c and c. In partic-
ular, with the set-up as above, we have the following lemma whose proof is
omitted.

Lemma 3 Let S be a subset of A. Then S is a minimum-weight subset of A
that frees ab|c if and only if S is a minimum-weight cut in N that separates
ab|c and c.

Combining the last two lemmas with the second remark after the de-
scription of MLS, we deduce that the running time of MLS applied to P is
polynomial in |P|+ |L(P)|. The next result makes this more precise.

Theorem 4 Let P be a collection of weighted rooted semi-labeled trees.
Then the running time of MLS applied to P is polynomial in |P|+ |L(P)|.

Proof. The most time-consuming operations depend on the size of the
weighted-descendancy graph Dw(P

′) of P ′ or one of its subgraphs. Let
n = |L(P ′)| and note that n is polynomial in the size of |P| + |L(P)|. Let
n and m be the number of nodes, and number of arcs and edges in Dw(P

′),
respectively. Then n is the number n of label nodes plus the number of
rooted triple nodes (which can be cubic in n), while m = O(n3) in the
worst case, as each rooted triple node contributes a constant number of arcs.
Hence the size of Dw(P

′) and the time to construct Dw(P
′) is polynomial

in |P| + |L(P)|.

Let Gw be Dw(P
′) or one of its subgraphs. Steps 3 and 4 of the Free

routine require to compute minimum-weight cuts to find label and triple
nodes to free, respectively. Each running of Free applied to Gw frees at
least one node, that is then removed, so this routine runs at most O(n)
times. Each such running requires in the worst case examining each of the
O(n) nodes of Gw, and determining whether it can be freed at minimum
cost. Lemma 2 states that this can be achieved by the computation of a
minimum-weight cut separating two fixed nodes x and x′ in a network N

whose size is proportional to that of Gw. A well-known result in combina-
torial optimization states that it is possible to do such a computation in the
same time at that required to compute a maximum flow between x and x′.
In particular, we can resort to the O(m · min{n1/2,m2/3}) with additional
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log factors time algorithm of Goldberg and Rao (1998). Thus, the various
runnings of the Free routine require O(n2 · m · min{n1/2,m2/3}) with ad-
ditional log factors. Except for possibly the construction of Dw(P

′), this
is clearly the most time consuming part of MLS. It now follows that MLS

applied to P runs in time polynomial in |P| + |L(P)|. ✷

The last two results in this section describe properties of the tree returned
by MLS. Earlier, we showed how AncestralBuild can be obtained from
MLS. The next result formalizes this connection; its proof is in the appendix.
One particular outcome of this result is that if a collection P of rooted source
trees are compatible, then the supertree returned by MLS when applied to
P is consistent with each of the trees in P. Of course, one would always like
any reconstruction method to have such a consistency property, however,
there is no guarantee that this is the case.

Theorem 5 Let P be a collection of rooted semi-labeled trees, and suppose
that P is ancestrally compatible. Then MLS applied to P returns the same
rooted semi-labeled tree as AncestralBuild applied to P. In particular,
MLS returns a rooted semi-labeled tree that ancestrally displays P.

The last result in this section requires some additional preliminaries.
The analogue of this result for rooted phylogenetic trees and MinCutSu-

pertree is established in Semple and Steel (2000). A rooted semi-labeled
tree T is binary if T is singularly labeled and the degree of any node is at
most three. Let T = (T ;φ) be a binary rooted semi-labeled tree and let
{a, b, c} be a subset of the label set of T . Suppose that a||T b and let v

denote the most recent common ancestor of φ(a) and φ(b). Furthermore,
suppose that φ−1(v) is empty and φ(c) = u, where u is the parent of v in T

and has degree 2. Then the rooted semi-labeled tree that is obtained from
T by contracting the edge {u, v} and assigning c to the new identified node
is said to be obtained by a local contraction.

Theorem 6 Let P be a collection of rooted semi-labeled trees and let T be
a binary rooted semi-labeled tree that is ancestrally displayed by each of the
trees in P. Then, up to local contractions, MLS applied to P returns a
rooted semi-labeled tree that ancestrally displays T .

Proof. Let T ′ be the rooted semi-labeled tree returned by an application
of MLS to P. By a straightforward modification of the last part of the
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proof of Proposition 4.3 in Daniel and Semple (2005), to prove the theorem,
it suffices to show that, for all a, b, c ∈ L(T ), the following properties are
satisfied:

(i) if c <T a, then c <T ′ a;

(ii) if a||T b, then a||T ′b; and

(iii) if ab|c is a rooted triple of T , then ab|c is a rooted triple of T ′.

Because of the addition of arcs and edges with weight ∞ joining label nodes
in the construction of the weighted-descendancy graph, it is clear that T ′

satisfies (i) and (ii). Furthermore, if ab|c is a rooted triple of T , then the
triple node ab|c and two incident arcs with weight ∞ are added to the
weighted-descendancy graph. As a result, a and b remain in the same arc
component until at least one iteration beyond that in which c is in a separate
arc component. This guarantee that T ′ also satisfies (iii). Thus, up to local
contractions, T ′ ancestrally displays T , completing the proof of the theorem.
✷

Employing a taxonomic framework

The supertree framework specifically allows the input trees to have different
input taxon sets. However, when source trees share increasingly fewer taxa,
most supertree methods output increasingly unresolved supertrees, reflect-
ing the high number of possibilities according to which the taxa from the
individual source trees can be interleaved. The problems associated with
insufficient overlap on taxa sets of source trees is a well-known phenomenon
in the supertree literature (Bininda-Emonds, 2004).

Given that MLS is a supertree method, it is not immune to overlap
problems. However, because the method can deal with taxa at different
taxonomic levels, two different kinds of overlap become relevant: horizon-
tal overlap between terminal taxa as in traditional supertree studies, and
vertical overlap between taxa at different taxonomic levels. Although MLS

presents an appealing solution to the problem of combining source trees with
hierarchically-nested taxa because it uses only the information present in the
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source trees themselves (rather than synonymizing taxon names), phyloge-
nies in the literature generally lack internal node labels. In other words,
sufficient vertical overlap is often missing from real-life data sets, which,
as for horizontal overlap, can similarly lead to meaningless or artifactual re-
sults. In the absence of such necessary vertical information, MLS, like other
supertree methods, will be unable to decipher the hierarchical relationships
of the various taxa and can place otherwise nested taxa, such as Canis and
Mammalia, as sister taxa.

To increase the horizontal overlap in a supertree study, it often suf-
fices to add source trees that make a bridge between taxon sets of different
source trees (e.g., a complete, but highly down-weighted, seed tree; (Bininda-
Emonds and Sanderson, 2001)). Similarly, the lack of vertical overlap in a
multi-level analysis can be filled by adding additional source trees contain-
ing taxa at different levels, thus making the nested relationships that exist
between several taxa explicit. Therefore, as suggested by Berry and Sem-
ple (2006), it will often be advisable to include a reference taxonomy—or
backbone tree—specifying the nesting information among all the taxa and
labels in the set of source trees as an additional source tree. This refer-
ence taxonomy will ideally be composed mainly of poorly resolved clades
and comparatively down-weighted in the analysis so as to merely guide it,
rather than influence it unduly. In this way, it fulfills the same role as the
seed tree advocated by Bininda-Emonds and Sanderson (2001) for conven-
tional supertree analyses. Alternatively, the user can complement the set of
source trees with several smaller trees having taxa at both internal nodes
and leaves. In fact, such trees can be as small as the tree allowed by the
Newick format, namely containing just two taxa one on top of the other (see
the implementation documentation for details).

Implementation

The algorithm MLS has been implemented in Java using part of the source
code of the SplitsTree v4.6 package (Huson and Bryant, 2006)—the latter
is not required to run MLS—using the Mascopt library to compute min-
imum cuts (Lalande et al., 2004). The implementation is freely available
at www.atgc-montpellier.fr/supertree/mls. In this section, we discuss
several aspects of this implementation. Throughout the section, P refers to
the initial collection of weighted source trees, whereas P ′ is a collection of
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weighted rooted fully-labeled trees obtained from P by adding distinct new
labels. Furthermore, we collectively refer to arcs and edges as “links” and
we often identify the nodes of the trees in P ′ with their label.

Relative importance of descendancy and sibling links

Each source tree gives rise to arcs and edges in the weighted-descendancy
graph Dw(P

′) of P ′ to express topological constraints it induces on its taxa.
However, it might be preferable in some data sets to give more weight to
arcs, which express node descendancies in source trees, than to edges, which
express non-comparability of sibling nodes in source trees. This differential
weighting only becomes relevant methodologically when Dw(P

′) or one of
its “subgraphs” has no free nodes due to conflicts amongst source trees.
In such cases where a minimum-weight cut in the graph has to be made,
one might prefer favoring the removal of edges (horizontal signal) over arcs
(vertical signal). This is particularly relevant when the vertical relationships
are either held to be more accurate or more important than the potentially
conflicting horizontal signals. The program has a specific option allowing
more weight to be given to the arcs contributed by an individual source tree
to Dw(P

′) than to the edges contributed by the same source tree; otherwise,
they both receive the same weight by default.

Using transitive arcs

The vertical relationships of the trees in P ′ can be encoded in the descen-
dancy graph D(P ′) of P ′ either by encoding only direct arcs between nodes
or, alternatively, by encoding both direct and indirect arcs. For instance, if,
in some source tree, c is the parent of b and b is the parent of a, then the
two arcs (c, b) and (b, a) are added in the construction of D(P ′). However,
since c is an ancestor of a, one might wonder why the “transitive” arc (c, a)
is not added to D(P ′).

We believe that encoding only direct arcs is preferable for two reasons.
First, this impedes large trees from exerting a greater influence on the re-
sulting supertree. Indeed, if n is the number of taxa in a tree in P ′, there
are only O(n) direct arcs, but up to O(n2) indirect ones. Secondly, and
more practically, the running time is proportional to the number of links in
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the graph. Thus, not encoding transitive arcs also lowers the running time.
Nevertheless, we include a parameter in the implementation that switches
the addition of transitive arcs on and off in constructing the descendancy
graph D(P ′).

A preprocessing step to deduce internal labels

Like some supertree methods such as MinCutSupertree and its variant,
modified MinCutSupertree (Semple and Steel, 2000; Page, 2002), MLS

is sometimes prone towards producing comb-like trees. This is due to the
iterative approach of the algorithm, which removes successive minimum-
weight cuts to free labels and triple nodes in subgraphs of Dw(P

′). The
significance of this phenomenon depends chiefly on the number of labels
present in exactly one tree in P ′. In particular, freeing such uniquely labeled
nodes usually requires the removal of only a single edge, and thereby costs
little in comparison to freeing a node whose label is shared by several trees in
P ′. As a result, reducing the number of additional labels in the construction
of P ′ as much as possible beforehand is highly desirable.

The inclusion of a seed taxonomy as described in the last section can play
an important role here because it facilitates the preprocessing of the regular
source trees to deduce taxon names for some of their internal nodes, thereby
reducing the number of additional labels required to construct P ′ from P.
The preprocessing considers each taxon ti present at an internal node in the
taxonomy in turn. For each ti, it computes the set Si of descendant taxa.
Then each source tree not containing taxon ti is examined. If there exists an
unlabeled node in such trees whose set of descendant taxa is exactly Si, then
this node is assigned label ti. Note that this preprocessing step is optional
and, when selected, the user must also remember to include a taxonomy in
the source-tree file as the last tree of the file.

Freeing nodes sequentially

If, at some step, there are no free nodes, then the subroutine Free simulta-
neously frees all label nodes that can be freed with a minimum-weight cut,
so as not to favour any one node with respect to the others. However, when
dealing with data sets containing intricate topological conflicts, this process
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can result in highly unresolved nodes in the supertree. To avoid this, the
user can opt for an alternative behaviour where nodes are freed sequentially
one after the other. This option can, however, result in more comb-like trees.

Choosing meaningful minimum-weight cuts

When selecting a minimum-weight cut for freeing either a label or a triple
node, we are free to choose any such cut. One could simply find an arbitrary
minimum-weight cut in polynomial time and choose this cut or one could
examine the set of all minimum-weight cuts and select that one(s) that
best fit(s) some predefined criteria. However, the later selection process is
problematic because there may be exponentially many such cuts to consider.
Nevertheless, despite this possibility, we include the possibility for the user to
ask for the best minimum-weight cut subject to the following ordered criteria
as this usually provides more meaningful supertrees and, for commonly-sized
data sets, still leads to acceptable running times:

1. The sum of the weights of the trees in P ′ that induce a link in the
cut is minimized. This has the effect of preferring cuts whose links are
supported by the fewest individual trees.

2. The number of nodes that are simultaneously freed is maximized.

3. The penalty score for non-respecting parts of source trees is minimized,
where the penalty score of a cut is the sum of the weights of the trees
in P ′ supporting the links in the cut minus the sum of weights of the
trees in P ′ contradicting a link in the cut. Thus, cuts are preferentially
made to those links showing the greatest conflict amongst the source
trees.

If there is only one minimum-weight cut meeting the first criterion, then
this cut is selected. Otherwise, all those that satisfy this criterion are com-
pared via the second criterion and so on. If several minimum-weight cuts
remain after the last criterion, then one of these cuts is chosen arbitrarily.
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Shifting internal taxa to their usual place

Due to conflicts amongst source trees, MLS sometimes outputs a supertree
with internal nodes having a single child. When such a node is unlabeled, it
can safely be suppressed without altering the phylogenetic meaning of the
supertree. On the other hand, if a single-child node has, say, the label l,
then, in phylogenetic terms, all taxa in the subtree rooted at this node are
representative of the taxonomic group l. Typically, this situation is usually
depicted by l labeling a node with two or more children. To reach this
situation from the supertree initially computed, MLS provides an option
called PhyloTree that moves an internal label such as l towards the tips to
the closest unlabeled node. This move may still result in the node labeled
by l having a single child but, if it cannot be moved any further towards the
tips, this implies that this single child also has a label, say l′, with l′ forming
a subgroup of taxa within l. As we assume the program will be used mainly
in a phylogenetic context, the PhyloTree option is switched on by default.

Application to a Data Set

In this section, we apply MLS to an empirical data set of the mammalian
seal family Phocidae and compare this application with an MRP analysis.
This data set is straightforward in the sense that there are relatively few con-
flicting signals and one expects the output to be well resolved. As such, it
provides an appropriate proof-of-concept for MLS. For the analysis, a taxo-
nomic seed tree was included and the default parameters for MLS were used
(i.e., without use of transitive arcs and with all nodes freed simultaneously).

The Phocidae data set comprises a subset of the literature source trees
used to build the Phocidae subtree of the carnivore supertree (Bininda-
Emonds et al., 1999). The data set spans 43 taxa (20 terminal taxa and
23 higher-level taxa) collectively belonging to eight different taxonomic levels
from family to subspecies. As explicit “links” between higher-level taxa are
not deducible from the source trees, we also included a minimal taxonomic
tree derived in part from Wozencraft (1993). Except for the taxonomic tree,
all trees were weighted equally. The weighted-descendancy graph computed
by MLS contains 88 nodes linked by 96 edges and 164 arcs. For the MRP
analyses, all terminal taxa were synonymized to the species level using the
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Figure 8: The resulting MLS (left) and MRP (right) supertrees for the
Phocidae data set obtained from a subset of the source trees used to build
the phocid supertree of the carnivore supertree (Bininda-Emonds et al.,
1999)
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methods outlined in the Introduction (e.g., use of type species) and an ap-
propriate minimal taxonomic tree was also included. The MRP supertree
was taken to be the strict consensus of all (16) equally most parsimonious
solutions.

The resulting MLS supertree is shown in Figure 8 and is congruent with
the MRP supertree obtained from the same data set. Importantly, how-
ever, the MLS supertree is both more resolved than the MRP supertree and
was also obtained without having to perform any taxonomic substitutions
to obtain a common taxon set. For example, the taxon Monachus could be
entered as a terminal taxon rather than being synonymized with its type
species Monachus monachus as was necessary for the MRP analysis. Simi-
larly, the MLS supertree contains two subspecies of Phoca vitulina that were
synonymized away in the MRP analysis. In so doing, the MLS supertree is
able to test the hypothesis that these two subspecies do indeed form a clade,
something that is not possible in the MRP supertree, where their monophyly
was necessarily assumed a priori. Finally, the MLS supertree also helpfully
retains and presents the hierarchical taxonomic information found among
the set of source trees, presenting them as internal node labels.

In summary, MLS obtains a supertree for this test case that is both rea-
sonable and also accurately reflects the relationships produced by the stan-
dard MRP supertree method. Moreover, it did so making fewer strong and
occasionally subjective taxonomic assumptions while simultaneously pro-
viding more resolution and information in the end supertree. Although the
data set is generally well behaved, conflict within it is still present as wit-
nessed by the 16 equally most parsimonious solutions in the MRP analysis
as well as MLS having to perform seven minimum-cut computations. The
congruence between the MLS and MRP supertrees, as well as the fact that
both trees reflect current opinion regarding relationships within Phocidae,
would indicate that MLS is resolving these conflicts in a reasonable way.
Indeed, all resolutions in the MLS supertree are found at least implicitly
among the source trees and the MLS supertree is actually identical with
the 50% majority-rule consensus tree for the MRP analyses. This latter fact
reflects both the general sensitivity of parsimony to conflict as well as the
potentially more decisive nature of MLS in cases of conflict because of its
unique ability to incorporate additional information in the form of vertical
taxonomic signal.
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Discussion

Handling taxonomic differences between different studies, particularly that
of taxa at different taxonomic levels, has long been recognized as problematic
in supertree analyses. Page (2004) made explicit mention of this problem
and suggested possible solutions. The first automated and practical way
of dealing with it was the supertree method AncestralBuild (Berry and
Semple, 2006; Daniel and Semple, 2004). However, this method returns a
supertree only if the source trees are ancestrally compatible, a requirement
that is frequently violated by real-world data sets. MLS overcomes this re-
striction on compatibility by resolving conflicting signals amongst the source
trees in an optimal way using minimum-weight cuts and thus presents the
first practical supertree method to tackle the important problem of hetero-
geneity of taxonomic levels amongst the taxa in the source trees. Moreover,
MLS has several desirable properties including the preservation of common
binary subtrees amongst the source trees and returning a supertree that
whose inter-taxa relationships are consistent with each of the source trees if
they are no topological conflicts amongst the source trees. Importantly, our
analysis of a real-world data set shows that it can produce supertrees with
meaningful clades.

Looking forward, MLS not only avoids tedious and subjective prepro-
cessing tasks involving taxonomic differences amongst the source trees, but
it might also be a method of choice for assembling very large trees such as
those considered in ‘Tree of Life’ projects. Here, a large set of source trees
spanning numerous taxa could be processed with a divide-and-conquer ap-
proach, in a similar but slightly different way to that proposed by Bininda-
Emonds and Stamatakis (2006) as follows. First, source trees would be
augmented with internal taxon labels in an automated way such as that
proposed by the PhyloExplorer tool (Ranwez et al., 2009). Here, the genus,
family, and other higher-level taxonomic taxa to which the internal nodes
correspond would be inferred from the leaves of the trees. These nested-
taxa trees would then initially be used to resolve the lower levels of the
‘Tree of Life’. In particular, these trees or parts thereof would be clustered
in groups with highly overlapping taxa spanning the lower taxonomic levels.
From each such cluster, MLS would propose a nested-taxa supertree. Once
the lower levels have been resolved, the process would sequentially resolve
the overlaying taxonomic levels in turn. Doing so would require identifying
those original source trees spanning more than one of the previous clusters.
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However, the resolution of these upper levels would not be done using the
full trees. Instead, to minimize the computational burden, those parts of
the trees concerning the already resolved lower levels would be replaced by
a short summary of the unified consensus obtained by MLS. Once the trees
are reduced, the taxonomic level for which they were meant could be re-
solved by inputting them into MLS. The procedure would continue climbing
the levels of the ‘Tree of Life’, iteratively dealing with a series of higher
taxonomic levels until finally reaching the universal common ancestor level.
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Appendix

The appendix consists of four parts. The first two parts consist of the proofs
of Proposition 1 and Theorem 5. The third part shows that the alternative
weighting scheme described in the last remark following the description of
MLS in Section leads to an NP-hard problem, while the fourth part refer-
ences the source trees of the Phocidae data set.

Proof of Proposition 1

For the proof, notation is consistent with the description of MLS given in
Section . Suppose that MLS is applied to P. We may assume that D(P ′)
contains no cyclic-descendancies, otherwise MLS returns the statement P
contains cyclic-descendancies and the proposition holds. Now, the only
possible way that MLS does not return a rooted semi-labeled tree is if, at
some iteration of Free in the running of the algorithm, there is no minimum-
weight cut that frees a label or triple node in Steps 3 and 4 of Free. The
rest of the proof consists of showing that there is always such a cut.

Let Gw denote the mixed graph inputted at an arbitrary iteration of
Free and consider Free applied to Gw. No generality is loss in assuming
that Gw is unchanged at the end of Step 1. The following is easily seen.

Lemma 7 Let x and z be two label nodes in Gw. If there is a directed path
in Gw from x to z in which each arc has infinite weight, then x <T z for all
T ∈ P.

Lemma 8 Let x and y be label nodes of Gw. Then x and y are joined by
an arc (x, y) precisely if (x, y) is an arc in D(P ′).

Proof. If the lemma does not hold, then there is an arc, (x, y) say, in D(P ′)
where x and y are nodes in Gw, but (x, y) is not an arc in Gw. The only way
that this could happen is that, at some previous iteration, (x, y) is deleted
as part of a minimum-weight cut to free either a label or triple node. But
then, as the cut has minimum-weight, x and y would be in different arc
components at Step 5 of Free in this iteration, and so the node sets of the
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mixed graphs inputted to Free at subsequent iterations contains at most
one of x and y; a contradiction. Thus Lemma 8 holds. ✷

Lemma 9 Let Q be an arc-path in Gw in which each node is a label node
and each arc has weight ∞. Let x be the initial node of Q, and suppose that
x has in-degree zero in Gw. If z is a node in Q and z 6= x, then x <T z for
all T ∈ P.

Proof. The proof is by induction on the number k of nodes in Q. If k = 2,
then, as x has in-degree zero, Q consists of the vertices x and z, and the arc
(x, z). Since (x, z) has weight ∞, the lemma holds.

Now suppose that Lemma 9 holds for all such arc-paths beginning at x
with at most k − 1 nodes, where k ≥ 3. Let Q′ be the arc-path obtained
from Q by restricting it to the first k−1 nodes. Let y be the last node in Q′

and let z be the last node in Q. Then, by the induction assumption, x <T y

for all T ∈ P. There are two cases to consider depending upon whether the
last arc in Q is (i) (y, z) or (ii) (z, y).

First assume that (i) holds. Then y <T z for all T ∈ P and so, as
x <T y for all T ∈ P, it follows that x <T z for all T ∈ P. Now assume
that (ii) holds. Since z <T y and x <T y for all T ∈ P, we have, for each
T ∈ P, either x <T z or z <T x. If x <T z for all T ∈ P, then the
lemma holds. Furthermore, if z <T x for all T ∈ P, then, by Lemma 8, Gw

contains the arc (z, x), contradicting the assumption that x has in-degree
zero in Gw. Therefore we may assume that there are trees T ′,T ′′ ∈ P such
that z <T ′ x and x <T ′′ z. But then D(P ′) contains a cyclic-descendancy;
a contradiction. Thus Lemma 9 holds. ✷

Lemma 10 Let x be a label node in Gw with in-degree zero and suppose
that w is edge-adjacent to x such that {x,w} has weight ∞. Then every
arc-path from x to w in Gw that contains no triple node has an arc of finite
weight.

Proof. Suppose that Gw contains an arc-path from x to w in which every
arc has weight ∞ and no node is a triple node. Then, by Lemma 9, x <T w

for all T ∈ P, contradicting the assumption that {x,w} has weight ∞. Thus
the lemma holds. ✷
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It follows from Lemma 10 that there is a label node in Gw that can be
freed unless Gw contains a triple node. We complete the proof of Proposi-
tion 1 by considering triple nodes.

Lemma 11 Let Q be an arc-path in Gw starting at label node x, ending
at label node y, and having the property that each arc has weight ∞. Let
T ∈ P and suppose that x||T y. Then either there is a label node in Q that
is ancestor of both x and y in T or there is a triple node ab|c in Q such that
mrcaT (a, b) is an ancestor of mrcaT (x, y).

Proof. Since each arc in Q has weight ∞, each label node in Q is a label of
T . Now, by considering Q and, in particular, the position of the label nodes
in this path in T as one follows it from x to y, it is easily seen that one of
the two outcomes in the lemma must hold. ✷

Now let T be a tree in P and let ab|c be a triple node in Gw. Relative
to Gw, we say that ab|c is maximal in T if there is no triple node a′b′|c′ in
Gw such that mrcaT (a

′, b′) is a strict ancestor of mrcaT (a, b).

Suppose that no label node of Gw can be freed and suppose, to the
contrary, that no triple node of Gw can be freed. We next establish three
properties of a maximal triple in Gw. These properties will be repeatedly
use to complete the proof of the proposition.

Lemma 12 Let T ∈ P, and let ab|c be a triple node in Gw that is maximal
in T .

(I) Let Q be an arc-path in Gw either from a to c or from b to c in which
each arc has weight ∞. Then there is a label node, x say, in Q that is
ancestor of both mrcaT (a, b) and c in T .

(II) Let x in (I) be chosen to be the closest such label to the root of T .
Then x does not have in-degree zero in Gw.

(III) Let z be a label node in Gw such that either z has in-degree zero or
z is arc-adjacent to a triple node, and there is a directed path in Gw

from z to x. Then z ∈ L(T ), and the label node in Gw, say x′, that
is an ancestor of z in T and is the closest such label to the root of T
satisfies the following:
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(i) x is non-comparable to x′ in T , and

(ii) there is a triple node in Gw such that x′ is an ancestor of each of
the labels that make up this triple in T .

Proof. By Lemma 11, either (I) holds or there is a triple node a′b′|c′ in
Q such that mrcaT (a

′, b′) is an ancestor of mrcaT (a, c) (and therefore also
of mrcaT (b, c)). But then mrcaT (a

′, b′) is a strict ancestor of mrcaT (a, b),
contradicting the maximality of ab|c in T . Thus (I) holds.

To see (II), suppose that x has in-degree zero in Gw. Then, as no label
nodes in Gw can be freed, there is a node, w say, in Gw that is edge-adjacent
to x with {x,w} having weight ∞, and there is an arc-path Qx in Gw from
x to w in which each arc has weight ∞. By Lemma 11, either there is a
label node in Qx that is an ancestor of both x and w in T or there is a
triple node a′b′|c′ in Qx such that mrcaT (a

′, b′) is an ancestor mrcaT (x,w).
The first possibility contradicts the choice of x, while the second possibility
contradicts the maximality of ab|c. Hence (II) holds.

Consider (III). If z is arc-adjacent to a triple node, then z ∈ L(T ).
Furthermore, if z is a label node, then z cannot be freed and so z is edge-
adjacent to a label node, say y, in Gw and the edge {z, y} has weight ∞, so
z ∈ L(T ). Since D(P ′) has no directed cycles and there is a directed path
in Gw from z to x, it follows that x is not an ancestor of z in T and so x is
non-comparable to z in T . Thus, because of the choice of x, any ancestor
of z in T that is a label node in Gw is also non-comparable to x. Hence, to
complete the proof of (III), it suffices to show that x′ satisfies (ii).

First assume that z has in-degree zero. Then, by Lemma 10, there is a
triple node rs|t on an arc-path from z to y in which each arc has weight ∞.
Without loss of generality, we may assume that this is the first such triple
node and that r appears before s on this path. By Lemma 9, z <T r. In
particular, x is non-comparable to r in T . Let a′b′|c′ be a triple node in Gw

that is maximal in T and has the property that mrcaT (a
′, b′) is an ancestor

of mrcaT (r, s) in T . Since no triple node can be freed and x′ <T r, it follows
by (I) that x′ is an ancestor of both mrca(a′, b′) and c′ in T .

Now assume that z is arc-adjacent to a triple node in Gw. Making use of
this triple node instead of rs|t as in the previous paragraph and again using
(II), we deduce that there is a triple node in Gw that enables x′ to satisfy
(ii). Thus (III), and therefore Lemma 12, holds. ✷
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Noting that (I)–(III) holds for all triple nodes in Gw that are maximal in
T , we complete the proof of the proposition by repeatedly using (I)–(III) to
obtain a contradiction to our assumption that Gw has no triple nodes that
can be freed. Before making this completion, observe that, for (III), one can
always find such an element z by starting at x and continually traversing
arcs in the opposite direction until there are no such arcs to traverse. Since
Gw has no directed cycles, this process must eventually stop.

Let aibi|ci be a triple node in Gw such that aibi|ci is maximal in T .
Using (I), let xi be the label node in Gw that is an ancestor of mrcaT (ai, bi)
and ci in T and, amongst all such nodes, it is the closest label to the root
of T . By (II), xi does not have in-degree zero in Gw. Let zi be a label node
of Gw such that either zi has in-degree zero or zi is arc-adjacent to a triple
node, and there is a directed path in Gw from zi to xi. Let xi+1 be the label
node in Gw that is an ancestor of zi and is the closest such label to the root
of T . By (III), xi+1 is non-comparable to xi in T and there is a triple node
ai+1bi+1|ci+1 in Gw that is maximal in T and has the property that xi+1 is
an ancestor of both mrcaT (ai+1, bi+1) and ci+1 in T .

Beginning with i = 1 and repeatedly applying the process in the previous
paragraph, we obtain a sequence of labels x1, x2, . . . in T such that, for all
i, the labels xi and xi+1 are non-comparable. Since T is finite, it follows
that, for some distinct i and j, the label nodes xi and xj are equal, where
i < j. Without loss of generality, we may assume that xi, xi+1, . . . , xj−1 are
pairwise distinct. Consider the sequence

xi, zi, xi+1, zi+1, . . . , xj−1, zj−1, xj = xi.

For all l ∈ {i + 1, i + 2, . . . , j}, xl is an ancestor of zl−1 in T . This implies
that, for all l, there is a directed path in D(P ′) from xl to zl−1. Moreover,
by construction, there is also a directed path in D(P ′) from zl−1 to xl−1 for
all l. Thus, as xi = xj , the mixed graph D(P ′) contains a directed cycle; a
contradiction. It now follows that there is a triple node of Gw that can be
freed. This completes the proof of Proposition 1.

Proof of Theorem 5

First recall the description of how AncestralBuild can be obtained from
MLS in the remarks following the description of MLS in Section . It is
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easily checked that to establish the theorem, it suffices to show that, for all
i, in iteration i of Free′ and Free,

(i) the set of free nodes in Step 1 of Free′ is equal to the set of free nodes
in Step 2a of Free, and

(ii) up to triple nodes, the node sets of the arc components in Step 3 of
Free′ is the same as that of the node sets of the arc components in
Step 2c of Free.

Observe that if (i) and (ii) hold at iteration i, then, up to rooted triple nodes
and weightings, the input at iteration i + 1 of Free′ and Free coincide.
Note that, in the proof, as in the description of MLS, we will assume that
the weighted-descendancy graph of P ′ is connected. By applying the proof
to each of the connected components of this graph, it is easily seen that no
generality is loss in making this assumption.

Suppose that either (i) or (ii) does not hold at some iteration. Let j

be the first such iteration. Let G (resp. Gw) be the subgraph inputed into
Free′ (resp. Free) at iteration j. If j = 1, then these subgraphs are D(P ′)
and Dw(P

′), respectively. Let T be the rooted semi-labeled tree returned by
AncestralBuild. We begin with an observation. Since the node sets of
the arc components found in Step 3 of Free′ are not constrained by triple
nodes and arcs with weight ∞, there is exactly one arc component at the
end of Step 1 of Free in the first j iterations; otherwise, we contradict the
fact that (ii) holds in the previous iteration. Note that, as the weighted-
descendancy graph of P ′ is connected, Free is not called in Step 1 in the
first iteration of Free.

We complete the proof by first establishing by contradiction that j 6= 1,
and so j ≥ 2. For j ≥ 2, the proof by contradiction is similar and makes
use of the fact that (i) and (ii) hold for j − 1. Because of this similarity, we
omit the proof of this case.

Let j = 1, and first suppose that (i) does not hold. Let S ′
0 and S0 denote

the set of free nodes in Steps 1 and 2a of Free′ and Free, respectively.
Because of the additional constraints imposed by the triple nodes, and arcs
and edges with weight ∞ in Free, it follows that S0 is a proper subset of
S ′
0. Let a ∈ S ′

0 − S0. Then either there is a triple node ab|c, an arc (c, a)
with weight ∞, or an edge {a, b} with weight ∞ in Dw(P

′). If there is such
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a triple node, then, as T ancestrally displays ab|c, the nodes a and b are in
one arc component of D(P ′) and c is in a separate arc component. But then,
by construction, a is an ancestor of b in T ; a contradiction. If there is such
an arc (c, a), then c is an ancestor of a in T ; a contradiction. Lastly, if there
is such an edge {a, b}, then, as a||T b, it follows that a and b are in separate
arc components of D(P ′). Now a and b are in the same arc component of
Dw(P

′), so, by construction, there is an arc in Dw(P
′) with weight ∞ on

every arc-path from a to b in Dw(P
′). It now follows that for one of these

arcs with weight ∞, (p, q) say, nodes p and q are in separate arc components
in D(P ′). But then, by construction, either p is not an ancestor of q in
T if p is a label node or T does not ancestrally display the rooted triple
corresponding to p if p is a triple node; a contradiction. Thus (i) holds for
j = 1.

Now assume that (ii) does not hold for j = 1. Let S ′
1,S

′
2, . . . ,S

′
k′ and

S1,S2, . . . ,Sk denote the node sets of the arc components of D(P ′)\S ′
0 in

Step 3 of Free′ and Dw(P
′)\S0 in Step 2c of Free, respectively. Because of

the additional constraints imposed by the triple nodes and arcs with weight
∞, it follows that there is a set, Si say, such that, up to triple nodes, it is
the union of at least two sets amongst S ′

1,S
′
2, . . . ,S

′
k. In particular, either

there is a triple node ab|c with a in one of these sets and b in another, or
an arc (c, a) with weight ∞ with c in one these sets and a in another. But
then, again by construction, either T does not ancestrally display ab|c or c
is not ancestor of a in T ; a contradiction. Therefore (ii) holds for j = 1.

Freeing nodes using a list-based weighting scheme is NP-hard

Let P be a collection of rooted semi-labeled trees and let P ′ be a collection
of rooted fully-labeled trees that is obtained from P by adding distinct new
labels. When MLS meets topological conflicts amongst source trees, it frees
either label nodes or a triple node by removing links from a subgraph of
Dw(P

′). This leads to the rooted semi-labeled tree eventually returned by
MLS to contradict the topological signal given by the trees in P ′ that induce
these particular links. The intuition here is that one seeks to remove a set
of links that contradict a minimum number of trees in P ′. MLS proceeds
by weighting each link with the number of trees that support it and, when
“stuck”, removing only links belonging to a minimum-weight cut to ensure
a small number of source trees will be contradicted. But, it can be that
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the same tree contributes to several links in a minimum-weight cut, and so
to contradict a minimum number of trees in P ′, a finer weighting scheme
is required. The alternative and very natural way to “weight” the links of
D(P ′) is to assign each link the list of trees in P ′ that induced this link.
Then, when confronted by topological conflicts, the algorithm would be able
to identify a cut that precisely involves a minimum number of trees in P ′.
This number is the size of the union of the lists of the links that will be
deleted if this cut is chosen. However, as we show next, finding a minimum-
weight cut to free a label node under this weighting scheme is an NP-hard
problem.

More formally, let Dl(P
′) be the graph obtained from the weighted-

descendancy graph Dw(P
′) of P ′ by replacing the weight of each arc (c, a)

with the set
{T ∈ P ′ : c <T a}

and that of each edge {a, b} with the set

{T ∈ P ′ : b||T a}.

Note that the ∞ weight is replaced with the set P ′. The graph Dl(P
′) is the

list-descendancy graph of P ′ and we refer to the above sets as lists. We will
now show that applying MLS to P, replacing Dw(P

′) with Dl(P
′) and using

the above list-based weighting scheme, leads to an NP-hard problem. To
establish this hardness result, we use the classical NP-hard problem Vertex

Cover:

Vertex Cover

Input: An undirected graph G = (V,E).
Solution: A minimum-sized subset Vm ⊆ V such that, for each edge
{u, v} ∈ E, at least one of u and v belongs to Vm.

Let G = (V,E) be an instance of Vertex Cover and arbitrarily assign
a direction to each edge of G, thus viewing G as a directed graph. Let

F =
⋃

e∈E

{e1, e2, e3, e4}.

We now construct a collection of rooted fully-labeled trees P whose label set
is V ∪F ∪ {x}, where x is a distinguished label. In particular, P consists of
the following trees:
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(i) For each edge e ∈ E, the trees (x, e3)e1, (x, e3)e2, are in P, where
(a, b)c is the rooted fully-labeled tree consisting of two leaves labeled
a and b, and a root labeled c.

(ii) For each u ∈ V , the following tree Tu is in P. The root of Tu is labeled
u, and has a first child labeled x and then a child labeled e3 for each arc
e leaving u in G with each such e3 node itself having e4 as single child.
Furthermore, for each arc e′ coming into u in G, the node labeled x

has a child labeled e′4.

Clearly, in the size of G, the set P can be constructed in polynomial time
and its size is polynomial. Now consider MLS applied to P under the above
list-based weighting scheme. Since P is fully-labeled, Dl(P

′) = Dl(P). Note
that Dl(P

′) has no triple nodes, and it is arc connected because of x. At
the completion of the first iteration of Free, every node of the form e1, e2
is deleted as well as all nodes in V . Again because of x, the resulting graph,
D′

l(P
′) say, has exactly one arc component. During the second iteration of

Free, x is considered as a possible node that can be freed, as are each of
the nodes of the form e3 which are linked to x by edges. We next show that
G has a minimum-sized vertex cover of size m if and only if the size of a
minimum-weight cut to free x in D′

l(P
′) is m, thus showing in general that

finding a minimum-weight cut to free a label node under this alternative
weighting scheme is an NP-hard problem.

Now, in D′
l(P

′), the node x is edge-adjacent precisely to each of the
nodes of the form e3. Furthermore, for each e ∈ E, there is an arc-path
involving x, e3 and e4 consisting of two arcs (an arc from e3 to e4 and one
from x to e4), and these arc-paths share no arcs. Thus any minimum-weight
cut to free x corresponds to either deleting the edge {x, e3} or deleting one
of the arcs (x, e4) and (e3, e4) for all e.

For an edge of the form {x, e3}, its corresponding list includes two trees
arising via (i) and one tree arising via (ii). For each such tree from (i), this
is the only link whose list contains it, while the tree from (ii) is Tu where u is
the node in G from which e starts. On the other hand, for all e, the lists of
each of (x, e4) and (e3, e4) consist of exactly one tree (these two trees differing
from one another). Thus, to free x, it is always more parsimonious to remove
the support of either (x, e4) or (e3, e4), than removing the support of the
edge {x, e3}. It now follows that if Cm is the union of the lists of the links
that will be deleted in a minimum-weight cut to free x, then Cm includes
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the single tree in the list associated with one of the arcs (x, e4) and (e3, e4)
for each e in G, and no tree arising via (i). Observing that the subset

{u : Tu ∈ Cm}

of V is a vertex cover of G, it follows that if Vm is a solution to Vertex

Cover for G, then |Vm| ≤ |Cm|.

Now suppose that Vm is a minimum-sized vertex cover of G. Let

C = {Tu : u ∈ Vm}.

There is a one to one correspondence between the edges of G and the above
arc-paths joining x and nodes of the form e3. In particular, this correspon-
dence assigns the edge e = {v,w} of G with the arc-path in which the list
of one arc consists of Tv and the list of the other arc consists of Tw. It now
follows that C frees x, and so if Cm is a minimum-weight cut that frees x,
then |Vm| ≥ |Cm|. We conclude that |Vm| = |Cm| and so finding a minimum-
weight cut that frees a label node under the above weighting is an NP-hard
problem.
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