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Abstract

In the context of Component-based Programming, which

addresses the implementation stage of a component-based

software engineering development process, this paper de-

scribes a specification and an operational integration of an

inheritance system into a self-contained new component-

based programming language named COMPO. Our proposal

completes and extends related works by making it possible

to apply inheritance to the full description of components,

i.e. both to structural (description of provisions and require-

ments, of component architecture) and behavioral (full im-

plementations of services) parts in component descriptions.

Inheritance in COMPO is designed to be used in conjunction

with composition to maximize reuse capabilities and expres-

sive power. COMPO implementation proposes a clear opera-

tional solution for inheritance and for achieving and testing

substitutions.

Categories and Subject Descriptors D.1.0 [Programming

techniques]: General—Component based programming

technique; D.2.11 [Software Architectures]: Languages—

Component Based Programming Language

General Terms Component-based, Programming, Lan-

guage

Keywords Programming, Inheritance, Architectures, Sub-

stitutability

1. Introduction

Component-based software is made of off-the-shelf compo-

nents, connected together into various kinds of architectures.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this domain, several languages, using the component con-

cept as a first class entity in organizing software, have been

and are currently designed and prototyped, but some cate-

gories have emerged. Architecture Description Languages

(ADLs) for models like Fractal [6] or SOFA [15] allow

for business-oriented and implementation-independent com-

ponents and architectures descriptions. Component-Based-

Programming Languages (CBPLs) like ACOEL [19], Arch-

Java [1], CLIC [4], ComponentJ [18], Bichon [23], Comp-

Java [16] or SCL [8, 9] address the implementation stage of

a component-based software engineering development pro-

cess; they allow developers to express full descriptions of

executable components.

Inheritance has proved to be one major cornerstone of

software reuse, first for the ability it gives developers to or-

ganize their ideas on the base of concept classification (a list

is a kind of collection, such architecture is a kind of visi-

tor, ...) which is itself one key of human abstraction power

and second for the calculus model that makes it possible to

not only reuse but adapt software, by executing an inherited

code in a new context (the receiver environment).

Many of the above quoted languages somehow propose

inheritance mechanisms but they have various limitations

(limitation to the architecture description side, limitation to

the implementation side which is frequently not achieved

with component-based languages, limitation to some part of

components descriptions, etc). More generally, the question

of the interest of inheritance-based reuse in the component-

based software development context is still discussed and

has not yet been explicitly nor fully addressed. This papers

aims at contributing to that question by proposing a specifi-

cation and an operational integration of an inheritance sys-

tem in the context of a component-based programming lan-

guages that supports reuse of descriptions of components’

structure and behavior. By “structure”, we mean provided

and required ports together with internal architectural de-

scription; and by “behavior”, we mean implementations of

services that make them executable. Our language, COMPO,
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ranges in this category and proposes components as run-

time entities, instances of descriptors. We introduce an in-

heritance link between descriptors on which we base an op-

erational system to reuse, i.e. to inherit, extend and spe-

cialize descriptions. Descriptors are texts describing compo-

nents’ structure and behavior. Listings 1 and 2 are examples

of component descriptors in COMPO.

We address the specific questions of stating what, among

port declarations, composition architectures and services

definitions, can be inherited, extended or specialized, and

how. We notably discuss the rationale and interest of en-

abling requirements extension or specialization: we will con-

sider various solutions, but will develop an answer to that

question which goes in the direction of enabling covariant

specialization, because it corresponds to the way human nat-

urally think about concept classification [7] and it promotes

expressive power. Our solution will thus propose simple sup-

port to help programmers achieve correct substitutions.

An alternative for reuse in the component-based software

development context is to use sole composition (see [17, 23]

and [22] for a good survey) and message redirection (or for-

warding; or delegation1); it has the advantage of not intro-

ducing any additional mechanism. Our opinion is that com-

position and inheritance are complementary and that their

combination is significantly more efficient especially when

structural reuse is to be considered. The above alternative

will be further discussed in the related work section, where

we show some examples in which sole composition usage

leads to code being too complex and reuse being difficult.

Inheritance in COMPO is thus designed to be used in con-

junction with composition to maximize software reuse capa-

bilities and language expressive power.

The paper is organized as follows. Section 2 proposes

an overview of COMPO essential constructions and syntax.

Section 3 is a step-by-step (services definitions, require-

ments declarations, internal architecture description) discus-

sion and presentation of our inheritance system specification

illustrated with various examples. Section 4 gives some ba-

sic clues on the COMPO’s implementation. Before conclud-

ing and discussing the future work, we present in Section 5

the related works.

2. A support Component-based

programming language

Our proposition for inheritance is demonstrated and vali-

dated via its integration into a component-based language

named COMPO. Although the language itself is not the sub-

ject of this paper, it is needed that we give an overview of

its main constructs and syntax. COMPO is an ongoing work

that aims at defining in an unified context (1) a component-

1 Although delegation in prototype-based language is something different,

we will use for message redirection the terms ”message delegation” and

corollary ”delegation connector” and ”service invocation delegation” with

semantics as specified in UML [13]

based architecture description and modeling language that

includes all standard component architectures concepts and

constructs (eg. component, ports, interfaces, connections,

constraints, etc) and (2) a component-based programming

language making it possible to write executable applications,

in which all the above concepts and constructs are available

as first-class entities. This language overall goal is to allow

standard applications or architecture verification and trans-

formations applications to be written in the same language,

via an integrated meta-level. COMPO is here used for our

operational study on inheritance because, as far as we know,

there exists no other language in which component architec-

tures and services can be written in the same context and us-

ing the same high-level constructs for component-based de-

velopment. Many component-based architecture are for ex-

ample translated into Java template code and implemented in

a world where concepts such as ports do not have a first-class

status.

From a concrete point of view, within a component de-

scription (see e.g. listing 1), the p r ov i des, r equ i r es,

i n t e r na l l y r equ i r es and a r ch i t ec t u r e sections are

related to components modeling and architecture descrip-

tion. The se r v i ce section is related to services program-

ming; this section can be omitted if the architecture is to be

generated into another language.

2.1 Component descriptors.

COMPO applies the descriptor/instance dichotomy where

components are instances of descriptors. A component de-

scriptor is a text describing the structure (ports declarations

and architecture description) and the behavior (set of ser-

vices definition) of its instances.

As a first example, Listing 1 shows a version of a

F r on t End component descriptor. F r on t End components

can be used to build various kind of request servers. This

descriptor defines : (1) an external provided port named

de f au l t , providing services r un ( ) and i sL i s t en i ng ( ) ,

(2) an external required port named backEnd through which

an architect can connect a F r on t End to any other compo-

nent providing the hand l eReques t service, (3) two inter-

nal required ports to achieve internal composition with a

Reques t Hand l e r and with a TaskSchedu l e r (note that

to satisfy requirements internally or externally is an archi-

tectural decision that has several possible solutions, any

F r on t End in this example will come equipped with its

Reques t Rece i ve r and TaskSchedu l e r). (4) the internal

architecture of a F r on t End, (5) the public services of a

F r on t End, only one ( i sL i s t en i ng ( )) being shown. Con-

cepts and syntax used in this example are detailed in the fol-

lowing sub-sections also using the description of an HTTP

Server (see listing 2) which uses a F r on t End.

2.2 Ports

In COMPO, a port is a connection point (components are con-

nected through their ports) and a communication point (ser-
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c o m p o n e n t d e s c r i p t o r F r o n t E n d {
p r o v i d e s {

d e f a u l t : { r u n ( ) ; i s L i s t e n i n g ( ) ; } }
r e q u i r e s {

b a c k E n d : { h a n d l e R e q u e s t ( r ) } }
i n t e r n a l l y r e q u i r e s {

r R < : R e q u e s t R e c e i v e r ;
s : T a s k S c h e d u l e r ; }

a r c h i t e c t u r e {
d e l e g a t e d e f a u l t t o r R @ . d e f a u l t ;
c o n n e c t s t o ( T a s k S c h e d u l e r n e w ) . d e f a u l t ;
c o n n e c t r R @ . s c h e d u l e r t o s @ . s c h e d u l e ;
d e l e g a t e r R @ . h a n d l e r t o b a c k E n d ; }

s e r v i c e i s L i s t e n i n g ( ) {
^ r R i s R u n n i n g . }

}

Listing 1. The F r on t End descriptor

vices invocations are transmitted via ports). A port is defined

by a an owner component, a name, a list of service signa-

tures, a visibility (external or internal) and a role (provided

or required).

The role of a port is either required or provided with a

standard semantics : a provided (resp. required) port lists,

the signature of services offered (resp. required) by a com-

ponent.

The list of services signatures associated to a provided

port can be given :

• as an explicit list (we call such a list an anonymous

interface) (the de f au l t port declaration in Listing 1 is

an example).

• via a named interface (see Section 3.3 ),

The list of signature associated to a required port can be

given as an explicit list or via a named interface, as above,

or via a component descriptor name (e.g. cd); in this case,

the list is the list of signatures of services associated to cd’s

default provided port (the sched port declaration in Listing 1

is an example).

The visibility of a port is either internal or external (the

default is “external”).

• An external port ep of a c component is visible and can

be used by an architect to interconnect c into an englob-

ing composition architecture. For example, the external

required port backEnd of an instance of F r on t End can

be connected to the external provided port de f au l t of an

instance of BackEnd as shown in listing 2 and in figure 1

(we are developing both textual and graphical component

definition interfaces).

Each component has a default external provided port

(named de f au l t ) listing signatures of public services of

its owner component, and has a default and unique in-

ternal provided port, named se l f (for obvious histori-

cal reasons), listing signatures of all services of its owner

component and allowing any of its services to invoke an-

other one.

• An internal port i p of a c component is a support for

accessing c’s internal composition architecture, i p and

the component connected to it (that we call an internal

component of c ) are invisible from the outside of c.

In Listing 2, it is shown how the two internal required

ports of a HTTPSe r ve r are connected to its two internal

components : a F r on t End and a BackEnd, allowing it to

invoke their services (e.g. f E i sL i s t en i ng in service

s t a t us).

• The list of external ports (provided and required) define

the external contract of a component.

2.3 Connections

A connection establishes a dual referencing between two

ports, making it possible to determine whether a port is con-

nected or not and, if true, to which other port it is connected.

When we sometimes write, in a somehow misleading but ad-

mitted way, that two components are connected, it is meant

that one port of the former is connected to one port of the

later.

• A regular connection is between a required and a pro-

vided port. We provide two equivalent syntax for connec-

tions : ( connec t | de l ega t e ) <po r t > t o <po r t >, or

<po r t > = : = <po r t >, where <po r t > is any expres-

sion returning a port. An example of an expression

establishing a regular connection is : connec t s t o

( TaskSchedu l e r new ) . de f au l t ; , (see. Listing 1).

• A delegation connection is between two ports having

the same role and is used to delegate a service invocation

from an external to an internal via the composite (pro-

vided to provided), or from an internal to an external via

a composite (required to required). An example of a “pro-

vided to provided” delegation connection is de l ega t e
de f au l t t o r R@ . de f au l t ; in Listing 1).

2.4 Internal architectures
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Figure 1. HTTPServer, the diagram shows a logical repre-

sentation of an instance of the HTTPSe r ve r descriptor pre-

sented in Listing 2, after it has been created and initialized.
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An internal architecture of a component is the set of its

internal components (components connected to its internal

required ports) together with their inter-connections. A com-

ponent having internal component is as usual called a com-

posite. Initialization (i.e. instantiation and connection) of in-

ternal components of a composite c is performed during c’s

instantiation if described in the c’s descriptor architecture

section.

For example, the internal ports and architecture sections

of descriptor HTTPSe r ve r define the following internal ar-

chitecture for its instances.

• The internal required port f E is connected to a

F r on t End.

• The internal required port bE is connected to a BackEnd.

Note that: bE < : BackEnd in the port section is a

shortcut to avoid writing the following instruction in

the architecture section : connec t bE t o ( Backend
new ) . de f au l t ).

• The internal required port name is connected to a

S t r i ng. S t r i ng is a predefined component descriptor

the role of which is to interface all basic types of the host-

ing language so that their elements can be used as stan-

dard components. Predefined descriptors expose a single

provided port named de f au l t through which procedures

or methods of basic types can be called in the form of a

service invocation via the COMPO interpretor or virtual

machine.

• a delegation connection is created between the provided

port de f au l t and the de f au l t port of the f r on t End.

• a regular connection is created between the required port

backEnd of the component connected to the f E inter-

nal required port and the port de f au l t of the compo-

nent connected to the bE internal required port: connec t
f E@ . backEnd t o bE@ . de f au l t .

This connection is a good example of a situation in which

architecture design requires that a refence be made to a

component which is not yet created. Here we need to

say that we want to connect the port backEnd of the

component that will be be connected to port f E. The @

operator makes it possible, for any port p to reference

the component that will later on be connected to p and

subsequently to specify an architecture before descriptors

are instantiated.

2.5 Services & Service invocations

Services implement the behavior of components. A service

may have parameters and may return a value.

Components communicate by service invocations made

through required ports. A service invocation consists of a

port name, a selector (the name of the requested service) and

optional arguments. f E i s l i s t en i ng is an example of a

service invocation made through the f E port in the context

c o m p o n e n t d e s c r i p t o r H T T P S e r v e r {
p r o v i d e s {

d e f a u l t : { r u n ( ) ; s t a t u s ( ) } }
i n t e r n a l l y r e q u i r e s {

f E : F r o n t E n d ;
b E < : B a c k E n d ;

n a m e < : S t r i n g ; }
a r c h i t e c t u r e {

f E = : = ( F r o n t E n d n e w ) . d e f a u l t ;
d e l e g a t e d e f a u l t t o f E @ . d e f a u l t ;
c o n n e c t f E @ . b a c k E n d t o b E @ . d e f a u l t ; }

s e r v i c e s t a t u s ( ) {
f E i s L i s t e n i n g

i f T r u e : [ ^ n a m e p r i n t S t r i n g + ' i s r u n n i n g ' ]
i f F a l s e : [ ^ n a m e p r i n t S t r i n g

+ ' i s s t o p p e d ' ] . }
}

Listing 2. The HTTPSe r ve r descriptor.

of the s t a t us ( ) service of component HTTPSe r ve r . When

a required port receives an invocation it transmits it to the

port it is connected to. The receiving port then transfer the

invocation to its owner component which is responsible for

handling it (either executing a corresponding service or dele-

gating the invocation via a delegation connection, full detail

on this can be found in [8]).

3. Rationale and rules to reuse descriptions

with inheritance

This section presents the rationale and the operational de-

scription of our descriptor-level inheritance embedded in

our CBPL. Ports declarations, internal architecture definition

and initializations, services definitions; and more generally

all pieces of code specified at the descriptor level are subjects

to inheritance, extension and redefinition.

For the sake of simplicity, we have limited our proposal

to single inheritance relationship.

3.1 Descriptors and basic inheritance

Any descriptor can be defined as a sub-descriptor of an ex-

isting descriptor (D). In such a case, D’s port declarations, in-

ternal architecture and service definitions are inherited. Ev-

ery sub-descriptor has, by default, the supe r internal pro-

vided port. The port differs from regular provided ports in

one small detail: services implementations demanded by ser-

vice invocations sent to this port are looked up starting from

the super-descriptor of the owning descriptor (not directly

from the owning descriptor as it is in the case of regular pro-

vided ports).

Listing 3 show the Con t r o l ab l eF r on t End sub-

descriptor that extends the F r on t End descriptor (shown in

Listing 1) with a new port named con t r o l . Ports declara-

tions and internal architecture described in the F r on t End
descriptor are inherited by the Con t r o l ab l eF r on t End de-

scriptor, this is taken into account when creating an instance

of the Con t r o l ab l eF r on t End descriptor whose structure

will conform to what is described in the F r on t End descrip-

tor.
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In Listing 4 we show an another sub-descriptor

named (Res t a r t ab l eF r on t End) which extends the

Con t r o l ab l eF r on t End descriptor with a new service. Ser-

vices defined in the F r on t End and Con t r o l ab l eF r on t End
descriptors are inherited by the Res t a r t ab l eF r on t End
descriptor. This is taken into account when instances of the

Res t a r t ab l eF r on t End descriptor are created and receive

services invocations (lookup algorithm).

c o m p o n e n t d e s c r i p t o r C o n t r o l a b l e F r o n t E n d
e x t e n d s F r o n t E n d

{
p r o v i d e s {

c o n t r o l : { s t a r t ( ) ; i s R u n n i n g ( ) ; s t o p ( ) } }
a r c h i t e c t u r e {

d e l e g a t e c o n t r o l t o r R @ . c o n t r o l ; }
}

Listing 3. The Con t r o l ab l eF r on t End descriptor. Extends

the F r on t End descriptor with a new provided port named

con t r o l .

c o m p o n e n t d e s c r i p t o r R e s t a r t a b l e F r o n t E n d
e x t e n d s C o n t r o l a b l e F r o n t E n d

{
p r o v i d e s {

c o n t r o l : { r e s t a r t ( ) ; } }
s e r v i c e r e s t a r t ( ) { r R s t o p . r R s t a r t }
s e r v i c e i s L i s t e n i n g ( ) {

s u p e r i s L i s t e n i n g i f T r u e : [ ^ 0 ] i f F a l s e : [ ^ 1 ] }
}

Listing 4. The Res t a r t ab l eF r on t End descriptor. Spe-

cializes the con t r o l port of Con t r o l ab l eF r on t End de-

scriptor and service i sL i s t en i ng inherited from F r on t End

3.2 Extension & specialization of services

To be able to inherit, extend and specialize the behavior de-

fined by a component descriptor, a sub-descriptor can intro-

duce new services and its instances can access and reuse ser-

vices defined by its super-descriptor. This gives us ability to

define behavior that’s specific to a particular sub-descriptor,

i.e. achieve polymorphism of descriptors.

A service can be redefined in a sub-descriptor and can

reuse the one it specializes by using the supe r internal

provided port. Sending an invocation to supe r states that the

service implementation should be looked for in the super-

descriptor of the descriptor in which the current service in

execution has been found.

Listing 4 shows an example of specializa-

tion and extension of services, where the descrip-

tor Res t a r t ab l eF r on t End extends the descriptor

Con t r o l ab l eF r on t End with a new service r es t a r t ( )
and specializes service i sL i s t en i ng ( ) defined in

Con t r o l ab l eF r on t End, supe r is used to access

Con t r o l ab l eF r on t End’s implementation of the

i sL i s t en i ng ( ) service.

3.3 Extension & specialization of declarations of

provided ports

The basic goal here is to be able to introduce a new pro-

vided port declaration and be able to specialize a declaration

(i.e. a list of service signatures) of an inherited port. This

capability leads to a higher expressive power. For example,

sub-descriptors are able to export an internal behavior via

newly added ports. Such an export does not break the encap-

sulation of the internal component, because it exports behav-

ior which has already been public. Another use is definition

of more viewpoints for a component, where each provided

port represents a viewpoint on the component. Specialization

of ports introduces more precise modeling possibilities for

software architects. An example of extension and special-

ization of provided ports is illustrated in Listings 1, 3 and 4,

where the Con t r o l ab l eF r on t End descriptor extends orig-

inal F r on t End descriptor with a new port named con t r o l .

The Res t a r t ab l eF r on t End descriptor specializes the in-

herited port con t r o l with a new service signature.

The specialization of port roles makes sense only from

the required role to the provided role. Indeed, this kind of

role specialization can be performed simply by a delegation

of a required port to a provided port of a component. Thus,

there is no reason for allowing specialization of the roles of

ports.

We extend a set of ports simply by introducing a new port

in a sub-descriptor. A name of newly added port cannot clash

with existing port names. In Listing 3 we extend the origi-

nal F r on t End descriptor with a new port named con t r o l
in order to export control behavior offered by the internal

component connected to the r R internal required port.

There are two scenarios how to specialize the list of

service signatures of an inherited port: (1) a specializa-

tion by adding new service signatures to its list of ser-

vice signatures (i.e. extending an anonymous inherited in-

terface). The Res t a r t ab l eF r on t End example in Listing 4

shows the specialization of the con t r o l port defined by

the Con t r o l ab l eF r on t End super-descriptor. The special-

ization is used in order to provide the r es t a r t service de-

fined by the descriptor Res t a r t ab l eF r on t End. (2) a spe-

cialization using a named interface. In this case the set of

service signatures defined in the named interface has to be a

super-set of the set of service signatures used to describe the

original port. A specialization of a port named po r t A looks

like: p r ov i des { po r t A : I spec}. In the super-descriptor,

po r t A was declared by the statement: p r ov i des { po r t A

: { se r 1 ( ) ; se r 2 ( ) }}. The I spec interface was defined

with the statement i n t e r f ace I spec { se r 1 ( ) ; se r 2 ( ) ;

se r 3 ( ) }. The named interface I spec defines a set of ser-

vice signatures, which is a super-set of a set representing the

anonymous interface of the original po r t A port. Therefore it

can be used for the specialization.
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Figure 2. An example of an extension and specialization of

required ports. Grayed parts of the figure illustrate inherited

parts.

3.4 Extension & specialization of declarations of

external required ports

In our inheritance system, we enable adding new declara-

tions of required ports to sub-descriptors and we allow for

modification of a declaration of an inherited required port.

Extension and specialization of required ports are needed

to preserve expressive power of our language. For exam-

ple, without such a capability, we will not be able to extend

the Ema i l e r descriptor shown in Figure 2 with a new re-

quired port seman t i csChecke r or specialize its required

port syn t axChecke r with a new required service signature

g r amma r Check i ng ( ) . Syntactically these operations do not

differ from extension and specialization of provided ports.

c o m p o n e n t d e s c r i p t o r R a n d o m R e q u e s t s Q u e u e
e x t e n d s R e q u e s t s Q u e u e

{
r e q u i r e s { r a n d o m G e n : { g e t N e x t I n t ( ) ; }
. . .

}
c o m p o n e n t d e s c r i p t o r R a n d o m i z e r {

p r o v i d e s { g e n e r a t o r : { g e t N e x t I n t ( ) ; }
. . .

}

s e r v e r : = Q u e u e d S e r v e r n e w .
a s s o c P a i r : = ' r a n d o m G e n ' - > ( R a n d o m i z e r n e w ) .
r a n d o m Q u e u e : = R a n d o m R e q u e s t s Q u e u e

n e w C o m p a t i b l e : ( A r r a y w i t h : a s s o c P a i r ) .

s e r v e r r e c o n n e c t : ' q u e u e ' t o : r a n d o m Q u e u e .

Listing 5. An example of unsatisfied required port problem

and its solution using the r econnec t and newCompa t i b l e
support tools. The RandomReques t sQueue descriptor ex-

tends the Reques t Queue descriptor with an additional re-

quired port to which an instance of the RandomGene r a t o r
descriptor should be connected.

Semantically the extension and specialization of required

ports introduce a new issue, it breaks child-parent substi-

tutability. In OOPLs, substitutability between sub-classes

and super-classes is guaranteed. To be more precise, inter-

face compatibility is guaranteed. Behavior compatibility is

still not guaranteed, as pointed by [12]. In CBPL with the

possibility to extend or specialize super-descriptor’s require-
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Figure 3. Dynamic substitution with a sub-descriptor hav-

ing additional required port may lead to unsatisfied require-

ment in the architecture. Grayed parts of the figure illustrate

inherited parts.

ments creating a potentially non-substitutable sub-descriptor

is possible.

Additional required ports may became unsatisfied, when

an instance of such a sub-descriptor is used where an in-

stance of the super-descriptor is expected. This may break

up the system. In other words, adding new required ports

(or specializing a required port in a sub-descriptor) violates

the Liskov’s substitution principle [11]. These operations

change components dependencies and can lead to unspeci-

fied behavior. This is illustrated in Figure 3 and Listing 5,

where an instance2 of the Reques t Queue descriptor is sub-

stituted with an instance of the RandomReques t sQueue de-

scriptor. The RandomReques t sQueue descriptor extends the

Reques t Queue descriptor with an additional required port

to which an instance of the RandomGene r a t o r descriptor

should be connected. At runtime, when an instance of the

Reques t sQueue descriptor is substituted by an instance of

the RandomReques t sQueue descriptor, the r andomGen re-

quired port may became unsatisfied.

This problem has three possible solutions: (1) forbid ex-

tending requirements, but requirements have been made ex-

plicit in components and they are considered as important

entities to make it possible to introduce new connections.

Therefore it is undesirable to limit expressive power of mod-

eling by forbidding extension and specialization of require-

ments. For example, without possibility to add a required

port it is complicated to design the Ema i l e r example shown

in Figure 2; (2) constrain substitutions - define a rule saying

that an original component can be substituted by a new one,

only if the new one provides at least the same and requires

at most the same as the original one; (3) allow additional

requirements and delegate responsibility for additional re-

2 the instance is the internal component connected to the internal required

port queue of an instance of the QueuedSe r v e r descriptor shown in Fig-

ure 3 and Listing 6.
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quirements satisfaction to the language users, while provid-

ing verification support for substitutions.

With COMPO all alternatives are possible, but since the

language is oriented toward modeling flexibility, we have

experimented with the third alternative. We will thus sup-

port covariant specialization if and when needed because it

corresponds to the way human naturally think differential

description [7]. Our inheritance mechanism does not apply

any restrictions to implicitly guarantee substitutability. Sub-

stitutions in COMPO are under the developer’s control and

responsibility.

We are providing three support methods: (1) the newCom-

patible method to return a component compatible with the

super-descriptor of the component (the service is automati-

cally created for each sub-descriptor which extends its par-

ent with additional requirements); (2) the reconnect method

(executed when a substitution is performed) to warn users

about unsatisfied additional requirements (by an exception)

and (3) the isCompatibleWith method to help developers to

check the validity of a substitution. For an example of usage

see Listing 5.

The first substitutions support comes in case when a

sub-descriptor has an additional required port. Then our in-

heritance system automatically generates a method called

newCompa t i b l e : The method has a unique parameter, an

array of pairs port-component. The method is able to cre-

ate an instance, which is substitutable with instances of the

super-descriptor. That is all additional requirements are sat-

isfied by connections to components given in the array argu-

ment.

The second support is the r econnec t : t o : method to

achieve substitutions safely. This method takes two ar-

guments, the first one is the name of an internal re-

quired port referencing the component which should be re-

placed and the second argument is the replacing component.

r econnec t : t o : checks for compatibility between the origi-

nal and the new component descriptor, i.e. checks if the new

component provides and requires at least the same as the

original one and checks if all requirements will be satisfied

after substitution. If all requirements of the new component

are satisfied, the replacement is performed, otherwise an ex-

ception is thrown. r econnec t : t o : reconnects all ports of

the original component to corresponding ports of the new

component and connects the new component to the corre-

sponding internal required port of the composite to reference

the new component.

For components compatibility checking purposes we pro-

vide i sCompa t i b l e method. The i sCompa t i b l e method is

able to compare the external contracts of compared compo-

nents and answer by true if they are compatible and false

otherwise. The method is useful for the r econnec t : t o :
method, which warns users in the case of unsatisfied require-

ments.

3.5 Extension & specialization of internal

architectures

Internal architecture description and initialization is inher-

ited by a sub-descriptor and it can be extended and special-

ized. When a large and complicated architecture needs to be

reused, the language should support such a feature.

In COMPO, a sub-descriptor may extend a set of in-

ternal components by introducing a new internal required

port. Usually this action implies extension and specializa-

tion of internal connections. These operations are illustrated

in Figure 3, where the descriptor QueuedHTTPSe r ve r ex-

tends the descriptor HTTPSe r ve r with a new internal com-

ponent named queue (described by Reques t sQueue). And

it specializes the inherited connections in order to assem-

ble the queue component into the architecture of its super-

descriptor. COMPO code of QueuedHTTPSe r ve r is given in

Listing 6.

Specialization of an inherited internal component in

a sub-descriptor can be achieved by modifying the in-

terface description of the internal required port asso-

ciated with the internal component. The descriptor of

P r i o r i t yQueuedSe r ve r in Listing 6 specializes an inher-

ited internal component queue by describing it with the

P r i o r i t yReques t sQueue descriptor .

The specialization of an inherited internal connection

can be achieved by the combination of statements hav-

ing the following syntax: d i sconnec t <po r t - name> f r om

<po r t - name> and connec t <po r t - name> t o <po r t - name>

(statements were explained in Section 2.5).

c o m p o n e n t d e s c r i p t o r Q u e u e d H T T P S e r v e r
e x t e n d s H T T P S e r v e r

{
i n t e r n a l l y r e q u i r e s {

q u e u e < : R e q u e s t s Q u e u e }
a r c h i t e c t u r e {

d i s c o n n e c t f E @ . b a c k E n d f r o m b E @ . d e f a u l t ;
c o n n e c t f E @ . b a c k E n d t o q u e u e @ . i n ;
c o n n e c t q u e u e @ . o u t t o b E @ . d e f a u l t ; }

}
c o m p o n e n t d e s c r i p t o r P r i o r i t y Q u e u e d S e r v e r

e x t e n d s Q u e u e d H T T P S e r v e r
{

i n t e r n a l l y r e q u i r e s {
q u e u e < : P r i o r i t y R e q u e s t s Q u e u e }

}

Listing 6. Specialization and extension of an internal archi-

tecture.

4. Implementation

The current implementation of COMPO is used as a lab-

oratory for exploring new ideas and is built in [3] as an

extension of the SCL [8, 9] implementation in the context

of a global effort towards the development of efficient dy-

namic languages.. We have chosen Smalltalk because we

are a part of the effort to bring component concept into the

Pharo environment. Descriptors and sub-descriptors are im-

plemented as subclasses of the CompoComponen t class. The
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CompoComponen t class contains the mechanism to store

necessary inforation about ports and associated interfaces,

internal components and connections. The inheritance mech-

anism uses Smalltalk’s meta-model facilities to implement

extension and specialization operations for both the struc-

ture and behavior of descriptors.

Readers can download a Pharo image of COMPO imple-

mentation here: http://www.lirmm.fr/∼spacek/compo/

5. Related works

CBPLs ADLs

criterium/model ACOEL ArchJava CLIC CompJava COMPO Fractal SOFA

Structure inheritance yes yes yes yes yes yes yes

Behavior inheritance yes yes yes no yes no no

Extensions

Provided ports yes yes no yes yes yes yes

Required ports yes yes yes no yes yes yes

Internal components yes yes yes no yes yes yes

Connections yes yes yes no yes yes yes

Specialization

Provided ports yes no yes yes yes yes yes

Required ports yes no yes no yes yes no

Internal components no no yes no yes yes yes

Connections no no yes no yes yes yes

Substitution:

restrictive yes yes yes yes yes yes yes

with addit.reqs. no no yes no yes no no

Table 1. Comparative table of inheritance in selected CB-

PLs and in Fractal and SOFA models

In this section we give an overview of how inheritance is

used in existing Component-based Programming Languages

(CBPLs) and ADLs, and compare this with our proposal.

We also compare our proposal based on a combination of

inheritance and composition with inheritance-free proposal

in which all reuse schemes are achieved using sole compo-

sition.

It is important to note, that none of these languages we

have studied propose a complete specification of inheritance

which concerns all main reuse aspects. Our knowledge about

the behavior of their inheritance mechanism often had to

be extracted from experiments conducted using these lan-

guages. The list of related works is not exhaustive; especially

ADLs that do not support any form of descriptors inheritance

are not included.

5.1 Inheritance in related CBPLs

Here, we compare how related CBPLs integrate inheritance

aspects such as: the structure inheritance , the behavior in-

heritance and abilities to extend and specialize particular

definitions in a component descriptor (i.e. ports, internal

components and connections.) As related CBPLs we con-

sider ACOEL [19], ArchJava [1], CLIC [4] and CompJava

[16], because these languages combine implementation and

architecture specification.

Structure inheritance is partially supported in all other

languages. We say partially, because CompJava do not al-

low the reuse of internal components and connections spec-

ification. Ports declarations can be reused via component

type definition. Except that they use a different terminology,

the languages define component type as a set of port names

including interface references and roles specification. And

then a component type can be defined as an extension of an

existing component type

Behavior inheritance is fully supported only in CLIC and

ArchJava languages. ACOEL model supports implementa-

tion inheritance by the extend statement, but a child cannot

access any of the internals (implementation classes, meth-

ods) of a parent, except via the input ports of the parent,

i.e. t h i s . <po r t name> . <se r v i cename> (composition-like

approach). The advantage of this black-box approach is that

it preserve encapsulation of parent components. We support

white-box approach to be able to specialize services imple-

mentations which are not provided by a parent.

Ports specialization is not supported in ArchJava, because

adding new provided methods to an existing port might

cause ambiguities if these provided methods were required

by a connected component, and provided by a different com-

ponent. There would then be two components providing

the same required method, breaking ArchJava’s connection

rules. Adding required methods to an existing port would

make the component class non-substitutable for the compo-

nent superclass, because connections made to the superclass

might not provide the subclass’s required methods. Required

methods in a new port are also problematic, because the new

port might not be connected at all.

An interesting solution comes with ACOEL model,

which uses ports parametrized by mixins [5]. During instan-

tiation a mixin can be passed as an argument of a component

constructor and a parametrized port is then “decorated” with

new behavior. In COMPO, ports are just descriptions of com-

munication and connection points. Therefore, they should

not carry any implementation of behavior or its specializa-

tion.

Ports extension is well supported. CLIC model does not

support additional provided port, because this model allows

components to have only one provided port. The idea of a

single provided port is based on the observation that devel-

opers do not know beforehand, which services will be speci-

fied by each required port of a client component. Therefore it

is hard to split component functionality over multiple ports.

We see this as a unnecessary limitation of modeling power.

On the other hand, in the CompJava, a component type

may extend another component type and it inherits all ports.

It may extend the interface of inherited provided ports or

may add provided ports. Extension of required ports is not

allowed due to the substitutability policy of the CompJava

model.

Architecture extension and specialization. ACOEL and

ArchJava treat internal components as regular instance vari-

ables of classes and therefore there is no way to specialize in-

herited internal components. CompJava supports inheritance
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of component types only. Component types do not involve

internal components and connections declarations, therefore

architecture cannot be reused.

Substitutions. ACOEL, ArchJava and CompJava define

sub-type relation as defined by Liskov [11]. In general, a

component type is a sub-type of another one if it provides

at least the same and requires at most the same. To ensure

ACOEL use a type system checking. CompJava and Arch-

Java forbid additional requirements (in inherited types) and

then they restrict substitutability by the sub-type relation.

In Table 1, we make a summary of this comparison.

5.2 Inheritance in related ADLs

Structure reuse is a primary inheritance property supported

by ADLs [14], which operate mainly at design stage in the

development process. They make it possible to design soft-

ware using components and then convert them into a com-

ponent framework written in OOPLs or other programming

languages (but not CBPLs). ADLs generally do not sup-

port behavior inheritance, because behavior of components

is specified either in programming languages they are im-

plemented in, or using some formalisms where there is no

inheritance.

For example Fractal and its Fractal ADL allow to ex-

tend one component definition with another one, then a sub-

definition can add or override elements. It also extends com-

ponent type definition with contingency (optional or manda-

tory) and cardinality for each port. It is possible to add con-

nections but impossible to specialize an inherited connec-

tion.

SOFA Component Definition Language (CDL) uses

the frame term for component types. One frame can

inherit from another frame and then port declarations

are reused. To compose several frames, SOFA introduce

architecture construct, where an architecture implements

a frame and may inherits from an another architecture. In

this way, internal components and connections are reused.

Ports are specialized using interface redefinition i.e. by

the following statement f r ame Componen t Name i nhe r i t s

I nhe r i t edCompName changes I n t e r f ace I ns t ance1 : :

O r i g i na l I n t e r f aceType1 => New I n t e r f aceType1. Spe-

cialization of inherited connections is supported by the

statement: newT i e1 , newT i e2 r ep l ac i ng o r i g i na l T i e

subsume subcomp I ns t Name : i n t I ns t Name t o i n t I ns t Name

exemp t : subcomp I ns t Name : i n t I ns t Name.

Other ADLs do not specify inheritance between descrip-

tors, they usually use inheritance uniquely for creation of

sub-interfaces. In UML, the component entity inherits from

the structured class entity and therefore they can participate

in generalization relationship in the same way as classes do.

5.3 Composition as a reuse mechanism

In ComponentJ [18] the authors state that all reuse schemes

are achieved using sole composition. By nature, the com-

position concept allows only black-box reuse. Therefore it
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Figure 4. The ”lost of initial receiver” problem, when com-

position and invocations forwarding are used. The context

pseudo variable se l f does not refer to the original receiver

of service invocation when delegations are used. The m2 ( )
service of descriptor Ch i l d is never called

cannot be used when an internal architecture of a descriptor

needs to be reused. For example the reuse of a descriptor’s

internal architecture shown in Figure 3 cannot be performed

with composition.

Achieving behavioral inheritance by using composition

and message forwarding raises various issues including the

well known ”lost of initial receiver” problem [10]. The con-

text reference se l f (or t h i s in some languages) does not

refer to the original receiver of service invocation when for-

warding is used. The problem and its solution are illustrated

in Figure 4, where the m2 ( ) service of descriptor Ch i l d is

never called.

ComponentJ proposal describes an operational solution

to that problem. The solution is based on a connexion of the

”self” port of the composed-component to the default pro-

vided port of the composite and on the service invocations

forwarding from the composite to the composed-component

(see the dashed arrow in the bottom of Figure 4).

The solution is operational but we argue that inheritance

is preferred because it: (1) enables abstract description and

conceptual description; (2) does not increases the complex-

ity of the system and therefore preserve code maintainabil-

ity of large systems, where hierarchical concept modeling

is used; (3) copy the structure of an external contract of a

super-descriptor (i.e. declaration of provided and required

ports) automatically to sub-descriptors.

6. Conclusions

In this paper, we have proposed an original descriptor-

based inheritance system for a component-based program-

ming language taking into account in the same context the

architecture modeling and coding aspects of components.

We have motivated and described concrete solutions for cre-

ating new component descriptors by extending and special-

izing existing ones and for extending or specializing all
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key primary aspects of component modeling and program-

ming: ports declarations, composition (or connection) archi-

tectures, services declarations and definitions. These solu-

tions are implemented and can be tested with our prototype

(http://www.lirmm.fr/∼spacek/compo/) implemented in Pharo

Smalltalk [3].

Among the various possible specialization options for

inheritance, we have applied in our context the covariant-

oriented one, by allowing to add requirements on a sub-

descriptor, that promotes expressive power and reuse. We

have implemented supports to help programmer achieving

substitutions. Other well-known approachs can of course be

considered. Besides, we have not yet discussed the multiple-

inheritance option. Inheritance in component-based devel-

opment is useful for both “development-for-reuse” and

“development-by-reuse”. It helps, in combination with other

composition techniques, in effortless production of new off-

the-shelf components or new applications embedding com-

plex components architectures.

There are various prospective for this work. The first one

is to obviously to gain more experience on using inheritance

in this context and to consider its use in designing Compo-

nent Design Patterns [2]. Beside, our inheritance extension

is currently used to build a reflective version of COMPO,

the primary goal of which is, through a first-class repre-

sentation of descriptors, components, ports and architec-

ture, to write model-driven verifications or transformations

of COMPO component-based applications in COMPO itself.

We are applying it to constraint-based architecture verifica-

tion, extending our earlier works [20, 21] towards constraint-

components hierarchies.
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[3] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and

M. Denker. Pharo by Example. Square Bracket Associates,

2009.

[4] N. Bouraqadi and L. Fabresse. Clic: a component model

symbiotic with smalltalk. In procs. of IWST, New York, NY,

USA, 2009. ACM.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In Pro-

ceedings of OOPSLA and ECOOP. ACM Press, 1990.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
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