
HAL Id: lirmm-00805983
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00805983v1

Submitted on 29 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GPU Environmental Delegation of Agent Perceptions
for MABS
Fabien Michel

To cite this version:
Fabien Michel. GPU Environmental Delegation of Agent Perceptions for MABS. ICCS’12: In-
ternational Conference on Complex Systems, Nov 2012, Agadir, Morocco. pp.1-6, �10.1109/IC-
oCS.2012.6458513�. �lirmm-00805983�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00805983v1
https://hal.archives-ouvertes.fr


GPU Environmental Delegation
of Agent Perceptions for MABS

Fabien Michel
Laboratoire d’Informatique, de Microélectronique, et de Robotique Montpellier

Université Montpellier II - CNRS

161 rue Ada, Montpellier Cedex 2, France

Email: fmichel@lirmm.fr

978-1-4673-4766-2/12/$31.00 c© 2012 IEEE

Abstract—Considering the digital simulation of complex sys-
tems, General-Purpose Computing on Graphics Processing Units
(GPGPU) is a relevant approach for addressing scalability issues.
However, GPU programming is a very specific approach that
strongly limits both the accessibility and the re-usability of the
frameworks developed using GPGPU. This paper presents our
approach for the integration of GPU modules in a Multi-Agent
Based Simulation (MABS) platform. Especially, this paper shows
how we keep the programming accessibility of the platform while
gaining advantages of the GPU power. The paper also presents
how this approach could be generalized and proposes a MABS
design guideline dedicated to the GPU context.

Index Terms—High Performance Computing, GPGPU, Multi-
Agent Based Simulation

I. INTRODUCTION

Because complex systems are composed of many interacting

entities, studying their properties using digital simulation

usually requires a lot of computing resources. Considering this

issue, General-Purpose Computing on Graphics Processing

Units (GPGPU) is gaining more attention as it can drastically

speed up simulation runs with a cheap cost [1].

However, GPU programming requires a particular pro-

gramming mindset because it relies on a highly specialized

architecture. Indeed, because they are designed for graphics,

GPUs are very restrictive in operations and programming and

the hardware can only be used in certain ways. Therefore

GPU programs have to (1) fit this architectural context and

(2) follow the stream processing paradigm1 [2]. So GPGPU is

only useful and effective for problems which can be modeled

with respect to these programming and architectural contexts.

This paper focuses on the use of GPGPU for developing

Agent-Based Models (ABM). In such models, all the entities

of a system are concretely modeled and simulated so that they

act and interact on a shared environment [3]. In this scope,

the specificities of GPU programming raise problems with

respect to the re-usability of previously developed systems and

algorithms. Indeed, using stream processing, many advantages

of the object oriented programming cannot be used so that

reformulating existing agent models accordingly is not a trivial

task and requires advanced GPU programming skills [4].

Additionally, both GPU application programming interface

1Given a set of data (a stream), a series of operations (kernel functions) is
applied to each element in the stream.

(API) and hardware specification rapidly evolve, which limits

the portability of the produced code and thus further increases

the problem of re-usability. So, existing GPU-based ABMs

are thus mostly related to only one particular domain and

experiment and do not focus on code genericness.

This paper reports on the work we have done to use GPU

programming in TurtleKit, a generic Logo-based Multi-Agent

Based Simulation (MABS) platform [5]. Doing so, our goal

was to (1) take advantage of the GPU for achieving large scale

simulations while (2) preserving the programming accessibil-

ity of the platform and especially its object-oriented API. The

paper presents this developing experience and proposes a GPU

MABS design guideline derived from this experiment.

Section II presents examples of how GPGPU is used for de-

veloping ABMs and highlights their limits with respect to our

objectives. Section III presents the TurtleKit platform and the

simulation model we used as a benchmark. Section IV details

how we designed a first GPU module by reformulating two

different environmental dynamics and reports on the results

obtained. Section V discusses how we designed a second GPU

module by delegating agent computations to the environment.

Section VI presents a generalization of our work as a MABS

design guideline dedicated to the GPU context. Section VII

concludes the paper and discusses related perspectives.

II. GPGPU FOR MAS-BASED COMPLEX SYSTEMS

Thanks to hundreds of cores available on today graphic

cards, GPU allows to perform thousands of similar compu-

tations at once in parallel on the graphic card, rather than

sequentially using the CPU. This characteristic is particularly

of interest when considering complex systems which are

modeled using the Multi-Agent System (MAS) paradigm. In

such systems, similar computations have to be done billions

of times. So MAS are a perfect candidate for massive im-

provement using GPGPU and there are many works reporting

on agent-based models developed using GPGPU for different

application domains such as large scale crowd simulations (e.g.

[6]), biology (e.g. [7]) or flocking simulations (e.g. [8]).

For instance, in [9], the FLAME cellular level agent-based

simulation framework shows impressive performance enhance-

ment for GPU simulations, even when compared to a cluster

of CPUs. As highlighted by the authors, such improvements

are invaluable with respect to the fast development of such



complex models, especially because this allows for real-time

visualization and thus real-time interaction.

To obtain this result, the FLAME agent model has been

entirely translated in GPU code, thus raising the problem of

programming accessibility. Dealing with this issue, the authors

propose to abstract the end-users from knowing GPU by

defining a XML-based formalism which is used to specify the

behavior of the agents. If this is a good solution with respect to

end-users, modifying or extending the proposed agent model

still requires GPU knowledge, thus limiting both the scope the

framework and its re-usability.

Regarding genericness, [4] proposes an interesting work that

considers a whole class of ABMs at once, namely spatial

ABMs. Such ABMs consist of a 2D discretized grid containing

situated information and a collection of mobile agents. The

widely used NetLogo platform [10] is an example of this

class of ABMs. [4] clearly explains that the major challenge

of this work was to reformulate this generic ABM in terms

of stream computation, especially agent mobility, death, repli-

cation, execution orders and collision. So the authors propose

to map agent states to textures so that these dynamics can

be implemented using GPU. With respect to the execution of

standard models such as SugarScape, the reported results show

impressive enhancements in terms of speed and scalability.

Still, as remarked by the authors, applying such an all-in-

GPU approach, there is an important trade-off which is that

many advantages related with the object oriented programming

are lost in the reformulation process. Especially, creating a new

simulation model requires to create new GPU kernels to handle

its specificity, and therefore GPU programming skills. With

respect to end-users, such a lack of programming accessibility

is a major limitation for the development of generic ABM

frameworks.

More generally, studying the related literature, it is clear

that the technical difficulties related with GPU programming

naturally tend to both (1) narrow the scope of the developed

frameworks and (2) limit their programming accessibility.

This because the underlying agent model is often intrinsically

related to the GPU code so that one has to directly modify

it to make the agent model evolve. All-in-GPU-based agent

frameworks are thus mostly restricted to a specific application

domain and/or require advanced GPU skills.

III. INTEGRATING GPU WITHIN TURTLEKIT

A. The TurtleKit Platform and the MLE Model

Like NetLogo, TurtleKit [5] is a spatial ABM, implemented

with Java, relying on an agent model which is inspired by

the Logo programming language. Especially, agents emit and

perceive digital pheromones which diffusion and evaporation

dynamics are handled by the environment (the 2D grid), thus

creating pheromone fields. Handling such dynamics requires

a lot of computing resources, which limits both performance

and scalability, even when few pheromones are used.

Developing TurtleKit, our primary goal is programming

accessibility so that we cannot choose an all-in-GPU approach.

That is why we apply an intermediate approach that consists

in integrating iteratively GPU parts in the simulation platform

while ensuring that the TurtleKit API remains unchanged.

To this end, we choose to prototype and experiment with

the model proposed in [11]. In this paper, a model of multi-

level emergence (MLE) of complex structures is defined using

a unique and very simple recursive agent behavior. More

precisely, starting with only one kind of agents (level-0), the

agents evolve and build a recursive structure having a circular

shape. That is, level-0 agents turn around level-1 agents that

turn around level-2 agents and so on.

To achieve this, the agent behavior relies on perceiving,

emitting and reacting to three different types of pheromones:

(1) presence, (2) repulsion and (3) attraction. Presence is used

by an agent to evaluate how many agents are in its vicinity

and decide if it has to mutate to the next or preceding level.

Roughly a mutation occurs if an area is overcrowded or empty.

Repulsion and attraction are both used by the agents to create a

circular zone of attraction around them. The behavioral process

is decomposed in four stages: Perception, Emission, Mutation

and Move. So, the state and the behavior of each agent is

completely defined by only one integer which is its current

level. The level simply modifies the agent’s emission rate and

limits perceptions to pheromone of adjacent levels.

B. MLE as a Benchmark for Integrating GPU Modules

Theoretically, the highest level which could be observed

with the MLE model is related to only two parameters: (1)

the size of the environment, because large structures require

room to appear and (2) the number of initial agents, because

level-i structures need a certain number of level i-1 agents to

appear, and so on.

Considering our objectives, reimplementing the MLE model

is thus a perfect benchmark because it rapidly requires to

increase both the size of the environment and the number

of agents. Moreover, each additional level requires to manage

three additional pheromones. So, scaling up MLE simulations,

the first issue is related to the computing resources required

for applying the diffusion and the evaporation processes: Each

pheromone requires to perform computations for each cell

of the grid. So, even if simple, the complexity of these

computations is quadratic with respect to the grid’s side length.

That is why we decided to test the integration of GPU parts

in TurtleKit by first translating the diffusion and evaporation

dynamics into GPU code. Indeed, because they are completely

decoupled from the agent behavioral model, it is possible to

create a GPU module that does not modify the agent model

API at all.

IV. THE GPU DIFFUSION MODULE

A. GPU Translation for the Evaporation Process

To explain how these computations have been translated,

we now focus on evaporation because it is the simplest one.

The evaporation of a pheromone on the grid simply relies on

multiplying the quantity which is on each cell by a certain

coefficient between 0 and 1 (the evaporation factor). The

sequential implementation of this dynamic could be as follows:



Algorithm 1 evaporation(cells, width, height, evapCoef)

for i = 0 to width do

for j = 0 to height do

cells[i][j]← cells[i][j] ∗ evapCoef

end for

end for

Before presenting the corresponding translation, let us first

explain how GPU code is designed so that it could be executed

on a GPU device. Roughly, a GPU device is able to proceed the

parallel execution of a procedure, namely a kernel, by numer-

ous threads. These threads are organized in blocks, which are

themselves organized in a grid of blocks. Each thread notably

has 3D coordinates, x, y and z localizing it within a block,

and each block also has three spatial coordinates that localize

it within the grid. Moreover, each block has a limited thread

capacity according to the hardware in use.

So, considering only the 2D coordinates of the blocks and

threads, it is possible to define a 2D grid of threads that maps

a concrete 2D array of data. For instance, if the capacity of a

block is 1024 threads, one can work with a grid of 1000×1000

by allocating a grid of blocks which size is 32×32, with each

block having a size of 32×32. This produces a global over-

sized matrix containing 1024×1024 threads. This too large

size is not a problem as it will be handled in the GPU code.

So, the dimension of the grid and the dimension of the blocks

are two fundamental parameters which are used when calling

a kernel for execution on the graphic card. In our case, this

allows to map each cell of a grid with a unique thread.

So, the evaporation kernel could be programmed as follows:

Algorithm 2 GPU evap(cells, width, height, evapCoef)

i← blockIdx.x ∗ blockDim.x+ threadIdx.x;
j ← blockIdx.y ∗ blockDim.y + threadIdx.y;
if i < width and j < height then

cells[i][j]← cells[i][j] ∗ evapCoef

end if

When the execution of this kernel is called on the GPU, all

the allocated threads execute the GPU evap procedure. The

two first lines of this procedure determine the coordinates of

the executing thread. Then a test is done to know if this thread

is inside the grid boundaries. If it is the case, the corresponding

cell is updated according to its current value.

The diffusion kernel is also easy to derive from its sequential

counterpart. So, we produced a GPU module for evaporation

and diffusion, called GPU diffusion module latter on for

simplicity.

B. Results for the GPU Diffusion Module

We compare here the GPU diffusion module with a sequen-

tial implementation. Figure 1 shows the results we obtained

with tests done outside TurtleKit, thus avoiding noise produced

by other treatments. Besides, as we want to keep Java as main

Fig. 1. Diffusion process: Java sequential vs. JCuda

language for TurtleKit, we use the JCuda (Java bindings for

Cuda2) library which allows to call GPU kernels, written in

C, directly from Java. The tests have been done using a Intel

Xeon CPU @ 2.67GHz, a good CPU and a Nvidia Quadro

4000, an average GPU device.

Figure 1 shows the results obtained with different environ-

ment sizes for the diffusion and evaporation of one pheromone.

Not surprisingly, results show that even for the smallest grid

(100×100) the JCuda version performs better. As the environ-

ment size increases, the GPU module completely outperforms

the sequential version: On an environment of 2000×2000, the

GPU module is more than twenty times faster.

With respect to our objectives, in these tests we take

into account that the result of one iteration should be made

available for use in the Java code, i.e. Java agents should

be able to perceive the result at each time step in a real

simulation. This requires to call synchronization procedures

that synchronize the CPU and the GPU so that they do not

modify the data at the same time. If we let the GPU do all the

iterations without being interrupted, the GPU then performs

more than ten times faster than when using synchronizations.

Other remark, there are a lot of existing Cuda parameters

that could be set. Some of them can greatly impact the

efficiency of a kernel call. For instance, a general GPU

programming rule is to make a kernel call with at least as

many blocks as available cores on the graphic card. While not

mandatory, not considering this rule can dramatically reduce

the efficiency of a kernel call.

Therefore, looking at these results, one has to keep in

mind that this is only what is obtained in the context of our

particular software and hardware configuration. Depending on

the configuration, it is possible to obtain very different results

in terms of ratio. Here, the most important information is

that the GPU diffusion module does scale very well while

the sequential one does not at all.

V. THE GPU FIELD PERCEPTION MODULE

A. Next Bottleneck: The Agents

The integration of the GPU diffusion module within

TurtleKit was not a problem thanks its modularity: It only

2Compute Unified Device Architecture, Cuda is the programming frame-
work for Nvidia GPU graphic cards.



Fig. 2. Example of field min and max directions for a cell

concerns environmental dynamics. Besides, the enhancement

provided by the module was easy to observe. So, when we

experimented this GPU module on the MLE model, we were

able to scale up the size of the environment to values that were

out of reach before.

However, as previously explained, obtaining higher level

structures for the MLE model requires to simultaneously

increase both the size of the environment and the number of

initial agents. And as the number of agents was increasing,

we observed that most of the execution time was now used

for agent-level computations.

Profiling the execution of the MLE model, we easily found

out that the agents use most of their (CPU) time computing

how they should move with respect to pheromone field gra-

dients. More precisely, each agent has to know the direction

of the neighboring cell having the smallest/greatest quantity

for a particular pheromone to decide the heading of its next

move: Methods such as getMaxDirection(attractionField) or

getMinDirection(repulsionField) are intensively used by the

MLE agents. Such computations requires to probe all the cells

around the agent one time per pheromone of interest, and then

to compute the direction of the minimum and/or maximum

values. Figure 2 shows an example of this computation for

one cell (the east direction corresponds to 0 degree).

In the present case study, the diffusion and the evaporation

processes are the only environmental dynamics used in the

MLE model. As we already successfully translated them, it

is obvious that the next GPU module to try should take care

of the agents. However, sticking to our priority of keeping the

programming accessibility of the agent model implementation,

a solution that does not imply an all-in-GPU approach has to

be found. The next section presents the solution we use and

shows how it take advantages of the GPU for the agents while

ensuring the stability of the agent API.

B. Delegating Agent Perceptions to the Environment

Considering how MLE agents perceive and analyze

pheromone fields, it should be remarked that the related

computations do not involve the state of the agent that triggers

the perception. So, these computations always give the same

result for a particular time step: Pheromone field gradients are

the same whatever the state of the agents.

So, thanks to this independence between the agent’s state

and these computations, the idea is to do these perceptions

using a GPU module. However, at first sight, this would mean

to finally translate the agent model within a GPU module

because these perceptions are triggered by the agents, not by

the environment as it is the case for the diffusion process.

To overcome this difficulty, the proposed solution is to com-

pute these high level perceptions directly in the environment

everywhere and every time. Doing so literally reifies all these

perceptions as one single environmental dynamic, just like the

diffusion process is. In other words, we define a new GPU

module representing a new environmental process which will

be in charge of computing all the perception results which

could be asked by the agents.

This solution may seem counterintuitive for anyone who

is not used to GPU programming. Especially because many

of the computed results will not be used by the agents. But

this is where the specificities of GPU programming come into

play. Caricaturing and ignoring the details, making a GPU

computation for only one cell takes about the same time as

doing it for all the cells.

One can reasonably argue that the previous statement is only

a rough approximation of reality: Doing unused computations

should be avoided as far as possible. To this end, another

solution would be to create and maintain another grid keeping

track of the agents’ presence so that a thread could test if a

computation should be done or not. But in our case it turns out

that this solution did perform really poorly: The cost induced

by the maintenance of this grid is too high and far greater than

when this information is ignored and thus not maintained.

Besides performance, the proposed solution completely de-

couples this new dynamic from the state of the agents. So this

new module is more independent and thus reusable, which is

desirable from a software engineering point of view.

Following this solution, we have implemented a GPU

module which we call the GPU field perception module.

Implementing this module, we define a new GPU kernel in

the same way we have done for the diffusion module. The

main difference is that this new kernel works on three grids

of data: One for the actual quantity of pheromone on each

cell and two others for stocking the minimum and maximum

directions of the field for each cell.

C. Results Obtained with the GPU Field Perception Module

This section compares the results which have been obtained

on the MLE model with only the GPU diffusion module and

with both modules. Considering the hardware configuration,

the experimental setup used for obtaining the presented results

is the same as in section IV-B. The results reports on MLE

simulations where the maximum level of an agent has been set

to 5 so that there are 15 pheromone fields to handle for each

time step (45 grids of data). Figure 3 compares the simulation

speed for various agent population density and environment

size. For instance, for a density of 140% in an environment of

2000× 2000, there are 5.6 millions of agents interacting on a

gird of 4 millions cells.



Fig. 3. Comparison of MLE simulations done with and without the GPU field diffusion module

Figure 3 shows that adding the GPU field perception module

does not speed up the simulation only for the lowest densities

and environment size which are here reported. One partial

explanation for this negative result is the overhead induced by

the additional synchronizations required between the GPU and

the CPU on the different stocked grids. This also shows that,

with our particular configuration, there is of course a threshold

under which it is not worth to trigger a GPU kernel because

of synchronizations, the worst case being only one agent in

a huge environment. And indeed, when simulating this worst

case the simulation is always slower. However, in our tests

this overhead was not very high for densities around 5% and

becomes negligible for the 10% density, which is a low value

with respect to the MLE benchmark for instance.
So, even with the overhead induced by the additional GPU

calls, the field perception module becomes efficient when the

agent population density is 20% on the largest environments.

Then, the simulation is always faster with the GPU field

perception module, especially it is about two times faster for

the biggest cases. Considering the fact that we used an average

GPU device, these results are really promising and at least

show the feasibility and the interest of the proposed approach,

especially with respect to scalability.

VI. GENERALIZING THE DELEGATION STRATEGY

A. Environment, First Order Abstraction in MAS

From a high level perspective, the proposed solution relies

on transforming agent-level perceptions into environmental

dynamics. This makes the environment an even more crucial

entity in the design of our ABM. So, generalizing our work,

the proposed strategy could be related to other research works

that consider the environment as a core concept of MAS.
Considering the environment as a first order abstraction in

MAS is today well accepted and has proved to be a relevant

approach for modeling and developing MAS [12]. Especially,

it could help to enhance the efficiency of agent interactions.

For instance, in [13], real-world unmanned vehicles (AGVs)

use a virtual environment which is in charge of validating their

future moves. When detecting a possible future collision, the

environment prioritizes the different moves and thus automati-

cally solve spatial conflicts. Doing so, the agents do not have to

handle this problem on their own, which allows to (1) decrease

the complexity of the agent behavior and (2) make the agents

focus on their real task which is to go from point A to B.
More generally, using the environment as an active entity

is very interesting for simplifying the behavioral process of

the agents. The underlying idea is that agents are in fact

usually not interested in low level environmental properties

but rather in high level percepts. So, it makes sense to let the

environment do the work of producing high level percepts from

raw environmental data. Such an approach allows to design

MAS with a clear separation of concerns [14].

B. GPU Environmental Delegation of Agent Perceptions

In the scope of our work, considering the environment as a

first class entity is the heart of the solution. This enables us

to reach our two requirements: (1) keeping the programming

accessibility of the agent model in a GPU context and (2)

being able to scale up both the number of agents and the size

of the environment.
From this developing experience, we derive and propose

a design guideline which (1) follows the idea of an active

environment and (2) takes into account the context of GPU

programming. This guideline, namely GPU Environmental

Delegation of Agent Perceptions, could be stated as follows:

Any agent perception computation not involving the

agent’s state could be translated to an endogeneous

dynamic of the environment, and thus considered as

a potential GPU environment module.

Such a guideline does not only follow the idea of consid-

ering the environment as a first order abstraction, but more

importantly also focus on easing re-usability of developed



GPU modules. For instance, in our case we are able to directly

use the developed GPU modules with other agent models

working on pheromone fields such as ant-based ones.

Therefore we argue that such an approach could help to

address the re-usability issue by promoting the development

of more generic GPU modules. Indeed, such modules only deal

with environmental dynamics and high level information (e.g.

perceptions) that do not rely on a particular agent model, but

only on a particular model of environment. Additionally, this

guideline suggests a more fine grained approach for integrating

GPU modules which eases the development and maintenance

tasks thanks to a clear separation of concerns.

Considering applicability, for now we explicitly limits the

scope of our approach to computations that do not involve

agent states. Regarding more complex perceptions, obviously

it will not be always possible to find an equivalent environ-

mental model but addressing this limitation should increase

the scope of the approach and is in our future research plans.

Finally, we want to emphasize that the interest of GPU

environmental delegation is not restricted to our objectives.

Indeed it could be also considered when applying an all-in-

GPU approach for MAS because its main point is to promote

re-usability in the particular context of GPU programming.

VII. CONCLUSION AND PERSPECTIVES

Firstly, concerning the integration of GPU modules within

TurtleKit, this paper shows how our approach enables us to

use the power of GPU devices without changing the agent

API, thus fulfilling our primary objectives.

Still, solely based on the experiments we have done so far,

it should be remarked that our results are far from being as fast

as systems applying an all-in-GPU approach. Obviously, there

is still a trade-off to accept for keeping the agent model so that

its implementation is safe from the difficulties and specificities

of the GPU programming.

But, let us remind again that the presented results are deeply

related to the configuration used. Especially, we use a NVidia

Quadro 4000 containing 256 cores while the recent NVidia

Tesla K10 contains 2 GPUs with 1536 cores each: A total

of 3072 cores on only one card. So, the perspectives offered

by GPU programming are really promising and encourage us

to keep on going with the presented approach for TurtleKit.

Especially, we plan to benchmark other models to identify

other GPU modules using GPU environmental delegation.

Secondly, we advocated that GPU environmental delegation

represents an interesting design guideline for tackling the re-

usability issue in the context of GPU programming for MAS.

Indeed, on the one hand, it is obvious that GPU program-

ming will be a great help for designing MAS-based complex

systems. However, on the other hand GPU programming is

so specific that almost all the development efforts done in

this modeling scope are simply lost. The complexity of the

programs which are obtained is too high. We argue that using

such a guideline should help to produce GPU modules that

will be more easily reusable, precisely because they will be

disconnected from any agent model.

So, one of our long term goals is to develop a library of

GPU modules implementing various environment dynamics

specificaly designed for spatial ABMs. Today there are several

generic GPU libraries which have been produced such as

Nvidia CuBLAS (Compute Unified Basic Linear Algebra Sub-

programs), NPP (Nvidia Performance Primitives) for image,

video, and signal processing, GPU AI path finding, etc. We

think that applying such a modular approach in the scope of

MAS-based complex systems is the way to go.

REFERENCES

[1] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using cuda,” Journal of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1370 – 1380, 2008, general-Purpose Processing using
Graphics Processing Units.

[2] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp.
80–113, 2007.

[3] F. Michel, J. Ferber, and A. Drogoul, “Multi-Agent Systems and
Simulation: a Survey From the Agents Community’s Perspective,” in
Multi-Agent Systems: Simulation and Applications, ser. Computational
Analysis, Synthesis, and Design of Dynamic Systems, Danny Weyns
and Adelinde Uhrmacher, Eds. CRC Press - Taylor & Francis, 05
2009, pp. 3–52.

[4] M. Lysenko and R. M. D’Souza, “A framework for megascale agent
based model simulations on graphics processing units,” Journal of

Artificial Societies and Social Simulation, vol. 11, no. 4, p. 10, 2008.
[Online]. Available: http://jasss.soc.surrey.ac.uk/11/4/10.html

[5] F. Michel, G. Beurier, and J. Ferber, “The TurtleKit simulation platform:
Application to complex systems,” in Workshops Sessions, First Interna-

tional Conference on Signal & Image Technology and Internet-Based

Systems SITIS’ 05, A. Akono, E. Tonyé, A. Dipanda, and K. Yétongnon,
Eds. IEEE, november 2005, pp. 122–128.

[6] A. Demeulemeester, C.-F. Hollemeersch, P. Mees, B. Pieters, P. Lambert,
and R. Van de Walle, “Hybrid path planning for massive crowd simula-
tion on the gpu,” in Proceedings of the 4th international conference on

Motion in Games, ser. MIG’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 304–315.

[7] R. M. D’Souza, M. Lysenko, S. Marino, and D. Kirschner, “Data-
parallel algorithms for agent-based model simulation of tuberculosis on
graphics processing units,” in Proceedings of the 2009 Spring Simulation

Multiconference, ser. SpringSim ’09. San Diego, CA, USA: Society
for Computer Simulation International, 2009, pp. 21:1–21:12.

[8] A. R. D. Silva, W. S. Lages, and L. Chaimowicz, “Boids that see: Using
self-occlusion for simulating large groups on gpus,” Comput. Entertain.,
vol. 7, no. 4, pp. 51:1–51:20, Jan. 2010.

[9] P. Richmond, D. Walker, S. Coakley, and D. Romano, “High perfor-
mance cellular level agent-based simulation with FLAME for the GPU,”
Briefings in Bioinformatics, vol. 11, no. 3, pp. 334–347, 2010.

[10] E. Sklar, “Netlogo, a multi-agent simulation environment,” Artificial

Life, vol. 13, no. 3, pp. 303–311, 2007.
[11] G. Beurier, O. Simonin, and J. Ferber, “Model and simulation of multi-

level emergence,” in 2nd IEEE International Symposium on Signal Pro-

cessing and Information Technology, ISSPIT’02, Marrakesh, Morocco,
December 2002, pp. 231–236.

[12] D. Weyns, A. Omicini, and J. Odell, “Environment as a first class
abstraction in multiagent systems,” Autonomous Agents and Multi-Agent

Systems, vol. 14, pp. 5–30, 2007, 10.1007/s10458-006-0012-0.
[13] D. Weyns, N. Boucké, and T. Holvoet, “Gradient field-based task

assignment in an agv transportation system,” in Proceedings of the fifth

international joint conference on Autonomous agents and multiagent

systems, ser. AAMAS ’06. New York, NY, USA: ACM, 2006, pp.
842–849.

[14] P. H. Chang, K.-T. Chen, Y.-H. Chien, E. Kao, and V.-W. Soo, “From
reality to mind: A cognitive middle layer of environment concepts
for believable agents,” in Environments for Multi-Agent Systems, First

International Workshop, E4MAS 2004, New York, NY, USA, July 19,

2004, Revised Selected Papers, ser. LNAI, D. Weyns, H. V. D. Parunak,
and F. Michel, Eds., vol. 3374. Springer, 2005, pp. 57–73.


