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Abstract.—The accuracy and precision of species divergence date estimation from molecular data strongly depend on the
models describing the variation of substitution rates along a phylogeny. These models generally assume that rates randomly
fluctuate along branches from one node to the next. However, for mathematical convenience, the stochasticity of such a
process is ignored when translating these rate trajectories into branch lengths. This study addresses this shortcoming.
A new approach is described that explicitly considers the average substitution rates along branches as random quantities,
resulting in a more realistic description of the variations of evolutionary rates along lineages. The proposed method provides
more precise estimates of the rate autocorrelation parameter as well as divergence times. Also, simulation results indicate
that ignoring the stochastic variation of rates along edges can lead to significant overestimation of specific node ages.
Altogether, the new approach introduced in this study is a step forward to designing biologically relevant models of rate
evolution that are well suited to data sets with dense taxon sampling which are likely to present rate autocorrelation.
The computer programme PhyTime, part of the PhyML package and implementing the new approach, is available from
http://code.google.com/p/phyml (last accessed 1 August 2012) . [Divergence date estimation; geometric Brownian process;
MCMC; Bayesian estimation.]

Modelling the variations of nucleotide or amino acid
substitution rates along a phylogeny or a genealogy
is essential to deciphering the processes of molecular
evolution. For instance, an accurate description of how
substitution rates vary throughout a phylogeny is central
to characterize the correlation between rates of evolution
and life-history traits such as body mass index or
longevity (Harvey and Pagel 1991; Lartillot and Poujol
2011). These models are also important to accurately
estimate dates of divergence from molecular data. In this
context, Zuckerkandl and Pauling (1962) first suggested
that substitutions accumulate at constant pace over time
and throughout lineages. The subsequent estimation
of the date of divergence between humans and apes
(Sarich and Wilson 1967) relied heavily of the so-
called molecular clock hypothesis. However, with the
accumulation of molecular data, it became clear that
the molecular clock constraint did not always hold. It
was then required to design more sophisticated models
that allow substitution rates to vary during the course of
evolution.

Sanderson first proposed a rate smoothing approach
(Sanderson 1997, 2002) in which the rate variation along
branches of the phylogeny are governed by a penalty
term in the likelihood calculation. This approach was
further extended by Britton et al. (2007) to handle
large-phylogenomic data sets. However, Thorne and
colleagues (Thorne et al., 1998; Kishino et al., 2001) were
the first to propose a method of node age estimation that
relied on an explicit model of rate evolution. The last
decade has seen a number of studies that essentially
rely on the framework set out by these authors (e.g.,
see Aris-Brosou and Yang, 2002; Drummond et al.,
2006; Drummond and Suchard, 2010; Guindon, 2010;

Huelsenbeck et al., 2000; Rannala and Yang, 2007; Yang
and Rannala, 2006). Some of the models of rate evolution
assume a priori that rates along branches are sampled
independently from the same probabilistic distribution
(e.g., Drummond et al., 2006). The variance of this
distribution quantifies the deviation from the molecular
clock. Although this type of model does not assume rates
to be autocorrelated a priori, post-analysis processing
of estimated rates can potentially reveal evidence of
autocorrelation. Other models explicitly consider rates
to be autocorrelated a priori. According to these models,
fast evolving ancestors are more likely to give rise to
fast evolving descendants than slow evolving ones. This
hypothesis might not be relevant when taxon sampling
is sparse because the time elapsed along branches is
likely to be too great to generate autocorrelation across
lineages. However, with dense sampling and therefore
shorter time intervals between nodes in a phylogeny,
accounting for autocorrelation becomes more important.
For this reason, models with rate autocorrelation are
well suited to analyse large phylogenomic data sets. This
study focuses on this class of models.

The standard approach to model rates of evolution
relies on two steps. In the first step, the rate at the end of
a given branch (or a function of it such as the logarithm)
is considered as a random variable, the distribution of
which is a function of the rate (or the logarithm of it)
at the beginning of the same branch. A common choice
for this distribution is the normal density centred on the
logarithm of the rate at the beginning of the branch. The
logarithm of the rate trajectory then follows a Brownian
process (Thorne et al., 1998; Kishino et al., 2001). Other
stochastic processes have been proposed afterwards.
Unlike the Brownian process, the Ornstein–Uhlenbeck
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(OU) process has a stationary distribution, meaning
that large rates of evolution are more likely to decrease
rather than increase and vice versa. The OU model was
introduced in phylogenetics by Aris-Brosou and Yang
(2003). Lepage et al. (2006) used a Cox–Ingersoll–Ross
(CIR) process instead. The CIR process is a generalization
of the squared OU. As opposed to the OU process, the
CIR process cannot take on negative values, which is of
course relevant when modelling rates of evolution.

The second step consists in deriving average
substitution rates along branches from the rates of
evolution derived using one of the models mentioned
previously. Combined with node ages, average rates
are transformed into branch lengths which are then
plugged in the calculation of the probability of observing
the sequence alignment given the phylogenetic model
(i.e., Felsenstein’s likelihood). Average rates are generally
derived using a deterministic function of the rates at
both extremities of the corresponding branches. The
most commonly used function here is the arithmetic
average: the mean substitution rate along a branch is
the arithmetic average of the rates observed at both
its extremities. Therefore, although the rate trajectories
are modelled using a stochastic process, the average
rate along a branch is obtained through a deterministic
calculation. This simplification amounts to ignoring the
fact that the average rate along a branch given the rates
at its extremities is itself a random variable.

Mathematical convenience is the main motivation
behind such simplification. Indeed, the calculation of the
probability of transition from one nucleotide or amino
acid state to another along a given branch of specified
length is relatively straightforward when this length is
constant. If that length is a random variable, deriving
these probabilities is more problematic. Lepage et al.
(2006) explicitly tackled this issue. The authors of this
study were able to derive an analytical expression for
the probability of transition along a branch of a specified
length given in calendar units, effectively integrating
over all possible rate trajectories described by a CIR
process. They also give the formula for calculating
the likelihood of a 3-taxa unrooted tree. Because the
number of terms involved in this calculation increases
exponentially with the number of taxa, Monte Carlo
techniques have to be used to evaluate likelihoods on
larger phylogenies.

Another attempt to deal with the same issue was put
forward by Huelsenbeck et al. (2000). According to the
model proposed by these authors, the substitution rate
along a branch (the rate trajectory) is constant until
a “rate change event” occurs. The number of change
events in a given time period is Poisson distributed.
After a change event, the new rate is the rate before
the event multiplied by a gamma-distributed scalar.
Fitting this compound Poisson process to the data
requires integrating over all the rate trajectories which, in
principle, can be done using sophisticated Markov Chain
Monte Carlo (MCMC) techniques. However, processing
data sets of standard sizes under this model seems
difficult. To the best of our knowledge, the software

TreeTime (Himmelmann and Metzler, 2009) is the only
one providing an implementation of this approach.
This tool being relatively recent, the efficacy of its
implementation has not been assessed yet.

Rannala and Yang (2007) have described another
approach to the same problem. Assuming a standard
Brownian process for the logarithm of rate trajectories,
they were able to derive the joint prior distribution of the
substitution rates at the midpoints of two sister branches
(i.e., the two branches that are connected by the same
ancestral node) given the rate at the midpoint of the
ancestral branch (i.e., the branch directly “above” the
two sister branches). The midpoint rate is then used
here as a proxy to the average rate. The two authors
rightly note that “[...] calculation of the average rate
for each branch is approximate [in this algorithm];
ideally, the length of a branch should be calculated as an
integral over the sample path of the geometric Brownian
motion process, or otherwise calculation of the transition
probability from one nucleotide to another along the
branch has to take explicit account of the fluctuating
rate.”

This article essentially tackles the issue pointed out
by Rannala and Yang in this last statement. Using a
geometric Brownian process of rate variation across
lineages, we propose a semianalytical solution to the
integral of the transition probabilities over the average
rate along a branch. This technique is very much
inspired by Lepage et al. (2006). However, rather than
presenting a fully analytical solution, we introduce
an approximation and demonstrate its accuracy using
simulations. Using parametric bootstrap, we show that
rate autocorrelation and node age estimates inferred
using the new approach are more precise than that
estimated using the conventional model. We also show
that ignoring the stochasticity of the average rates
potentially leads to significant overestimation of internal
node ages.

MATERIALS AND METHODS

Preliminary
Before giving the details of our new approach, we first

define the average rate along an edge mathematically.
We then briefly describe how it is possible to integrate
over these average rates when calculating probabilities of
change from one nucleotide, amino acid, or codon state
to another along a branch.

Let Zt,r0,rt be the average rate along a branch of length
t, in calendar units, with rate r0 at one of its extremity
and rt at the other extremity. We have

Zt,r0,rt =
1
t

s=t∫
s=0

Rs|t,r0,rt ds, (1)

where Rs|t,r0,rt is the random variable that describes
the rate trajectory. It corresponds to the rate at time
s (0≤s≤ t) along a branch of length t given that the
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rate at s=0 is r0 and the rate at s= t is rt. For the sake
of simplicity of notation, the random variables Rs|t,r0,rt
and Zt,r0,rt will be denoted as Rs and Z, respectively, in
what follows. Now, let Xs denote the character state (i.e.,
the nucleotide, amino acid, or codon) observed at time
s along the same edge. The conditional probability of
observing state x at time t given that y is observed at
time 0 is given below:

P(Xt =x|X0 =y,r0,rt,t)

=
z=∞∫

z=0

P(Xt =x|X0 =y,Z=z)P(Z=z|r0,rt,t)dz

=
z=∞∫

z=0

[exp(Qz)]x,yP(Z=z|r0,rt,t)dz, (2)

where Q is the generator of the Markov process,
commonly denoted as the rate matrix. Equation (2)
corresponds to [E(exp(Qz))]x,y, that is, the moment-
generating function of Z (restricted to the pair x,y).
Analytical solutions to the integral in this equation are
not available in the general case. However, for specific
probabilistic distributions of Z, it is possible to get a
closed-form formula. In particular, if Z is distributed as
a gamma density with shape �=E2(Z)/V(Z) and scale
�=V(Z)/E(Z), we have

P(Xt =x|X0 =y,r0,rt,t)=[(I−�Q)−�]x,y, (3)

which can be computed efficiently by calculating
eigenvalues and eigenvectors of the rate matrix Q (using
f (Q)=Uf (�)U−1, where U and � are the matrices
of eigenvectors and eigenvalues of the rate matrix Q,
respectively). In other words, the length of a branch is
here replaced by 2 parameters, � and �, that describe the
probabilistic distribution of the number of substitutions
per site. Note that the same technique was proposed
by others (Huelsenbeck et al., 2008; Suchard et al.,
2002, 2003) in the context of Bayesian estimation of
phylogenies where the prior distribution of the average
branch rate is exponentially or gamma distributed.

When estimating species divergence dates in a
Bayesian framework, the goal is to reconstruct the joint
posterior density of the vectors of node ages (T) and node
rates (R). Using Bayes theorem, we have

P(T,R|D)∝
∫
Z

P(D|Z,T)P(Z|R,T)P(R|T)P(T)dZ, (4)

where Z is the vector of average rates along edges and
D corresponds to the sequence alignment. P(D|Z,T) is
Felsenstein’s likelihood (Felsenstein, 1981), P(Z|R,T) is
the probability density of average rates along edges
given node rates and times, P(R|T) is the probability
density of node rates along the tree, and P(T) is the
prior on node heights. The next section describes a
model of rate trajectory for which the distribution of
the average substitution rate along a branch is well

approximated by a gamma density, making the integral∫
ZP(D|Z,T)P(Z|R,T)dZ calculable analytically using the

standard sum-product algorithm in which each term is
given by Equation (3). The model itself is first introduced.
The mean and variance of the distribution of the average
rate are given next.

From Rate Trajectories to Averages
The standard Brownian process is a continuous-time

stochastic process that has been widely used in physics or
economics to describe the variation of random quantities
with time. According to this model, the variable
of interest has normally distributed independent
increments, that is, the differences between the value
of the variable at the end and the beginning of each of
two nonoverlapping time intervals are two independent
random variables with normal distributions. Logarithm
of substitution rates can take on negative or positive
values and a standard Brownian process is therefore
suitable in this respect. Also, the logarithm function
is a widely used transformation to normality. Hence,
although rate trajectories might not be well described
by a Brownian process, their logarithms might fit
that model better. It is therefore not surprising that
the geometric Brownian process, which is a Brownian
process of the log-transformed variable of interest, has
already been well studied by others (Kishino et al., 2001;
Rannala and Yang, 2007; Thorne et al., 1998). The section
below describes the derivation of the mean and variance
of the average substitution rate along a branch given that
the rate trajectory is governed by a geometric Brownian
process which values at the beginning and the end of the
branch of interest are fixed. Such a process is generally
referred to as a bridged geometric Brownian process. The
“bridged” term being justified here by the fact that the
rates at the beginning and the end of a branch are “tied
down” to specific values (i.e., the node rates).

The average substitution rate along a branch is given
by the following integral:

Z= 1
t

s=t∫
s=0

eVsds, (5)

where Vs = loge(Rs) is a normally distributed random
variable. The expected value of Z is therefore given by

E(Z)= 1
t

s=t∫
s=0

E(eVs )ds. (6)

This last formula illustrates a convenient mathematical
property of the geometric Brownian process. Indeed,
the expected value of the average rate is a function
of the moment-generating function of a normally
distributed random variable. The previous formula
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therefore simplifies to

E(Z)= 1
t

s=t∫
s=0

exp
(

E(Vs)+ 1
2

V(Vs)
)

ds. (7)

Having Vs normally distributed not only makes the
moment-generating function of E(Z) a simple function of
E(Vs) and V(Vs), we will also see below that closed-form
formulas for these two quantities are available that make
the integral calculable. Because Vs defines a Brownian
bridge starting at value v0 = loge(r0) and stopping at
vt = loge(rt), we have

E(Vs)=v0 + (vt −v0)
t

s (8)

and

V(Vs)= �(t−s)s
t

, (9)

where � is the rate autocorrelation parameter. The
derivation of these last 2 equations is given in the
Appendix. We therefore have

E(Z)= 1
t

exp(v0)

s=t∫
s=0

exp
(

(vt −v0)
t

s+ 1
2

�(t−s)
t

s
)

ds. (10)

It is worth noting that when �=0, that is, rates
do not fluctuate at all, then r0 =rt and therefore,
from Equation (10), E(Z)=1/t exp(v0)t=exp(v0)=r0, as
expected. Also, Equation (10) shows that as � increases,
E(Z) increases too. This observation also makes sense
because, for large values of �, rate trajectories are
likely to reach high peaks which will dominate in
the calculation of the average. This property of the
proposed model is interesting because it suggests
that part of the information conveyed by the data
on rate autocorrelation comes from the total amount
of substitutions accumulated, a quantity that can be
relatively well estimated from sequence alignments.

In order to compute the previous integral efficiently,
we use a Taylor series approximation of the exponential
function. We therefore have

E(Z)� 1
t

exp(v0)

s=t∫
s=0

N>0∑
k=0

1
k!

(
(vt −v0)

t
s+ 1

2
�(t−s)

t
s
)k

ds, (11)

the analytical expression of which can be derived for
various values of N using Maple for instance.

As for the variance of Z, we use a similar approach.
Let Us define a Brownian bridge with U0 =0 and Ut =0.

We have

V(Z)= 1
t2 V

⎛
⎝

s=t∫
s=0

exp(Vs)ds

⎞
⎠

= 1
t2 V

⎛
⎝

s=t∫
s=0

exp
[
v0 + (vt −v0)

t
s+Us

]⎞⎠ds

= 1
t2 exp(2v0)V

⎛
⎝

s=t∫
s=0

exp
[

(vt −v0)
t

s+Us

]
ds

⎞
⎠

= 1
t2 exp(2v0)

a=t∫
a=0

b=t∫
b=0

Cov
(

exp
[

(vt −v0)
t

a+Ua

]
,

exp
[

(vt −v0)
t

b+Ub

])
da db

= 1
t2 exp(2v0)

a=t∫
a=0

b=t∫
b=0

exp
[

(vt −v0)
t

(a+b)
]

Cov
(

exp(Ua),exp(Ub)
)

da db. (12)

We now focus on the expression of Cov
(

exp(Ua),

exp(Ub)
)

. Because Ua and Ub are normally distributed
random variables, we have

E(exp(Ua)) = exp
[

E(Ua)+ 1
2

V(Ua)
]

= exp
[
�a(t−a)

2t

]
. (13)

Therefore,

E(exp(Ua))E(exp(Ub))=exp
[
�a(t−a)

2t

]
exp

[
�b(t−b)

2t

]

=exp
[ �

2t

(
a(t−a)+b(t−b)

)]
.

(14)

Also, we have

E(exp(Ua)exp(Ub))

=exp
[

E(Ua +Ub)+ 1
2

V(Ua +Ub)
]

=exp
[

E(Ua)+E(Ub)+ 1
2

(V(Ua)

+V(Ub)+2Cov(Ua,Ub))
]

=exp
[

1
2

(V(Ua)+V(Ub))+Cov(Ua,Ub)
]
. (15)
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We now focus on the covariance term Cov(Ua,Ub) in
Equation (15). Let Ws define the standard Brownian
process. We have

Cov(Ua,Ub)=E(UaUb)−E(Ua)E(Ub)

=E(UaUb)

=E
((

Wa − a
t

Wt

)(
Wb − b

t
Wt

))

=E(WaWb)− b
t

E(WaWt)− a
t

E(WbWt)

+ ab
t2 E(W2

t ). (16)

If a≤b, we have

Cov(Ua,Ub) = �a− b
t
�a− a

t
�b+ ab

t2 �t

= �a(t−b)
t

. (17)

Otherwise,

Cov(Ua,Ub)= �b(t−a)
t

. (18)

Therefore, if a≤b, we have

E(exp(Ua)exp(Ub))

=exp
[
�a(t−a)

2t
+ �b(t−b)

2t
+ �a(t−b)

t

]

=exp
[ �

2t

(
a(t−a)+b(t−b)+2a(t−b)

)]
. (19)

Otherwise,

E(exp(Ua)exp(Ub))

=exp
[ �

2t

(
a(t−a)+b(t−b)+2b(t−a)

)]
. (20)

We now have an expression for each term required to
derive Cov(exp(Ua),exp(Ub)). If a≤b, then

Cov(exp(Ua),exp(Ub))

=E(exp(Ua +Ub))−E(exp(Ua))E(exp(Ub))

=exp
[ �

2t

(
a(t−a)+b(t−b)+2a(t−b)

)]
−

exp
[ �

2t

(
a(t−a)+b(t−b)

)]
. (21)

Otherwise,

Cov(exp(Ua),exp(Ub))

=exp
[ �

2t

(
a(t−a)+b(t−b)+2b(t−a)

)]

−exp
[ �

2t

(
a(t−a)+b(t−b)

)]
. (22)

Going back to Equation (12), we break down the integral
in two parts so as to consider the two cases, that is, a≤b

and a>b, separately:

V(Z)= 1
t2 exp(2v0)

b=t∫
b=0

a=b∫
a=0

exp
[

(vt −v0)
t

(a+b)
]

Cov
(

exp(Ua),exp(Ub)
)

da db

+ 1
t2 exp(2v0)

a=t∫
a=0

b=a∫
b=0

exp
[

(vt −v0)
t

(a+b)
]

Cov
(

exp(Ua),exp(Ub)
)

da db, (23)

and replace the covariance terms by their expressions
as given in Equations (21) and (22). After a few
mathematical simplifications, we obtain the following
expression for the variance:

V(Z)= 2
t2 exp(2v0)

a=t∫
a=0

b=a∫
b=0

exp
[

(vt −v0)
t

(a+b)

+ �

2t

(
a(t−a)+b(t−b)+2b(t−a)

)]
da db

− 2
t2 exp(2v0)

a=t∫
a=0

b=a∫
b=0

exp
[

(vt −v0)
t

(a+b)

+ �

2t

(
a(t−a)+b(t−b)

)]
da db. (24)

Note that Equation (24) satisfies V(Z)=0 if �=0, as
expected. Here again, the exponential terms can be
approximated as a Taylor series, which makes the double
integral calculable analytically.

In practice, a 10th order approximation was used
for the series expansion of the mean and variance of
Z. The accuracy of this approximation was assessed
by simulating the process governing rate trajectories.
We generated rate trajectories according to a bridged
geometric Brownian process and approximated the
probability density function of Z for various values of
r0, rt, �, and t. For each combination of parameters,
10 000 rate trajectories were simulated. The average rate
was recorded for each of them. These simulations were
performed using the R software (R Development Core
Team, 2011). Figure 1 shows the quantile–quantile plots
for the distributions of the simulated values of Z and the
corresponding gamma densities with mean and variance
set using the 10th order approximations of Equations (11)
and (24). The corresponding distributions themselves are
also displayed in the embedded graphics. These graphics
show that the gamma distribution provides a good fit to
the actual distribution of Z. They also demonstrate that
the 10th order approximation for the mean and variance
of the gamma distribution is satisfactory. Therefore,
the mean and variance of Z can be well approximated
using Equations (11) and (24), respectively, and it is

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/62/1/22/1655101 by guest on 29 O

ctober 2021



[13:00 19/12/2012 Sysbio-sys063.tex] Page: 27 22–34

2013 GUINDON—FROM RATE TRAJECTORIES TO AVERAGES 27

a) b)

c) d)

FIGURE 1. Quantile-quantile plots of the simulated vs. gamma-approximated distribution of the average substitution rate. t is the branch
length, r0 and rt are the rates at its 2 extremities. � is the scaling factor governing the variance of the Brownian process (see text). The brackets
indicate the 5% and 95% quantiles. The solid line in the embedded graphics corresponds to the estimated density from the simulated process.
The dashed line is the density obtained using the analytical approximation.

straightforward to calculate the probability density of
this random variable for any value it takes.

Joint Prior of Node Ages
The previous section focuses on the distribution

of substitution rate on edges given the rest of the
parameters of the phylogenetic model, including node
heights. This section deals with the prior distribution
of node heights. We here follow the steps of Rannala
and Yang (1996) and Yang and Rannala (1997, 2005) (but
see also Nee, 2001; Stadler, 2009, 2010). These authors
give the joint prior density of divergence times under
a birth–death process (Kendall 1948) generalized to
account for species sampling. The model considered in
this study corresponds to the pure-birth or Yule process.
It is a special case of the one proposed by Yang and
Rannala (2005) as it assumes complete sampling and
also considers that species never go extinct (i.e., �=0

and �=1). However, Yang and Rannala’s results apply to
the case where only a single sampling event took place.
Our model accounts for the case where groups of taxa
were sampled on several occasions over a certain period
of time, as is often the case with viruses for instance (e.g.,
see Shankarappa et al. 1999).

In the case where data are not sampled through
time and for the Yule model, the conditional density
of n−2 internal node heights conditioned on the height
of the root node is given by the order statistic of n−2
independent variables distributed as a right-truncated
exponential with parameter �, where � is the birth rate
(Yang and Rannala, 2006). The truncation results from
the fact that internal node heights are constrained to lie
between the present (time 0) and the age of the root node.
More formally, we have

f (T−r|Tr,�,	)∝
n−1∏
i �=r

�e−�|Ti|
(1−e−�|Tr|)

, (25)
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a) b)

FIGURE 2. Two rooted 4-taxon trees with taxa observed at times 0 and |A|.

where T−r corresponds to the vector of all internal node
heights (denoted as T) after having removed Tr, the age
of the root node, from it. 	 is the tree topology. The
proportionality factor is a function of 	. Because the
topology is considered as fixed in our study, we can safely
ignore it.

In order to explain how Equation (25) needs to be
modified to account for multiple sampling events, we
consider an example with four taxa and two time points.
In Figure 2, sequences were collected at time |A| and 0.
Given this constraint, |T0|≥|T1|≥|A| and |T1|≥|T2|≥0.
Hence, although |T1| has to be greater than |A|, |T2| can
be smaller (Fig. 2a) or larger (Fig. 2b) than |A|. Under a
pure-birth model, the time required to go from x to x+1
lineages is exponentially distributed with parameter x�.
For the tree on the left-hand side, the joint density of T0,
T1, and T2 and the tree topology 	 is therefore given by
the following formula:

fL(T0,T1,T2|�,A,	)= 1
2

(2�exp(−2�|T0 −T1|))×
exp(−3�|T1 −A|)×
�exp(−�|A−T2|)×
exp(−2�|T2|). (26)

For the tree on the right-hand side, we have

fR(T0,T1,T2|�,A,	)= 1
2

(2�exp(−2�|T0 −T1|))×
1
3

(3�exp(−3�|T1 −T2|))×
exp(−4�|A−T2|)×
exp(−2�|A|). (27)

Note that fL(T0,T1,T2|�,A,	)= fR(T0,T1,T2|�,A,	). The
marginal density of T0 is obtained by integrating over all

possible values for T1 and T2 for the two trees. We have

f (T0|�,A,	)=
|T0|∫

|T1|=|A|

|A|∫
|T2|=0

fL(T0,T1,T2|�,A,	)d|T1|d|T2|

+
|T0|∫

|T1|=|A|

|T1|∫
|T2|=|A|

fR(T0,T1,T2|�,A,	)d|T1|d|T2|.

(28)

After expanding and factorizing the integrals, we end up
with the following formula for the conditional density of
T1 and T2 given T0:

f (T1,T2|T0,A,�)∝ f (T1,T2,T0|A,�,	)
f (T0|A,�,	)

= �e−�|T1|
(e−�|A|−e−�|T0|)

× �e−�|T2|
(1−e−�|T0|)

. (29)

Let |Ai| denote the lower bound for |Ti|, the previous
formula then generalizes to any tree with n serially
sampled taxa. We have

f (T−r|Tr,�,A)∝
n−1∏
i �=r

�e−�|Ti|
(e−�|Ai|−e−�|Tr|)

, (30)

where A is a vector giving the times at which sampling
events occurred. This last formula indicates that the
conditional density of the n−2 internal node heights
knowing the height of the root node is given by the
order statistic of n−2 independent variables distributed
as a right- and left-truncated exponential distribution
with parameter �. The left truncation stems from the
lower bounds imposed to certain nodes heights when
sequences were collected during successive events (e.g.,
the lower bound for |T1| in Fig. 2 is |A|).

Our treatment of calibration nodes is less sophisticated
than that provided by Yang and Rannala (2005). The
marginal distribution of the calibration node heights is
governed by the Yule process, excluding values that fall
below (above) the lower (upper) bounds for these nodes.
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Let L and U be the vectors defining the lower and upper
bounds for the absolute value of each internal node age,
respectively. Let Ii =min(Ui,|Tr|) and Ji =max(Li,|Ai|),
we have

f (T−r|Tr,�,A,U,V)∝
n−1∏
i �=r

�e−�|Ti|
(e−�Ji −e−�Ii )

. (31)

Altogether, the joint density of node heights used in this
study is given by

f (T|�,A,U,V)= f (T−r|Tr,�,A,U,V)f (Tr|�,A,U,V),
(32)

where f (T−r|Tr,�,A,U,V) is given by Equation (31) and
f (Tr|�,A,U,V), the marginal distribution of the age of
the root node, is uniform in [Ir,Jr].

Data Sets
Three real sequence alignments were considered in

this study. The first consists of HIV-1 sequences collected
in a single infected individual at ten successive time
points (Shankarappa et al., 1999). The 87 sequences from
the env gene, 561 nucleotide long, were first processed
with the software PhyML (Guindon et al., 2010) in
order to estimate the maximum-likelihood phylogeny
under the GTR +
4 model (Tavaré, 1986; Yang, 1994),
using an SPR search for the best tree topology. The
tree topology was then considered as fixed in the
estimation of divergence dates. The calibration nodes
here correspond to the tips of the tree for which the time
of collection (in months) was recorded over a period of
74 months. The second data set consists of nucleotide
sequences from Caviomorph rodents and Platyrrhine
primates previously analysed by Poux et al. (2006).
Sixty-two homologous sequences from three nuclear
genes and a total of 3768 sites are considered here.
Nine calibration points, including prior information
on the time at the root node, are available. The third
data set was assembled and analysed by Wahlberg
(2006). It is made of 59 nucleotide sequences, 2936
character long, consisting of one mitochondrial gene
and two nuclear genes collected from the butterfly
subfamily Nymphalinae. Four calibration points were
available for this data set. The last two alignments and
the corresponding tree topologies were retrieved from
Treebase (Sanderson et al., 1994).

RESULTS

We use a parametric bootstrap approach to assess the
accuracy and precision of the estimated autocorrelation
parameter and the node ages when rates evolve along a
tree using one of two distinct models. The first is the
standard deterministic model where the average rate
along a branch is the arithmetic average of the rates at its
two extremities, that is, average rates along edges, and
therefore edge lengths, are not considered as random
variables here. The second is the stochastic model where

the average rate is a gamma-distributed random variable,
with the shape and scale parameter of this distribution
derived analytically (see “Materials and Methods”). For
each real sequence data set (see Materials and Methods)
and each model of rate evolution, a MCMC algorithm
is used to sample model parameters from their prior
distribution. Once the effective sample sizes for the
autocorrelation parameter, the age of the root node and
the overall substitution rate have all reached 100, model
parameters are recorded and nucleotide sequences are
generated along the corresponding tree using the HKY
model of substitution (Hasegawa et al., 1985) with
nucleotide frequencies set to the values estimated from
the actual data set and transition/transversion ratio
sampled from its prior distribution. For each of the
three real-world data sets considered in this study, 500
sequence alignments are simulated this way. For each
of these 500 alignments, the same MCMC algorithm is
used to sample from the posterior distribution of model
parameters under the HKY model for both models of
rate evolution. Here again, the sampler is run as long as
the effective sample sizes for any of the autocorrelation
parameter, the age of the root node or the overall
substitution rate do not exceed 100. Additionally, we
have used the R library coda (Plummer et al., 2010) to
run convergence diagnostics on a subset of the MCMCs.
None of these tests indicated a lack of convergence.

Accuracy
Figure 3 (top row) shows scatterplots of the true values

of the autocorrelation parameter (a), the age of the root
node (b), and the age of the other internal nodes in the
tree (c) for data simulated under the stochastic model
of rate evolution, against the corresponding values
estimated under the deterministic model. Sequences
were simulated along the HIV-1 phylogeny (see
Materials and Methods section). Here, the estimated
values correspond to the posterior medians of the
parameters of interest. Although the accuracy of the
rate autocorrelation estimation is satisfactory for small
values of this parameter (corresponding to slight
deviations from the molecular clock), larger values are
more difficult to infer when branch lengths are derived
using the deterministic approach. The same observation
applies to the age of the root node: young root ages are
recovered accurately, while the accuracy drops sharply
for older root ages. Also note that root age tends to be
underestimated, for example, for actual ages close to 120
time units, all the estimates are younger than 115 time
units. The accuracy for the other internal nodes is very
satisfactory and using the deterministic approximation
does not seem to impact on the accuracy of the estimates
here.

Figure 3 (middle row) shows the accuracy of
parameter estimates for Poux et al. data set. Here again,
the accuracy decreases with increasing values of the
rate autocorrelation parameter. This decrease in accuracy
also comes with an increase in bias, with large values
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a) b) c)

a) b) c)

a) b) c)

FIGURE 3. Accuracy of the deterministic approach for estimating the rate autocorrelation parameter (a), the age of the root node (b), and
other internal node ages (c) (top row: HIV-1 data set; middle row: Poux et al. data set; bottom row: Wahlberg data set). Sequences were simulated
under the stochastic model. Parameters were estimated under the deterministic model. The true parameter values are on the x-axis. The medians
of the posterior densities for each parameter are on the y-axis. The solid line corresponds to the first diagonal.

of the parameter tending to be overestimated. As for
the root age, the estimates obtained by applying the
deterministic approach to data generated using the
stochastic method show very poor accuracy, with no
obvious correlation between the estimated and the true
values of this parameter. Ignoring the stochasticity of
average rates along edges here amounts to a total
inability of the model to extract phylogenetic signal
from the data. Regarding the other internal nodes,
the correlation between estimated and true values is

much stronger. However, some node ages are clearly
overestimated. For instance, in our simulations, some
nodes that were 60 time units old were estimated to be
120 time units old. Also note that the uneven distribution
of values along both axes is explained by the constraints
on calibration nodes, setting boundaries of internal node
heights in both simulated and estimated trees.

Figure 3 (bottom row) shows the accuracy of
parameter estimates for Wahlberg data set. A pattern
similar to that observed for the other two data sets is
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obtained for the rate autocorrelation parameter. Also,
the age of the root node is almost systematically
underestimated. The inaccuracy is such that the
correlation between the true and estimated values
of this parameter is virtually nonexistent. The other
internal node estimates show better correlation with the
corresponding true values but, here again, some node
ages are dramatically overestimated.

Precision
Figure 4 (top row) gives the 95% credibility intervals

for the autocorrelation parameter (a), the age of the
root node (b), and the age of the other internal nodes
in the tree (c) for the HIV-1 data set. The intervals
defined by the solid lines were obtained from data
simulated under the deterministic model, with the same
deterministic approach used to estimate the parameters.
The dashed lines were derived from data simulated
and parameter estimated using the stochastic approach.
The width of the credibility intervals obtained for the
autocorrelation parameters are clearly smaller for the
stochastic model, indicating more precise estimates of
this parameter under the stochastic approach compared
with the deterministic one (one-sided Welch two-sample
t-test, P-value <2.2×10−16). Also note that the precision
of the estimates for this parameter does not seem to
be affected by its actual value: the difference between
the 2.5% and 97.5% quantiles remains approximately
constant as one moves along the x-axis. This observation
indicates that it is possible to quantify the deviation from
the molecular clock constraint in a precise manner, even
in cases where the variation of rates across lineages is
strong. As for the node age estimates, including the root
node (Fig. 4b, c, top row), the precision of the estimates
are virtually identical with both the deterministic and
the stochastic approaches. For internal node heights,
however, the intervals obtained with the stochastic
approach are statistically smaller than those obtained
with the deterministic ones (means: 3.82 vs. 4.04 time
units, P-value <2.2×10−16). The difference between the
two approaches regarding the precision of these node
age estimates, while being statistically significant, is
therefore very slight if not negligible and mostly reflect
the very large sample sizes used here.

Figure 4 (middle and bottom rows) shows the
credibility intervals obtained for Poux et al. and
Wahlberg data sets, respectively. Here again, the
estimates of the rate autocorrelation parameter are much
more precise under the stochastic than the deterministic
approach (P-value <2.2×10−16 in both cases). Contrary
to our observation for the HIV-1 data set, the estimation
of the root age is more precise under the stochastic
than the deterministic approach (Poux et al. data,
means: 12.37 vs. 14.87 time units, P-value <2.2×10−16;
Wahlberg data, means: 31.28 vs. 35.58 times units,
P-value =3.5×10−09). However, the precision of the
other internal node age estimates are very similar with

both approaches, even though the stochastic approach
returns statistically smaller intervals on average in both
cases (Poux et al. data, means: 5.89 vs. 7.03, P-value
<2.2×10−16; Wahlberg data, means: 4.89 vs. 5.55 time
units, P-value <2.2×10−16)

DISCUSSION

This article focuses on how rate trajectories describing
the variation of substitution rates along a phylogeny are
translated into average evolutionary rates along edges.
Current approaches approximate average rates using a
deterministic function of the rates at the nodes of the
tree, ignoring the stochasticity of the process. Assuming
rate trajectories are governed by a geometric Brownian
process, the average rate along any given branch can
be well approximated by a gamma distribution. We
were able to derive the mean and variance of this
distribution given the node rates using a semi-analytical
approach. Moreover, it is relatively straightforward to
calculate matrices of character change probability along
a branch whose length is considered as a gamma-
distributed random variable. The combination of these
two properties makes the geometric Brownian model
of rate evolution particularly attractive from a practical
perspective because the computational load required by
the stochastic approach is virtually identical to that of
the deterministic one.

Our results show that ignoring the stochasticity of
average rates along branches impacts negatively on
the accuracy of the estimated node ages and rate
autocorrelation parameter. Most importantly, the large
overestimation of some internal node ages observed
with two of the three data sets considered in this study
is concerning. Interestingly however, in their review
article comparing species divergence dates estimated
using molecular versus palaeontological data, Benton
and Ayala (2003) note that the molecular age estimates
for several important divergence dates (including that
of the origins of metazoans) are about twice as old
as the oldest fossils. This observation is well in line
with our results. Further investigations are required to
confirm that ignoring the stochasticity of average rates
could partly be responsible for the discrepancy between
molecular and palaeontological date estimates. Given
the equivalent computational costs compared with
the standard approach, we believe that future studies
relying on molecular data to estimate species divergence
dates should account for the stochasticity of average
substitution rates anyway. Note however that both the
deterministic and stochastic approach largely agree on
all the node ages estimated from the three actual data
sets considered in this study (results not shown). These
estimates are also very similar to those presented by Poux
et al. (2006) and Wahlberg (2006) because the method
used to infer species divergence dates in these studies
relies on the geometric Brownian model combined
to the deterministic approximation of branch lengths.
Therefore, although the deterministic approach might
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a) b) c)

a) b) c)

a) b) c)

FIGURE 4. Precision of the estimated rate autocorrelation parameter (a), the age of the root node (b), and the age of other internal nodes
(c) using the stochastic (dashed lines) and the deterministic (solid lines) approaches (top row: HIV-1 data set; middle row: Poux et al. data set;
bottom row: Wahlberg data set). Sequences simulated under the stochastic approach along the original phylogenies were processed using the
same stochastic model (dashed lines). Also, sequences simulated under the deterministic approach were processed using the same deterministic
approach (solid lines). For each of the 500 simulated data sets and for each method (deterministic and stochastic), the 2.5% and 97.5% quantiles of
the posterior distribution of each parameter were calculated. The solid and dashed lines were obtained by plotting a locally weighted polynomial
regression (function lowess in R) for each of the 2 quantiles and methods.

overestimate node ages in some instances, particularly in
data sets displaying large deviations from the molecular
clock constrain, it is likely that both methods will return
very similar node age estimates in most cases.

Our simulations also show that the estimates of the
root age and, most notably, the rate autocorrelation
parameter are more precise under the stochastic than
the deterministic approach. Augmenting the number of

parameters in a model generally decreases the precision
of the estimates. The increased precision observed here
with the most parameter-rich model is best explained by
the ability of the stochastic approach to extract relevant
signal from the data. Indeed, although the deterministic
model estimates rate autocorrelation from node rates
only, the stochastic approach also uses information from
the average rates along edges.
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Increasing the precision of the estimated
autocorrelation of substitution rates has important
consequences from the biological point of view.
For instance, lineage-specific changes in the natural
selection patterns or reduction in effective population
sizes can explain deviations from the molecular clock
constraint. The technique proposed in this study
therefore offers the opportunity to revisit the tests of
the molecular clock hypothesis using an improved
statistical approach. In particular, given an estimate
of the autocorrelation parameter derived from the
Bayesian approach described in this article, it is possible
to detect sudden changes of the substitution rate in
specific lineages. Correlating those changes to known
phenotypical or environmental variations is relevant
from a biological perspective, and this study provides an
adequate statistical framework to perform such analysis.

The proposed approach allows rates to vary along the
phylogeny and also across sites. The mean of the branch
length distribution may indeed be shifted to larger or
smaller values using a gamma-distributed multiplicative
factor for instance (Yang, 1994). Other models of rate
variation across the elements of a data partition, such
as different loci for instance, can also be envisaged and
implemented using the very same techniques as that
used with the more standard models of rate evolution.
Also, integrating over geometric Brownian trajectories
amounts to modelling heterotachy (Lopez et al., 2002),
that is, site-specific patterns of variation of rates along
lineages. This feature makes our approach (along with
that of Lepage et al., 2006) distinct from the large majority
of models describing the heterogeneity of rates along
lineages. For instance, the exponential and log-normal
models implemented in BEAST, the geometric Brownian
model implemented in the softwares Multidivtime or
MCMCtree (Yang, 2007), and the OU model combined
to the deterministic derivation of branch lengths put
forward by Aris-Brosou and Yang (2002), are all
homotachous approaches in the sense that the ratio
of the average rate of substitution on two distinct
edges are constrained to be the same throughout the
alignment. Note, however, that our approach should not
be considered as “fully heterotachous.” Indeed, although
the average rates along edges is a random quantity and
therefore can vary along sites and lineages according
to an heterotachous process, the rates at individual
nodes only vary across sites in a homotachous fashion.
Such an approach therefore provides an interesting
balance between model flexibility and over-fitting the
data, even though validating that claim warrants further
investigation.
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APPENDIX

Let Vs|t,r0,r1,� be the logarithm of the substitution rate
at time s along a branch of length t. v0 and vt are the
logarithm of rates at the start and the end of this branch.
� is the autocorrelation of rate parameter. For the sake
of clarity of notations, Vs|t,r0,r1,� will be denoted as Vs in
what follows. We have

Vs =v0 + (vt −v0)
t

s+Us,

and

Us =Ws − s
t
Wt,

where Ws defines the standard Brownian process.
Therefore, Ws is normally distributed with mean 0 and
variance �s. Us defines a Brownian bridge, the value of
which is 0 at s=0 and s= t. Vs is thus a Brownian bridge
too with V0 =r0 and Vt =vt. Moreover,

E(Vs) = v0 + (vt −v0)
t

s+E(Us)

= v0 + (vt −v0)
t

s+E(Ws)− s
t

E(Wt)

= v0 + (vt −v0)
t

s.

As for the variance, we have

V(Vs) = V(Us)

= V
(

Ws − s
t
Wt

)

= V(Ws)+ s2

t2 V(Wt)−2
s
t
Cov(Ws,Wt)

= �s+ s2

t2 �t−2
s
t
(
E(WsWt)−E(Ws)E(Wt)

)

= �s+ s2

t2 �t−2
s
t

E(WsWt)

= �s+ s2

t2 �t−2
s
t
�s

= �s(t−s)
t

.

Hence, Vs is a normally distributed random
variable with mean �s =v0 +(vt −v0)s/t and variance
�2

s =�(t−s)s/t.
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