Circle Graph Recognition in Time O(n+m)\alpha(n+m)

Emeric Gioan 1 Christophe Paul 1 Marc Tedder 2 Derek Corneil 2
1 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Circle graphs are the intersection graphs of chords in a circle. This paper presents the first sub-quadratic recognition algorithm for the class of circle graphs. Our algorithm is O(n + m) times the inverse Ackermann function, α(n + m), whose value is smaller than 4 for any practical graph. The algorithm is based on a new in- cremental Lexicographic Breadth-First Search characterization of circle graphs, and a new efficient data-structure for circle graphs, both developed in the paper. The al- gorithm is an extension of a Split Decomposition algorithm with the same running time developed by the authors in a companion paper.
Type de document :
Article dans une revue
Algorithmica, Springer Verlag, 2014, 69 (4), pp.789-788. 〈10.1007/s00453-013-9745-8〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00805194
Contributeur : Christophe Paul <>
Soumis le : mercredi 27 mars 2013 - 12:56:55
Dernière modification le : jeudi 11 janvier 2018 - 06:26:13

Lien texte intégral

Identifiants

Collections

Citation

Emeric Gioan, Christophe Paul, Marc Tedder, Derek Corneil. Circle Graph Recognition in Time O(n+m)\alpha(n+m). Algorithmica, Springer Verlag, 2014, 69 (4), pp.789-788. 〈10.1007/s00453-013-9745-8〉. 〈lirmm-00805194〉

Partager

Métriques

Consultations de la notice

216