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Abstract

We present one upper bound on the size of non-linear codes and its restriction to
systematic codes and linear codes. This bound is independent of other known theo-
retical bounds, e.g. the Griesmer bound, the Johnson bound or the Plotkin bound,
and it is an improvement of a bound by Litsyn and Laihonen. Our experiments
show that in some cases (the majority of cases for some q) our bounds provide the
best value, compared to all other theoretical bounds.
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1 Introduction

The problem of bounding the size of a code depends heavily on the code
family that we are considering. In this paper we are interested in three types
of codes: linear codes, systematic codes and non-linear codes. Referring to
the subsequent section for rigorous definitions, with linear codes we mean
linear subspaces of (Fq)

n, while with non-linear codes we mean (following
consolidated tradition) codes that are not necessarily linear. In this sense,
a linear code is always a non-linear code, while a non-linear code may be
a linear code, although it is unlikely. Systematic codes form a less-studied
family of codes, whose definition is given in the next section. Modulo code
equivalence all (non-zero) linear codes are systematic and all systematic codes
are non-linear. In some sense, systematic codes stand in the middle between
linear codes and non-linear codes. The size of a systematic code is directly
comparable with that of a linear code, since it is a power of the size of Fq.
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In this paper we are interested only in theoretical bounds, that is,
bounds on the size of a code that can be obtained by a closed-formula expres-
sion, although other algorithmic bounds exist (e.g. the Linear Programming
bound [Del73]). The algebraic structure of linear codes would suggest the
knowledge of a high number of bounds strictly for linear codes, and only a few
bounds for the other case. Rather surprisingly, the academic literature reports
only one bound for linear codes, the Griesmer bound ([Gri60]), no bounds for
systematic codes and many bounds for non-linear codes. Among those, we re-
call: the Johnson bound ([Joh62],[Joh71],[HP03]), the Elias-Bassalygo bound
([Bas65],[HP03]), the Levenshtein bound ([Lev98]), the Hamming (Sphere
Packing) bound and the Singleton bound ([PBH98]), and the Plotkin bound
([Plo60], [HP03]).
Since the Griesmer bound is specialized for linear codes, we would expect it to
beat the other bounds, but even this does not happen, except in some cases.
So we have an unexpected situation where the bounds holding for the more
general case are numerous and beat bounds holding for the specialized case.

In this paper we present one (closed-formula) bound (Bound A ) for non-
linear codes, which is an improvement of a bound by Litsyn and Laihonen
in [LL98]. The crux of our improvement is a preliminary result presented in
Section 3, while in Section 4 we are able to prove Bound A . Then we restrict
Bound A to the systematic/linear case and compare it with all the before-
mentioned bounds by computing their values for a large set of parameters
(corresponding to about one week of computations with our computers). Our
findings are in favour of Bound A and are reported in Section 5. For large
values of q, our bound provides the best value in the majority of cases.
The only bound that we never beat is Plotkin’s, but its range is very small
(the distance has to be at least d > n(1 − 1/q)) and the cases falling in this
range are a tiny portion with large q’s.

For standard definitions and known bounds, the reader is directed to the
original articles or to any recent good book, e.g. [HP03] or [PBH98].

2 Preliminaries

We first recall a few definitions.
Let Fq be the finite field with q elements, where q is any power of any prime.
Let n ≥ k ≥ 1 be integers. Let C ⊆ F

n
q , C 6= ∅. We say that C is an (n, q)

code. Any c ∈ C is a word. Note that here and afterwards a “code” denotes
what is called a “non-linear code” in the introduction.
Let φ : (Fq)

k → (Fq)
n be an injective function and let C = Im(φ). We say

that C is an (n, k, q) systematic code if φ(v)i = vi for any v ∈ (Fq)
k and

any 1 ≤ i ≤ k. If C is a vector subspace of (Fq)
n, then C is a linear code.

Clearly any non-zero linear code is equivalent to a systematic code.
From now on F will denote Fq and q is understood.
We denote with d(c, c′) the (Hamming) distance of two words c, c′ ∈ C,
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which is the number of different components between c and c′. We denote with
d a number such that 1 ≤ d ≤ n to indicate the distance of a code, which
is d = minc,c′∈C,c6=c′{ d(c, c

′)}. Note that a code with only one word has, by
convention, distance equal to infinity. The whole Fn has distance 1, and d = n
in a systematic code is possible only if k = 1.
From now on, n, k are understood.

Definition 2.1. Let l, m ∈ N such that l ≤ m. In F
m, we denote by Bx(l,m)

the set of vectors with distance from the word x less than or equal to l, and
we call it the ball centered in x of radius l.
For conciseness, B(l,m) denotes the ball centered in the zero vector.

Obviously, B(l,m) is the set of vectors of weight less than or equal to l and

|B(l,m)| =
l

∑

j=0

(

m

j

)

(q − 1)j.

We also note that any two balls having the same radius over the same field
contain the same number of vectors.

Definition 2.2. The number Aq(n, d) denotes the maximum number of words

in a code over Fq of length n and distance d.

3 A first result for a special code family

The maximum number of words in an (n, d) code can be smaller than
Aq(n, d) if we have extra constraints on the weight of words. The following
result is an example and it will be instrumental of the proof of Bound A .

Theorem 3.1. Let C be a (n, d)-code over Fn. Let ǫ ≥ 1 be such that for any

c ∈ C we have w(c) ≥ d+ ǫ. Then

|C| ≤ Aq(n, d)−
|B(ǫ, n)|

|B(d− 1, n)|

Proof. C belongs to the set of all codes with distance d and contained in
F
n \B0(d+ ǫ− 1, n). Let D be any code of the largest size in this set, then

|C| ≤ |D| (1)

Clearly, any word c of D has weight w(c) ≥ d+ ǫ. Consider also D̄, the largest
code over Fn of distance d such that D ⊆ D̄. By definition, the only words of
D̄ of weight greater than d+ ǫ− 1 are those of D, while all other words of D̄
are confined to the ball B0(d+ ǫ− 1, n). Thus

|C| ≤ |D| ≤ |D̄| ≤ Aq(n, d) (2)
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and
D̄ \D ⊆ B0(d+ ǫ− 1, n)

Let ρ = d− 1 and r = d+ ǫ− 1, so that r − ρ = ǫ, and let N = D̄ ∩B0(r, n).
We have:

D = D̄ \N, |D| = |D̄| − |N | (3)

We are searching for a lower bound on |N |, in order to have an upper
bound on |D|. We start with proving

B0(r − ρ, n) ⊆
⋃

x∈N

Bx(ρ, n) (4)

Consider y ∈ B0(r − ρ, n). If for all x ∈ N we have that y /∈ Bx(ρ, n), then
y is a vector whose distance from N is at least ρ + 1. Since y ∈ B0(r − ρ, n),
also its distance from D̄ \N is at least ρ+1. Therefore, the distance of y from
the whole D̄ is at least ρ + 1 = d and so we can obtain a new code D̄ ∪ {y}
containing D and with distance d, contradicting the fact that |D̄| is the largest
size for such a code in F

n. So, (4) must hold.
A direct consequence of (4) is

|N | · |Bx(ρ, n)| ≥ |B0(r − ρ, n)| ,

which gives

|N | ≥
|B0(r − ρ, n)|

|Bx(ρ, n)|
=

|B0(ǫ, n)|

|Bx(d− 1, n)|
(5)

Using (1), (2), (3) and (5), we obtain the desired bound:

|C| ≤ |D| = |D̄| − |D̄ ∩ B0(d+ ǫ− 1, n)|

≤ Aq(n, d)−
|B0(ǫ, n)|

|Bx(d− 1, n)|

4 An improvement of the Litsyn-Laihonen bound

In 1998 Litsyn and Laihonen prove a bound for non-linear codes:
Theorem 1 of [LL98], which we write with our notation as follows.

Theorem 4.1 (Litsyn-Laihonen bound). Let t ∈ N be such that t ≤ n − d.
Let 1 ≤ d ≤ n, d− 2r ≤ n− t, 0 ≤ r ≤ t and 0 ≤ r ≤ 1

2
d. Then

Aq(n, d) ≤
qt

|B(r, t)|
Aq(n− t, d− 2r)
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We are ready to show a strengthening of their result: Bound A .

Theorem 4.2 (Bound A). Let t ∈ N be such that t ≤ n− d. Let 1 ≤ d ≤ n,
d− 2r ≤ n− t, 0 ≤ r ≤ t and 0 ≤ r ≤ 1

2
d. Then

Aq(n, d) ≤
qt

|B(r, t)|

(

Aq(n− t, d− 2r)−
|B(r, n− t)|

|B(d− 2r − 1, n− t)|
+ 1

)

Proof. We follow initially the outline of the proof of [LL98][Theorem 1] and
then we apply Theorem 3.1.
We consider an (n, d) code C such that |C| = Aq(n, d). By definition of
Aq(n, d), C must exist. We claim that we can suppose 0 ∈ C. Indeed, if 0 6∈ C,
let c0 be a word of C. Then the set C0 = {c − c0 | c ∈ C} is a (n, d)-code
containing the zero vector and with |C0| = |C|.
We number all words in C in any order: C = {ci | 1 ≤ i ≤ Aq(n, d)}.
We indicate the i-th word with ci = (ci,1, . . . , ci,n). We puncture C as follows:

(i) we choose any t columns 1 ≤ j1, . . . , jt ≤ n; since two codes are equivalent
w.r.t. column permutations we suppose j1 = 1, . . . , jt = t.
Let us split each word ci ∈ C in two parts

c̃i = (ci,1, . . . , ci,t) c̄i = (ci,t+1, . . . , ci,n), so ci = (c̃i, c̄i).

(ii) We choose a z ∈ F
t.

(iii) We collect in I all i’s s.t. d(z, c̃i) ≤ r;

(iv) We delete the first t components of {ci | i ∈ I}.

Then the punctured (n̄, d̄) code C̄z obtained by (i),(ii),(iii) and (iv) is:

C̄z = {c̄i | i ∈ I} = {c̄i | d(z, c̃i) ≤ r, 1 ≤ i ≤ Aq(n, d)}

We claim that we can choose z in such a way that C̄z satisfies:

n̄ = n− t (6)

d̄ ≥ d− 2r (7)

|C̄z| ≥
|C|

qt
|B(r, t)| (8)

w(c̄i) ≥ d− r for all c̄i 6= 0 (9)

(6) is obvious. As regards (7), note that d(ci, cj) = d(c̃i, c̃j) + d(c̄i, c̄j) ≥ d
and also that c̃i, c̃j ∈ Bz(r, t) implies d(c̃i, c̃j) ≤ 2r. Therefore for any i 6= j

2r + d(c̄i, c̄j) ≥ d(c̃i, c̃j) + d(c̄i, c̄j) ≥ d .

The proof of (8) is more involved and we need to consider the average number
M of the i’s such that c̃i happens to be in a sphere of radius r (in F

t). The
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average is taken over all vectors x’s in F
t, so that

M =
1

|Ft|

∑

x∈Ft

|{i | 1 ≤ i ≤ Aq(n, d), c̃i ∈ Bx(r, t)}| .

Let us define a function:

ψ : Ft × F
t −→ {0, 1}, ψ(x, y) =

{

1, d(x, y) ≤ r

0, otherwise
.

Then we can write M and |By(r, t)| (for any y ∈ F
t) as

M =
1

qt

∑

x∈Ft

Aq(n,d)
∑

i=1

ψ(x, c̃i) |By(r, t)| =
∑

x∈Ft

ψ(x, y) .

By swapping variables we get

M =
1

qt

∑

x∈Ft

Aq(n,d)
∑

i=1

ψ(x, c̃i) =
1

qt

Aq(n,d)
∑

i=1

∑

x∈Ft

ψ(x, c̃i) =
Aq(n, d)

qt
|Bc̃i(r, t)| .

This means that there exists x̄ ∈ F
t such that

|{i | 1 ≤ i ≤ Aq(n, d), c̃i ∈ Bx̄(r, t)}| ≥M ≥
Aq(n, d)

qt
|B(r, t)| .

In other words, there are at least |C|
qt
|B(r, t)| ci’s such that their c̃i’s are con-

tained in Bx(r, t). Distinct ci’s may well give rise to the same c̃i’s, but they
always correspond to distinct c̄i’s (see the proof of (7)), so there are at least
|C|
qt
|Bx(r, t)| (distinct) c̄i’s such that their corresponding c̃i’s fall in Bx̄(r, t). By

choosing z = x̄ we then have at least |C|
qt
|Bx(r, t)| (distinct) codewords of C̄z.

(9) holds since 0 ∈ C. Infact:

w(c) = d(0, c) ≥ d, ∀c ∈ C such that c 6= 0.

As a consequence, any nonzero word ci = (c̃i, c̄i) of weight at most r in c has
weight at least d− r in the other n− t components.

Now, if we call D a (n̄,M, d− 2r)-code containing the zero word and such
that ∀d ∈ D then w(d) ≤ r. Then we can apply Theorem 3.1 to D \ {0} and
ǫ = r, and obtain the following chain of inequalities:

|C|

qt
|B(r, t)| ≤ |C̄| ≤ |D| ≤ Aq(n̄, d− 2r)−

|B(r, n̄)|

|B(d− 2r − 1, n̄)|
+ 1
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and since |C| = Aq(n, d) we have the bound:

Aq(n, d) ≤
qt

|B(r, t)|
(Aq(n̄, d− 2r)−

|B(r, n̄)|

|B(d− 2r − 1, n̄)|
+ 1).

4.1 Systematic case

When we restrict ourselves into the systematic/linear case, then the value
Aq(n, d) can only be a power of q, and if the dimension of the code C is k,
then Aq(n, d) = qk. Thus we have the following corollary:

Corollary 4.3 (Bound B). Let k, d, r ∈ N, d ≥ 2, k ≥ 1. Let n be such that

there exists an (n, k, q) systematic code C with distance at least d.
If 0 ≤ r ≤ min{⌊d−1

2
⌋, k}, then

|B(r, k)| ≤ Aq(n− k, d− 2r)−
|B(r, n− k)|

|B(d− 2r − 1, n− k)|
+ 1.

In the systematic/linear case the Litsyn-Laihonen bound becomes:

|B(r, k)| ≤ Aq(n− k, d− 2r).

Easy computations can be done in the case d = 3, since in this case r can be
at most 1, so that:

• |B(1, k)| = (q − 1)k + 1

• Aq(n− k.d− 2r) = Aq(n− k, 1) = qn−k

• |B(1, n− k)| = (q − 1)(n− k) + 1

• |B(d− 2r − 1, n− k)| = |B(0, n− k)| = 1

Our bound then reduces to:

0 ≤ qn−k − (q − 1)n− 1

which is stronger then the Litsyn-Laihonen bound, which in the case d = 3
reduces to:

0 ≤ qn−k − (q − 1)k − 1.

5 Experimental comparisons with other upper bounds, remarks
and conclusion

We have analyzed the case of linear codes, implementing Bound B. The
algorithm to compute the bound takes as inputs n, d, and returns the largest
k (checks are done until k = n− d+ 1) such that the inequality of the bound
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holds. If the inequality always holds in this range, n− d+1 is returned. Then
we compared our upper bound on k with other bounds, restricting those which
hold in the general non-linear case to the systematic case. In particular they
give a bound on Aq(n, d) instead of a bound on k. As a consequence, for
example, if the Johnson bound returns the value Aq(n, d) for a certain pair
(n, d), then we compare our bound with the value ⌊logq(Aq(n, d))⌋, which is
the largest power s of q such that qs ≤ Aq(n, d).
The inequality in Theorem 4.3 involves the value Aq(n − k, d − 2r), which
is the maximum number of words that we can have in a non-linear code of
length n − k and distance d − 2r. To implement Bound B it is necessary to
compute Aq(n− k, d− 2r); when this value is unknown (we use known values
only in the binary case for n = 3, . . . , 28, d = 3, . . . , 16), we return instead an
upper bound on it, choosing the best between the Hamming (Sphere Packing),
Singleton, Johnson, and Elias bound (the Plotkin bound is used when possi-
ble). Even though it is a very strong bound, we do not use the Levenshtein
bound because it is very slow as n grows. This means that if better values of
Aq(n−k, d−2r) can be found, then Bound B could return even tighter results.

Table 1 and 2 show a comparison between all bounds’ performances, ex-
cept for Plotkin’s, due to its restricted range. For each bound and for each
q = 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29 we have computed, in the
range n = 3, . . . , 100 and d = 3, . . . , n− 1, the percentage of cases the bound
is the “best” known bound between Bound B, the Griesmer, Johnson, Lev-
enshtein, Elias, Hamming and Singleton bound. Both wins and draws are
counted in the percentage, since more than one bound may reach the best
known bound, and in this case we increased the percentage of each best bound.
For each q the most performing bound is in bold. Up to q = 7 the Levenshtein
bound is the most performing. From 9 ≤ q ≤ 29 we have that Bound B is the
most performing bound, and in particular, in the case q = 29, it is the best
known bound almost 91% of the times.

Table 3, instead, shows some cases (one per each q = 7, . . . , 29) where
Bound B beats all other known bounds. This happens from q = 7, for the
range of n considered. The letters B, J, H, G, E, S and L stands respectively
for Bound B, Johnson, Hamming (Sphere Packing), Griesmer, Elias, Single-
ton, and Levenshtein bound. It can be seen that there are some cases where
Bound B is tight, as for the parameters (9, 17, 7), for which there exist a code
with distance 10.

Tables 4, and 5 give emphasis to the number of times Bound B improves
the best known bound (thus the cases where it beats all other bounds). In the
considered range Bound B starts to beat all other bounds from q = 7.
The third row of Tables 4 and 5 shows how many times (percentage over the

number of draws and wins) the value δ = |B(r,n−k)|
|B(d−2r−1,n−k)|

is different from zero.
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Informally, we can view δ as the probability to randomly pick up a word of
weight less than r from a ball of radius d − 2r − 1. We can notice that this
percentage is very high, which means that a weaker version of Bound B, which
is similar to the Litsyn-Laihonen bound for systematic codes, could be used,
by simply searching the largest k satisfying:

|B(r, k)| ≤ Aq(n− k, d− 2r) + 1

It is curious to notice that in all the wins we have δ = 0, and that δ = 0 also
38094 times over the 46967 ties and wins. This means that the weaker version
of Bound B is sufficient to obtain most of the wins and ties in the investigated
cases.
We note that in general, if r is greater than d, we expect δ big, decreasing very
quickly as r increases, holding d fixed; this happens since |B(x, k)| decreases
following a gaussian distribution (roughly approximating |B(x, k)| with a fac-
torial), and so any time we subtract 2r the decrease is doubled.
The fourth row of Tables 4 and 5 shows the ratio between the number of times
the Plotkin bound has been used to bound Aq(n−k, d−2r) and the number of
draws and wins. Third and fourth row show values which are close for q small
and gets further as q grows. This happens because almost all the times that
the weaker version (with δ = 0) of Bound B ties with the best known bound,
a strong bound on Aq(n − k, d − 2r) must be used, and the strongest bound
is Plotkin’s, which though has a smaller range of applicability as q grows.
We report in the fifth row of Tables 4 and 5 the fact that the maximum ratio
d/n reached in the wins of Bound B grows up to the value 0.64 and then seems
to get stabilized toward 0.5. This means that Bound B is a very strong bound
for distances which are no more than 2

3
of the length n for small values of q,

and no more than half of the length n for bigger values of q.

Comparisons have been made using inner MAGMA ([MAG]) implementa-
tions of known upper bounds, except for the Johnson bound. For this bound
we noted that the inner MAGMA implementation could be improved and so
we used our own MAGMA implementation for this bound.
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The following tables show the results computed in the range n = 3, . . . , 100,
d = 3, . . . , n− 1.

q 2 3 4 5 7 8 9 11

Bound B 38.02 31.20 31.20 31.94 40.73 48.64 55.27 66.44

Johnson 40.65 31.18 33.50 35.13 35.70 35.51 35.09 33.26

Hamming 18.12 15.65 16.37 16.35 16.03 15.88 15.57 14.69

Griesmer 56.32 39.83 32.32 29.14 30.91 36.97 43.28 55.15

Levenshtein 72.65 69.68 66.27 64.02 60.80 58.24 54.47 46.26

Elias 6.859 32.28 38.27 40.02 40.82 40.14 37.24 31.37

Singleton 0.000 0.021 0.084 0.189 0.610 0.926 1.241 3.619

Table 1
When each bound is the best for 2 ≤ q ≤ 11.

q 13 16 17 19 23 25 27 29

Bound B 76.43 81.61 82.75 85.42 88.11 88.72 89.40 90.77

Johnson 30.80 26.61 24.87 21.88 17.08 15.51 14.37 13.34

Hamming 13.59 11.91 11.26 10.12 8.269 7.553 7.048 6.606

Griesmer 63.39 71.91 72.27 71.94 69.79 69.43 68.65 67.87

Levenshtein 39.93 32.86 30.65 27.50 22.62 20.70 19.44 18.37

Elias 27.06 21.84 20.01 17.59 12.48 10.84 9.657 8.689

Singleton 4.439 4.629 6.985 6.712 10.08 12.01 14.12 18.01

Table 2
When each bound is the best for 13 ≤ q ≤ 29.
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q n d B J H G E S L

7 45 21 22 23 24 23 23 25 23

8 51 24 25 27 28 26 26 28 26

9 17 7 10 11 11 11 11 11 11

11 90 55 30 41 42 32 35 36 31

13 32 9 23 24 24 24 24 24 25

16 52 14 38 39 40 39 39 39 41

17 38 9 29 30 30 30 30 30 31

19 42 9 33 34 34 34 34 34 36

23 91 17 74 75 75 75 75 75 78

25 31 5 26 27 27 27 27 27 28

27 88 24 64 66 67 65 66 65 69

29 100 29 71 74 74 72 74 72 76

Table 3
Some cases where Bound B beats all the other bounds in the range 7 ≤ q ≤ 29.

q 2 3 4 5 7 8 9 11

Draws(D) (%) 38.02 31.20 31.20 31.94 40.54 47.59 53.44 64.80

Wins(W) (%) 0 0 0 0 0.1894 1.052 1.830 3.955

δ = 0 (% over
D+W)

44.67 71.14 61.77 59.82 68.75 74.22 79.71 85.43

Use of Plotkin
(% over D+W)

41.50 69.52 56.84 51.98 57.02 61.16 65.09 68.57

Maximum d/n
in wins

- - - - 0.47 0.48 0.52 0.63

Plotkin Range
d/n

0.50 0.67 0.75 0.80 0.87 0.88 0.89 0.91

Table 4
Statistics for Bound B for 2 ≤ q ≤ 11.
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q 13 16 17 19 23 25 27 29

Draws(D) (%) 73.11 77.41 78.48 77.84 73.43 71.18 69.60 69.60

Wins(W) (%) 3.514 4.208 5.113 7.574 14.69 17.55 19.80 21.19

δ = 0 (% over
D+W)

87.96 88.45 88.49 88.28 85.00 83.02 80.89 78.62

Use of Plotkin
(% over D+W)

65.54 67.00 66.09 61.80 55.16 51.98 48.98 46.54

Maximum d/n
in wins

0.634 0.640 0.486 0.487 0.489 0.490 0.491 0.492

Plotkin Range
d/n

0.92 0.94 0.94 0.95 0.96 0.96 0.96 0.97

Table 5
Statistics for Bound B for 13 ≤ q ≤ 29.


