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Abstract—In order to achieve the autonomy of mobile robots,
effective localization is a necessary prerequisite. In this paper, we
propose an improved Monte Carlo localization algorithm using
self-adaptive samples, abbreviated as SAMCL. By employing
a pre-caching technique to reduce the on-line computational
burden, SAMCL is more efficient than regular MCL. Further,
we define the concept of similar energy region (SER), which is a
set of poses (grid cells) having similar energy with the robot in
the robot space. By distributing global samples in SER instead
of distributing randomly in the map, SAMCL obtains a better
performance in localization. Position tracking, global localization
and the kidnapped robot problem are the three sub-problems of
the localization problem. Most localization approaches focus on
solving one of these sub-problems. However, SAMCL solves all
these three sub-problems together thanks to self-adaptive samples
that can automatically separate themselves into a global sample
set and a local sample set according to needs. The validity and
the efficiency of the SAMCL algorithm are demonstrated by both
simulations and experiments carried out with different intentions.
Extensive experiment results and comparisons are also given in
this paper.

Index Terms—Localization; Probabilistic approach; Self-
adaptive; Monte Carlo; Mobile robot; Kidnapping;

I. INTRODUCTION

Effective localization is a fundamental prerequisite for
achieving autonomous mobile robot navigation. Localization
is defined as the problem of determining the pose (or position)
of a robot given a map of the environment and sensors data
[1], [2], [3]. Usually, the mobile robot pose comprises its x−y
coordinates and its orientation.

According to the type of knowledge that is available initially
and at run-time and the difficulty of finding a solution,
localization problem can be divided into three sub-problems:
position tracking, global localization and the kidnapped robot
problem [4], [5], [6], [7].

Position tracking assumes that the robot knows its initial
pose [8], [9]. During its motions, the robot can keep track
of its movement to maintain a precise estimate of its pose
by accommodating the relatively small noise in a known
environment.

More challenging is the global localization problem [6],
[10]. In this case, the robot does not know its initial pose, thus
it has to determine its pose in the following process only with
control data and sensors data. Once the robot determines its
global position, the process continues as a position tracking

problem. To solve the initial localization problem, Jaulin et
al. propose a guaranteed Outlier Minimal Number Estimator
(OMNE), which is based on set inversion via interval analysis
[11]. They apply this algorithm to the initial localization of an
actual robot in a partially known 2D environment.

The kidnapped robot problem appears when a well-localized
robot is teleported to some other place without being told [6],
[12], [7]. Robot kidnapping can be caused by many factors.
Generally, we summarize the kidnapped robot problem into
two categories: real kidnapping and localization failures.

• The first one occurs when the robot is really kidnapped.
For example, someone takes the robot to other place; or
an accident causes the robot to drastically drift.

• Localization failures can make the robot think itself to
be kidnapped. For example, when the robot moves into
a incomplete part of the map, unmodeled objects can
cause the robot to think that it is kidnapped. It can also
bring about kidnapping when the crowd passes next to
the robot. There are many other reasons that can lead to
localization failures, such as mechanical failures, sensor
faults and wheel slip [13], [14].

In practice, real kidnapping is rare; however kidnapping is
often used to test the ability of a localization algorithm to
recover from global localization failures. This problem is
the hardest of the three localization sub-problems. Difficul-
ties come from two sources: one is how to determine the
occurrence of kidnapping; the other is how to recover from
kidnapping. To some extent, to recover from kidnapping can
be considered as estimating globally the robot’s pose once
again if the robot finds the occurrence of kidnapping.

Among the existing position tracking algorithms, the Ex-
tended Kalman Filter (EKF) is one of the most popular
approaches [15], [16], [17], [7]. EKF assumes that the state
transition and the measurements are Markov processes rep-
resented by nonlinear functions. The first step consists in
linearizing these functions by Taylor expansion and the second
step consists in a fusion of sensors and odometry data with
Kalman Filter. However, plain EKF is inapplicable to the
global localization problem, because of the restrictive nature
of the unimodal belief representation. To overcome this limita-
tion, the multi-hypothesis Kalman filter is proposed [18], [19],
[5], [20]. It represents beliefs using the mixture of Gaussian
distributions, thus it can proceed with multiple and distinct



hypotheses. However, this approach inherits the Gaussian
noise assumption from Kalman filters. This assumption makes
all practical implementations extract low-dimensional features
from the sensor data, thereby ignoring much of the information
acquired by the robot’s sensors [12].

Grid localization and MCL are two most common ap-
proaches to deal with the global localization problem. Grid
localization approximates the posterior using a histogram filter
over a grid decomposition of the pose space [21], [22], [23],
[24], [7]. MCL is based on a particle filter that represents
the posterior belief by a set of weighted samples (also called
particles) distributed according to this posterior [25], [26],
[27], [28], [29], [30], [31], [7], [32], [33], [34]. The crucial dis-
advantage of these two approaches is that they bear heavy on-
line computational burden. For grid localization, the resolution
of the grid is a key variable. The precision and efficiency of
implementation depend on it. The finer grained can get a more
accurate result, but at the expense of increased computational
costs. The implementation of MCL is more efficient than
Grid localization, because it only calculates the posteriors of
particles. However, to obtain a reliable localization result, a
certain number of particles will be needed. The larger the
environment is, the more particles are needed. Actually each
particle can be seen as a pseudo-robot, which perceives the
environment using a probabilistic measurement model. At each
iteration, the virtual measurement takes large computational
costs if there are hundreds of particles. Furthermore, the
fact that MCL cannot recover from robot kidnapping is its
another disadvantage. When the position of the robot is well
determined, samples only survive near a single pose. If this
pose happens to be incorrect, MCL is unable to recover from
this global localization failure.

Thrun et al. [7] propose the Augmented MCL algorithm to
solve the kidnapped robot problem by adding random samples.
However, adding random samples can cause the extension of
the particle set if the algorithm cannot recover quickly from
kidnapping. This algorithm draws particles either according
to a uniform distribution over the pose space or according to
the measurement distribution. The former is inefficient and
the latter can only fit the landmark detection model (feature-
based localization). Moreover, by augmenting the sample
set through uniformly distributed samples is mathematically
questionable. Thus, Thrun et al. [35], [12], [7] propose the
Mixture MCL algorithm. This algorithm employs a mixture
proposal distribution that combines regular MCL sampling
with an inversed MCL’s sampling process. They think that
the key disadvantage of Mixture MCL is a requirement for a
sensor model that permits fast sampling of poses. To overcome
this difficulty, they use sufficient statistics and density trees to
learn a sampling model from data.

In this paper, we propose the Self-Adaptive Monte Carlo
Localization algorithm (abbreviated as SAMCL) to solve the
localization problem. This algorithm is derived from the MCL
algorithm; however it is improved in three aspects. Firstly, it
employs a pre-caching technique to reduce the on-line com-
putational burden of MCL. Thrun et al. [7] use this technique
to reduce costs of computing for beam-based models in the
ray casting operation. Our pre-caching technique decomposes

the state space into two types of grids. The first one is a three-
dimensional grid denoted as G3D that includes the planar
coordinates and the orientation of the robot. It is used to
reduce the on-line computational burden of MCL. The other
grid is a two dimensional “energy” grid, denoted as GE .
We define energy as the special information extracted from
measurements. The energy grid is used to calculate the Similar
Energy Region (SER) that is a subset of GE . Its elements
are these grid cells whose energy is similar to robot’s energy.
SER provides potential information of robot’s position; thus,
sampling in SER is more efficient than sampling randomly
in the whole map. That is the second contribution. Finally,
SAMCL can solve position tracking, global localization and
the kidnapped robot problem together thanks to self-adaptive
samples. Self-adaptive samples in this paper are different
from the KLD-Sampling algorithm proposed in [36], [7]. The
KLD-Sampling algorithm employs the sample set that has an
adaptive size to increase the efficiency of particle filters. Our
self-adaptive sample set has a fixed size, thus it does not
lead to the extension of the particle set. In order to solve
the kidnapping problem, a number of global samples are
necessary. “When to generate global samples?” and “where
to distribute global samples?” are two main problems. The
self-adaptive sample set can automatically divide itself into a
global sample set and a local sample set according to different
situations. Local samples are used to track the robot’s pose,
while global samples are distributed in SER and used to
recover from kidnapping.

The rest of this paper is organized as follows. In section II
and III, we briefly review Bayes filters and Monte Carlo lo-
calization. In section IV, we introduce the SAMCL algorithm.
Simulation and experiment results are presented in section V
and VI. Finally some conclusions are given in section VII.

II. BAYES FILTER

MCL is a Bayes-based Markov localization algorithm. The
Bayes filter technique provides a powerful statistical tool to
understand and solve robot localization problems [26], [5],
[35], [37], [38], [39], [40], [41]. It calculates recursively the
belief distribution bel(∗) from measurement data and control
data [7]. The Bayes filter makes a Markov assumption, that
is, the past and future data are independent if one knows the
current state.

Let bel(st) denote the robot’s subjective belief of being at
position st at time t. Here, st is a three-dimensional variable
st = (xt, yt, θt)T , comprising its x − y coordinates in the
Cartesian coordinate system and its orientation θ. The belief
distribution is the posterior probability over the state st at
time t, conditioned on all past measurements Zt and all past
controls Ut.

bel(st) = p(st |Zt, Ut ) (1)

We define measurements Zt and controls Ut as follows:

Zt = {zt, zt−1, · · · , z0} ,

Ut = {ut, ut−1, · · · , u1} (2)



where controls Ut are often obtained from measurements of
proprioceptive sensors such as odometry.

We consider that the measurements and the controls are
independent and we treat them separately.

bel(st) = p (st |Zt ) · p (st |Ut ) (3)

The term p (st |Zt ) is denoted as belm(st), which represents
the posterior belief after integrating the perception data.

belm(st) = p (st |Zt )
Bayes rule

=
p (zt |st, Zt−1 ) p (st |Zt−1 )

p (zt |Zt−1 )
= ηp (zt |st, Zt−1 ) p (st |Zt−1 )

Markov assum.= ηp (zt |st ) p (st−1 |Zt−1 )
= ηp (zt |st ) belm(st−1) (4)

where η is a normalization constant that ensures belm(st) to
sum up to one.

The term p (st |Ut ) is denoted as belc(st), which represents
the posterior belief after integrating the control data.

belc(st) = p (st |Ut )
Total prob.

=
∫

p (st |st−1, Ut ) p (st−1 |Ut )dst−1

Markov assum.=
∫

p (st |st−1, ut ) p (st−1 |Ut−1 )dst−1

=
∫

p (st |st−1, ut ) belc(st−1)dst−1 (5)

We multiply belm(st) by belc(st) to get the final localization
formula:

bel(st) = belm(st) · belc(st)
= ηp (zt |st ) belm(st−1)∫

p (st |st−1, ut ) belc(st−1)dst−1

= ηp (zt |st )∫
p (st |st−1, ut ) [belm(st−1) · belc(st−1)]dst−1

= ηp (zt |st )
∫

p (st |st−1, ut )bel(st−1)dst−1 (6)

where the probability p (st |st−1, ut ) is called the prediction
model or the motion model, which denotes the transition of
robot state. The probability p (zt |st ) is the correction model
or the sensor model, which incorporates sensor information to
update robot state.

In practice, the implementation of Equation 6 is divided into
two stages: prediction and correction.

• Prediction. In this stage, a posterior, before incorporating
the latest measurement zt and just after executing the
control ut, is calculated. Such a posterior is denoted as
follows:

bel(st) = p(st |Zt−1, Ut )

=
∫

p (st |st−1, ut )bel(st−1)dst−1 (7)

• Correction. In this stage, the latest measurement zt is
incorporated to calculate bel(st) from bel(st).

bel(st) = ηp (zt |st ) bel(st)

= ηp (zt |st )
∫

p (st |st−1, ut )bel(st−1)dst−1

(8)

III. MONTE CARLO LOCALIZATION

Monte Carlo Localization (MCL) is based on a particle
filter, which represents the posterior belief bel(st) by a set St

of N weighted samples distributed according to this posterior.
As a consequence, the more intensive the region is populated
by samples, the more likely the robot locates there.

St =
{〈

s
[n]
t , ω

[n]
t

〉}
n=1,··· ,N

(9)

Each particle s
[n]
t with 1 ≤ n ≤ N denotes a concrete

instantiation of the robot’s pose at time t. The number of
particles N may be a fixed value or changing with some
quantities related to the belief bel(st) [42], [36], [40]. The
ω

[n]
t is the non-negative numerical factor called importance

factor. We interpret ω
[n]
t as the weight of a particle.

The basic MCL algorithm is depicted in Algorithm 1, which
calculates the particle set St recursively from the set St−1. It
accepts as input a particle set St−1 along with the latest control
ut, measurement zt and the map m. It outputs the particle set
St at time t. S̄t is a temporary particle set, which represents the
belief bel(st). Before each iteration, we empty the temporary
particle set S̄t and the particle set St. This recursive algorithm
is realized in three steps.

1) Line 4 generates a sample s
[n]
t based on the sample

s
[n]
t−1, the control ut and the map m. Obviously, the

pair
(
s
[n]
t , s

[n]
t−1

)
is distributed according to the product

distribution.

p
(
s
[n]
t

∣∣∣s[n]
t−1, ut,m

)
× bel(s[n]

t−1) (10)

In accordance with the literature on the Sampling Impor-
tance Resampling (SIR) algorithm [43], [44], this distri-
bution is called the proposal distribution. It corresponds
to the Equation 7 of Bayes filters except for the absence
of the integral sign.

2) Line 5 calculates the importance factor ω
[n]
t for each

particle s
[n]
t . The important factor is used to correct

the mismatch between the proposal distribution and the
desired target distribution specified in Equation 8. It is
restated here for the MCL algorithm.

ηp
(
zt

∣∣∣s[n]
t

)
p

(
s
[n]
t

∣∣∣s[n]
t−1, ut,m

)
bel(s[n]

t−1) (11)



Thus, the importance factor ω
[n]
t is the probability of

the measurement zt under the a hypothetical state s
[n]
t ,

which incorporates the measurement zt into the particle
set.

ω
[n]
t =

target distribution
proposal distribution

=
ηp

(
zt

∣∣∣s[n]
t

)
p

(
s
[n]
t

∣∣∣s[n]
t−1, ut,m

)
bel(s[n]

t−1)

p
(
s
[n]
t

∣∣∣s[n]
t−1, ut,m

)
bel(s[n]

t−1)

= ηp
(
zt

∣∣∣s[n]
t

)
(12)

where the normalization η is a constant, which plays
no role in the computation since the resampling takes
place with probabilities proportional to the importance
weights [7].
The process of calculating the importance factor is the
measurement update. The importance factor ω

[n]
t can

be seen as the weight of a particle s
[n]
t . Thus, the

weighted particle set S̄t can represent approximately the
posterior belief bel(st), but it does not distribute with
this posterior yet.

3) To make the weighted particle set S̄t distribute according
to the posterior belief bel(st), this algorithm involves
resampling (or called importance sampling) [7]. It is
implemented in lines 9 to 12. Resampling re-draws
N particles according to the posterior belief bel(st)
to replace the temporary particle set S̄t. It transforms
the temporary particle set S̄t into a new particle set
of the same size. Before resampling, the particle set is
distributed according to bel(st). After resampling, the
particle set is distributed according to bel(st).

1: Input: St−1, ut, zt,m

2: S̄t = St = ∅
3: for n = 1 to N do
4: generate a particle s

[n]
t ∼ p

(
st

∣∣∣s[n]
t−1, ut,m

)
5: calculate an importance factor ω

[n]
t = p

(
zt

∣∣∣s[n]
t ,m

)
6: add

〈
s
[n]
t , ω

[n]
t

〉
to S̄t

7: end for
8: normalize ωt

9: for n = 1 to N do
10: draw s

[n]
t with importance factors ω

[n]
t

11: add s
[n]
t to St

12: end for
13: Output: St

Algorithm 1: Basic MCL algorithm, adapted from [7]

IV. THE SAMCL ALGORITHM

The SAMCL algorithm is implemented in three steps, as
illustrated in Figure 1.

• Pre-caching the map. The first step accepts the map m
as input. It outputs a three-dimensional grid G3D and a
two-dimensional energy grid GE . The grid G3D stores
measurement data of the whole map and the grid GE

stores energy information. This step is executed off line
to reduce the on-line computational burden.

• Calculating SER. The inputs of the second step are the
energy grid GE obtained off-line in the pre-caching phase
and the measurement data zt of the robot at time t. The
output is SER. This step is run on line.

• Localization. The last step accepts as input the particle
set St−1, control data ut, measurement data zt, the three-
dimensional grid G3D and SER. It outputs the particle set
St. This step is also run on line.

Fig. 1. The process of the SAMCL algorithm.

A. Pre-caching the map
In the localization problem, the map is supposed to be pre-

known by the robot and be static. Hence, a natural idea is
to decompose the given map into grid and to pre-compute
measurements for each grid cell. Our pre-caching technique
decomposes the state space into two types of grids.

• Three-dimensional grid (G3D). The map is decomposed
into a three-dimensional grid that includes planar coor-
dinates and the orientation. Each grid cell is seen as a
pseudo-robot that perceives the environment at different
poses and stores these measurements. When SAMCL is
implemented, instead of computing measurements of the
map for each particle on line, the particle is matched with
the nearest grid cell and then simulated perceptions stored
in this cell are assigned to the particle. Measurements are
pre-cached off line, hence the pre-caching technique can
reduce the on-line computational burden. Obviously, the
precision of the map describing depends on the resolution
of the grid.

• Two-dimensional energy grid (GE). Each grid cell
of the energy grid pre-computes and stores its energy.
Energy is the special information extracted from mea-
surements. For range sensors, the measurement data are
distances, denoted as d for an individual measurement.
We define ith sensor’s energy as:

ai = 1− di/dmax (13)

where, di is the measurement of ith sensor and dmax

is the maximum distance that sensors are able to “see”.



Then we define energy of a robot (or a grid cell) as the
sum of energy of all the sensors.

E =
I∑

i=1

ai (14)

The advantage of using total energy of all the sensors is
no need to consider the orientation of the robot, thus we
can reduce one-dimensional calculation. These grid cells
nearby obstacles will have larger energy than those in the
free space.

Please note that we can calculate the sum of energy to
reduce one-dimensional calculation based on an assumption
that the robot’s sensors are distributed uniformly or quasi-
uniformly around its circumference. The reason is simple. If
a robot has non-uniformly distributed sensors, it will obtain
different energy at the same location but different orientations.
Figure 2 shows an example. A robot with non-uniformly
distributed sensors measures in a long and narrow room at
different orientations. Energy of case (a) can be computed as
follows:

Ea = (1− d1

dmax
) + (1− d2

dmax
) + (1− d3

dmax
) (15)

Energy of case (a) can be computed as follows:

Eb = (1− e1

emax
) + (1− e2

emax
) + (1− e3

emax
) (16)

Obviously, we have
Ea > Eb (17)

If such robots are used, we provide two simple solutions:
1) Let the robot turn 360◦ at each position and take

the measurements simultaneously. Like this, the robot
can obtain the same measurement results as the robot
equipped with the sensors that are distributed uniformly
around its circumference.

2) Using orientation sensors, such as the compass.

(a)

(b)

Fig. 2. A robot with non-uniformly distributed sensors measuring in a long
and narrow room at different orientations. Energy of case (a) and case (b) is
different, even if the robot is at the same location.

The process of calculating energy for grid cells is shown
in Algorithm 2. It inputs the map m and outputs the two-
dimensional energy grid GE . In line 4, each sensor of one
grid cell measures the map using ray casting and gives the

distance d
[k]
i . Line 5 computes energy ã

[k]
i of the ith sensor

of the kth grid cell. Line 6 computes total energy Ẽ(k) of
the I sensors of the kth grid cell. In line 7, we normalize
total energy Ẽ(k). Hence, energy ã

[k]
i and total energy Ẽ(k)

has the same value interval [0, 1] as probability density. This
energy grid is used to calculate SER and will be presented in
Section IV-B.

1: Input: m

2: for all the grid cell k ∈ {1, · · · ,K} do
3: for all the range sensors i ∈ {1, · · · , I}, each measure-

ment d̃
[k]
i < dmax do

4: ã
[k]
i = 1− d̃

[k]
i /dmax

5: Ẽ(k) =
I∑

i=1

ã
[k]
i

6: end for
7: normalize Ẽ(k) = 1

I Ẽ(k)
8: end for
9: Output: GE

Algorithm 2: Calculating energy for each grid cell

B. Calculating SER

Similar energy region (SER) is defined as a subset of GE .
Grid cells in SER have similar energy with the robot. SER
may be seen as the candidate region for sampling, in which
particles have higher probability. Information provided by SER
is used to match the position of the robot, such as the robot
is in the corridor or in the corner, is nearby obstacles or in
the free space. Figure 3 shows SER when the real robot is
located in a corridor (a) and in a corner (b). To distribute
global samples, SER provides an a priori choice. Sampling in
SER solves the problem of where to distribute global samples.
Obviously, sampling in SER is more efficient than sampling
stochastically in the entire map. Especially, if the robot is in a
distinct region such as Figure 3(b), the advantage of sampling
in SER is more significant.

An algorithm to calculate SER is shown in Algorithm 3. It
accepts as input the energy grid GE obtained off-line in the
pre-caching phase and the range measurements dt of the robot
at time t. It outputs SER. Lines 2 to 6 compute total energy
of the I sensors for the real robot. Lines 7 to 11 compares
total sensors energy of the real robot with total sensors energy
of each grid cell. If the difference is smaller than a given
threshold δ, we define this grid cell as a SER cell.

C. Localization

The SAMCL algorithm uses self-adaptive samples to solve
the position tracking, global localization and the kidnapped
robot problems together. Self-adaptive samples can automat-
ically divide themselves into a local sample set and a global
sample set and transform between them according to different
situations. SAMCL maintains local samples by regular MCL
and distributes global samples in SER.



(a)

(b)

Fig. 3. SER when the robot is (a) in the corridor and (b) in the corner.

1: Input: GE , dt

2: for all the range sensors of the real robot i ∈ {1, · · · , I},
each measurementdi < dmax do

3: ai = 1− di/dmax

4: E =
I∑

i=1

ai

5: end for
6: normalize E = 1

I E

7: for all the grid cell k ∈ {1, · · · ,K} do

8: if
∣∣∣E − Ẽ(k)

∣∣∣ < δ then
9: defining the grid cell k as a SER cell

10: end if
11: end for
12: Output: SER

Algorithm 3: Calculating SER algorithm

When the robot is well localized, SAMCL only maintains
local samples around the robot. Once the robot is kidnapped,
part of samples migrate from local samples to global samples.
After the robot re-localizes itself, global samples are converted
as one part of local samples. Global samples are able to help
the robot recover from kidnapping. But they may also induce a
wrong reaction, for instance, in symmetrical environments, all
the particles in symmetrical regions may have high probability
and the pose of robot could be ambiguous. Hence, the idea is
that global samples only appear when the robot is “really”
kidnapped. The main question is to know when the robot
is kidnapped. We value whether the robot is kidnapped by

measuring the probabilities of particles. If the maximum of
probabilities of particles is less than a given threshold, the
robot will deduce that it has been kidnapped.

The SAMCL algorithm is summarized in Algorithm 4. It
inputs the particle set St−1 at time t − 1, motion control ut,
measurements dt of the range sensors, the three-dimensional
grid G3D and SER. It outputs the particle set St. Here, NT

denotes the total number of particles used in this algorithm,
NG is the number of global samples distributed in SER, and
NL denotes the number of local samples used for tracking the
robot. We explain this algorithm in five parts.

Part1: sampling total particles. Line 2 generates a particle
s
[n]
t for time t based on the particle s

[n]
t−1 and the control

ut. Line 3 determines the importance weight of that particle.
Particularly, measurements of the particle are searched in G3D.

Part2: determining the size of global sample set and local
sample set. This part distributes the number of global samples
and local samples according to the maximum of importance
factors ωt. If ωmax

t is less than the threshold ξ, we assume
the robot is kidnapped, part of particles NG are divided as
global samples. If not, all the particles are local samples. The
parameter α determines the ratio of global samples and local
samples. Here, the problem of when to generate global samples
is solved. The reason why we do not use all the particles
as global samples is that the robot may mistakenly believe
that it is kidnapped. This more often occurs in incomplete
maps. Keeping part of local samples can reduce this mistake.
ξ is a sensitive coefficient, which determines the sensitivity
of SAMCL. The greater ξ may make robot more sensitive to
kidnapping, but on the other hand the robot mistakes more
frequently.

Part3: resampling local samples. The operation to resample
local samples is identical to regular MCL. At the beginning,
importance factors ωt are normalized. Local samples are drawn
by incorporating the importance weights.

Part4: drawing global samples. A real trick of the SAMCL
algorithm is in part 4, global samples are distributed in SER
with a uniform distribution. The advantage of sampling in SER
is more efficient. This part is only executed when the robot
considers itself to be kidnapped.

Part5: combining two particles sets. At last, local sample set
SL

t and global sample set SG
t are combined. The new sample

set St will be used in the next iteration.

V. SIMULATION RESULTS

The SAMCL algorithm inherits all the advantages of MCL,
hence it has the ability to solve the position tracking problem
and the global localization problem. Moreover, it improves in
several aspects compared with the regular MCL.

• It is more efficient than the plain MCL algorithm, since
it employs an off-line pre-caching technique.

• Similar Energy Region (SER) provides potential infor-
mation of the robot’s pose. Hence, sampling in SER
is more efficient than sampling randomly in the entire
environment.

• It can settle the kidnapped robot problem by using self-
adaptive samples.



1: Input: St−1, ut, dt, G3D, SER

Sampling total particles
1: for n = 1 to NT do
2: generate a particle s

[n]
t ∼ p

(
st

∣∣∣s[n]
t−1, ut

)
3: calculate importance factor ω

[n]
t = p

(
zt

∣∣∣s[n]
t , G3D

)
4: end for

Determining the size of global sample set and local sample
set

1: if ωmax
t < ξ then

2: NL = α ·NT

3: else
4: NL = NT

5: end if
6: NG = NT −NL

Resampling local samples
1: normalize ωt

2: for n = 1 to NL do
3: draw s

[n],L
t with distribution ω

[n]
t

4: add s
[n],L
t to SL

t

5: end for
Drawing global samples

1: for n = 1 to NG do
2: draw s

[n],G
t with the uniform distribution in SER

3: add s
[n],G
t to SG

t

4: end for
Combining two particle sets

1: St = SL
t ∪ SG

t

2: Output: St

Algorithm 4: SAMCL algorithm

Thus, simulations focus on comparing SAMCL with MCL
in computational efficiency and evaluating the performance
of the SAMCL algorithm to solve position tracking, global
localization and the kidnapped robot problem.

The simulated error is drawn from a normal distribution
with mean zero and standard deviation σ (N (0, σ2)). In order
to reflect the noise level (or error level), we define a scalar
value Λ, which represent the noise by a percentage form.

noise level (Λ) =
standard deviation (σ)

maximum range
× 100% (18)

A. Position tracking

The purpose of this simulation is to evaluate the ability
of the SAMCL algorithm to track the robot’s position. We
use a quasi-symmetrical corridor map and 300 particles. 6%
perception noise and 8.82% motion noise are added in the
sensor model and the motion model, respectively. Figure 4
and Figure 5 depict localization results in different ways. The
former shows the trajectories of robot, odometry and SAMCL

and the latter presents the localization error curves of SAMCL
and odometry. From the two figures, it is easy to observe that
SAMCL performs very well in position tracking.

Fig. 4. Position tracking using SAMCL in a quasi-symmetrical corridor. The
trajectories of robot, odometry and SAMCL are displayed by the black solid
line (line A), the green dash-dot line (line C) and the red dotted line (line B),
respectively.

Fig. 5. Localization errors of position tracking using SAMCL in a quasi-
symmetrical corridor. SAMCL errors and odometry errors are plotted by the
red solid line and the green dash-dot line, respectively.

B. Global localization

This simulation aims at testing the global localization ability
of the SAMCL algorithm. The quasi-symmetrical corridor map
and 300 particles are used. In order to test the robustness
of SAMCL, we add 6% perception noise and 8.82% motion
noise to each wheel. Figure 6 shows the trajectories of robot,
odometry and SAMCL and Figure 7 shows the localization
error curves of SAMCL and odometry. Since particles are
initialized by a random distribution in the global localization
problem, the localization errors are bigger at the beginning.
But errors decrease with particles converging. Simulation
results show that SAMCL has a good performance in global
localization.

C. Comparison of computational efficiency

As discussed thus far, SAMCL is more efficient than regular
MCL due to employing the off-line pre-caching technique.
Figure 8 plots execution time curves of MCL without the
pre-caching technique and SAMCL as a function of the
number of particles. The execution time is the robot online
implementation time of the first 20 steps. As to be expected,
the execution time increases with the number of particles, both



Fig. 6. Global localization using SAMCL in a quasi-symmetrical corridor.
The trajectories of robot, odometry and SAMCL are displayed by the black
solid line (line A), the green dash-dot line (line C) and the red dotted line
(line B), respectively.

Fig. 7. Localization errors of global localization using SAMCL in a quasi-
symmetrical corridor. SAMCL errors and odometry errors are plotted by the
red solid line and the green dash-dot line, respectively.

for regular MCL (red dotted line) and for SAMCL (black
solid line). However, the augmentation of the execution time
of regular MCL is enormous. Particles from 1 to 1000, the
execution time of regular MCL increases about 395 seconds,
but for SAMCL, the execution time only increases about 4
seconds.

Fig. 8. Execution time of regular MCL and the SAMCL algorithm as a
function of the number of particles.

D. Kidnapping
Kidnapping is the most difficult problem in three sub-

problems of localization. Thus, we design three trials to
evaluate the ability of SAMCL to recover from kidnapping.
These trials are based on global localization. particles are
initialized to distribute randomly in the map with uniform
probabilities.

1) Kidnapping in different environments with known head-
ing direction: In the first simulation, the robot is kidnapped
from the corridor to the room located in the middle of the map.
To reduce the difficulty, the heading direction of the robot is
supposed to be known after kidnapping. We add 6% noise to
sensors and 8.82% noise to each wheel. 300 particles are used
to estimate the robot’s pose.

The basic MCL algorithm can solve the global localization
problem but cannot recover from robot kidnapping. Since all
particles only survive near the most likely pose once the
robot’s pose is determined, there will be no particle near the
new pose. In other words, the plain MCL algorithm does
not have ability to re-distribute global samples. That is quite
obvious from the results in Figure 9. The robot is kidnapped
from the corridor (position 1) to the room (position 2) after
particles converging. Both particles and odometry fail to track
the robot.

Fig. 9. MCL for robot kidnapping. The robot is kidnapped from the corridor
to the room with known heading direction. The trajectories of robot, odometry
and MCL are displayed by the black solid line (line A), the green dash-dot
line (line C) and the red dotted line (line B), respectively.

The same simulation is executed by the SAMCL algorithm.
As shown in Figure 10, the robot’s trajectory (line A) shows
that the robot is kidnapped from the corridor (position 1)
to the room (position 2). The odometry’s trajectory (line C)
shows that odometry has totally lost. However, the trajectory
of SAMCL (line B) re-tracks the robot’s trajectory (line A)
with only little delay.

In order to depict kidnapping more clearly, trajectories are
decomposed into X-axis and Y-axis as shown in Figure 11. It
can be found easily that kidnapping happens both in the X-
axis direction and the Y-axis direction at t = 8.5s. Actually,
the robot is kidnapped from the coordinate (3.94, 0.28) to
the coordinate (−5.80, 5.52). In this trial, SAMCL finds and
recovers from kidnapping very soon, since the robot is kid-
napped between two different environments (from the corridor
to the room).

Figure 12 plots the localization error curves of SAMCL and
odometry. Both SAMCL errors and odometry errors increase



Fig. 10. SAMCL for robot kidnapping. The robot is kidnapped from the
corridor to the room with known heading direction. The trajectories of robot,
odometry and SAMCL are displayed by the black solid line (line A), the
green dash-dot line (line C) and the red dotted line (line B), respectively.

(a)

(b)

Fig. 11. Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line
A, line B and line C depict the trajectories of robot, SAMCL and odometry,
respectively.

suddenly when the robot is kidnapped, however SAMCL
recovers in a flash.

Fig. 12. Localization errors of SAMCL and odometry. The robot is kidnapped
from the corridor to the room with known heading direction. SAMCL errors
and odometry errors are plotted by the red solid line and the green dash-dot
line, respectively.

2) Kidnapping in the same environment with known heading
direction: The second trial is more challenging, since the robot
is kidnapped in the same corridor. The SAMCL algorithm
cannot find kidnapping until the robot moves to the lower right

corner. The parameter settings and the map used here are the
same as the first one. The heading direction of the robot is
also supposed to be known after kidnapping.

Figure 13 depicts the trajectories of robot, odometry and
SAMCL. The robot is kidnapped from position 1 to position
2 in the same corridor. After kidnapping happens, odometry
still naively believes that the robot is on the track. However,
SAMCL can find and recover from kidnapping. In practice,
SAMCL does not perceive kidnapping immediately since kid-
napping occur in the same corridor (no environment changes).
This is clearly depicted in Figure 14.

Fig. 13. SAMCL for robot kidnapping. The robot is kidnapped in the same
corridor with known heading direction. The trajectories of robot, odometry
and SAMCL are displayed by the black solid line (line A), the green dash-dot
line (line C) and the red dotted line (line B), respectively.

In the Figure 14, trajectories of robot, SAMCL and odome-
try are decomposed into X-axis and Y-axis, respectively. From
Figure 14(a), we can find that the robot is kidnapped about
at t = 3.7s and it is abducted about 3.8m far away in the X-
axis direction. The SAMCL’s trajectory shows that SAMCL
does not realize kidnapping immediately until the environment
changes. Thus, to recover from this global localization failure,
SAMCL uses about 4.5s. In the Y-axis direction, there is no
visibly kidnapping occurred (see Figure 14(b)).

The localization error curves of SAMCL and odometry
are shown in Figure 15. Sudden changes of error curves
denote that kidnapping has happened. The SAMCL algorithm
recovers from kidnapping with some delay but odometry loses
itself totally.

3) Kidnapping in different environments with unknown
heading direction: The most difficult one for the robot is
the third trial. In the previous two simulations, the heading
direction of the robot is supposed to be known after kid-
napping. However, there is no knowledge about the heading
direction of the robot in this simulation. That means neither
the x− y coordinates nor the orientation are known after the
robot is kidnapped. The robot is completely lost. To recover
from kidnapping, we have to use more particles. Three times
more than the previous two simulations (900 particles) are
employed in this simulation.

Figure 16 illustrates the trajectories of robot, odometry and
SAMCL. Line A shows that the robot is kidnapped from the
corridor (position 1) to the room (position 2). Line B depicts



(a)

(b)

Fig. 14. Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line
A, line B and line C depict the trajectories of robot, SAMCL and odometry,
respectively.

Fig. 15. Localization errors of SAMCL and odometry. Kidnapping occurs in
the same corridor with known heading direction. SAMCL errors and odometry
errors are plotted by the red solid line and the green dash-dot line, respectively.

that SAMCL can find kidnapping quickly but it does not
recover immediately. Since the lack of the heading direction,
SAMCL needs some time to converge its particles. Line C
shows that odometry is not aware of kidnapping.

Fig. 16. SAMCL for robot kidnapping. The robot is kidnapped from the
corridor to the room with unknown heading direction. The trajectories of
robot, odometry and SAMCL are displayed by the black solid line (line A),
the green dash-dot line (line C) and the red dotted line (line B), respectively.

After trajectories are decomposed into X-axis and Y-axis
(as shown in Figure 17), we can find that the robot is
kidnapped from the coordinate (6.24,−0.02) to the coordinate

(−4.85, 4.84) at t = 14s. SAMCL finds and recovers from
kidnapping within 1s.

(a)

(b)

Fig. 17. Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line
A, line B and line C depict the trajectories of robot, SAMCL and odometry,
respectively.

Figure 18 plots the localization error curves of SAMCL
and odometry. The same as previous two trials, SAMCL can
recover from kidnapping quickly and then localize the robot
accurately.

Fig. 18. Localization errors of SAMCL and odometry. The robot is kidnapped
from the corridor to the room with unknown heading direction. SAMCL errors
and odometry errors are plotted by the red solid line and the green dash-dot
line, respectively.

4) Kidnapping in the same environment with unknown
heading direction: The case of kidnapping occurred in the
same environment with unknown heading direction is similar
to the previous simulations. However, there are more SERs
when the robot lies in the corridor than it lies in a distinct
region (as shown in Figure 3). Hence, to recover from kid-
napping, the algorithm needs more samples (even more than
Kidnapping in Section V-D3). This leads to an augmentation
of computation and it is difficult to implement the algorithm
in real-time.

VI. EXPERIMENTS

The SAMCL algorithm described in this thesis has been
tested with a Pioneer 3-DX mobile robot in a real office
environment (see Figure 19).



Fig. 19. Pioneer robot moving in the corridor.

The Pioneer robot is a wheeled mobile robot with two
driving wheels and a caster wheel. It is equipped with sixteen
ultrasonic range finders distributed around its circumference:
two on each side, six forward at 15◦ intervals and six rear
at 15◦ intervals (see Figure 20). In the experiments, only
ultrasonic range finders (no additional sensors) are used. The
maximum ranges of sensors are limited to 5m. The maximum
speed of the Pioneer robot is limited to 0.367m/s. The Pioneer
robot is equipped with an onboard laptop with 1.06GHz Intel
Core 2 Solo U2100 CPU and 1024M of RAM, and the
SAMCL algorithm is implemented in MATLAB.

Fig. 20. Sonar locations on the Pioneer 3-DX robot, adapted from [45].

The experimental environment is the first floor of our labora-
tory. Its size is about 25m×10m. Figure 21 shows the ground
plan and the expected trajectory. The robot should follow this
trajectory and go around in the corridor. The real environment
of this corridor is shown in pictures of Figure 21. There are
several unmodeled obstacles in the corridor, such as cabinets
and tables (see pictures A and B). We use this incomplete
map to test the robustness of our algorithm. The SAMCL
algorithm inherits the advantages of the MCL algorithm and
it employs the mixture perception model [7], so it can treat
these unmodeled obstacles as sensors noise. Because our map
is quasi-symmetrical, to recover from kidnapping in such maps
is more difficult. The resolution of the three-dimensional grid
G3D is 0.2m×0.2m×pi/32 and the resolution of the energy
grid GE is 0.2m× 0.2m in the experiments.

Three experiments were performed, each of them examining

Fig. 21. The ground plan including the expected trajectory. Pictures show
the real environment (with unmodeled obstacles).

the SAMCL algorithm in different situations. The first one
aims at testing the ability of global localization by using wheel
encoder reading of the Pioneer robot as odometry. The second
one focuses on testing the robustness of our method by adding
artificial errors to wheel encoder reading. The last one tests the
ability of recovering from kidnapping. In order to get reliable
statistical results, each experiment is repeated 20 times. Since
we did not employ any additional means to track the real robot,
the final pose of the real robot is measured by hands at each
experiment.

A. Global localization
The first experiment is designed to test the global localiza-

tion ability of the SAMCL algorithm. Odometry was obtained
from wheel encoder reading of the Pioneer robot. The initial
pose of the robot was set differently to the initialization of
odometry (a pose (0, 0, 0)T ). The initial orientation of the
robot was given about θ ≈ pi/4 and its initial position was
about 1m far from the origin of coordinates. The Pioneer robot
moved around in the corridor and localized itself. Because of
testing the ability of localization, the sensitive coefficient ξ
was given a low sensitive value.

Figure 22 shows localization results. As usual, the localiza-
tion result is represented by the expected value (or called the
weighed mean) of particles at each iteration. Line A denotes
the SAMCL’s trajectory and line B denotes the trajectory given
by odometry. The SAMCL’s trajectory is drawn after particles
converging. Obviously, it is more similar to the expected
trajectory (see Figure 21) than the odometry’s trajectory. The
trajectory given by odometry has a about pi/4 slope because
of the initial orientation error.

Table I shows average errors of the final poses given by the
SAMCL algorithm and odometry. As shown in Table I, Pioneer
has a relatively precise odometry but the SAMCL algorithm
provides more accurate localization results.



Fig. 22. Global localization using SAMCL. Line A and line B denote the
trajectories of SAMCL and odometry, respectively.

TABLE I
AVERAGE ERRORS OF THE FINAL POSES IN GLOBAL LOCALIZATION

x y θ
Localization 0.157m 0.092m 6.5◦

Odometry 0.739m 0.215m 33.7◦

B. Global localization with artificial errors

The second experiment further tests the robustness of the
SAMCL algorithm. In this experiment the Pioneer robot would
localize itself with unfaithful odometry. In practice, these
enormous errors of odometry are often caused by wheels
sliding on the smooth ground or by the robot passing the
concave-convex road. In order to simulate coarse odometry,
we added about 27% artificial errors to each wheel. In this
experiment, ξ was given a low sensitive value as the first
experiment.

The localization results are illustrated in Figure 23, line A
and line B represent the trajectories of SAMCL and odometry,
respectively. As we can see, odometry has totally lost because
of gradually accumulated errors. On the contrary, SAMCL still
gives good localization results.

Fig. 23. Global localization using SAMCL with artificial errors. Line A and
line B present the trajectories of SAMCL and odometry, respectively.

Average errors of the final poses of the SAMCL algorithm
and odometry are shown in Table II. Odomery’s errors are
huge as a result of adding artificial errors, however the
SAMCL algorithm still presents elegant localization results.

TABLE II
AVERAGE ERRORS OF THE FINAL POSES IN GLOBAL LOCALIZATION WITH

ARTIFICIAL ERRORS

x y θ
Localization 0.469m 0.031m 17.1◦

Odometry 6.353m 7.301m 72.5◦

C. Kidnapping

The third experiment demonstrates the ability of the
SAMCL algorithm to recover from kidnapping, which is the
most difficult issue. We kidnapped the Pioneer robot at the
beginning of the trajectory after particles converging. Put
differently, after the robot was well localized, we took it about
7m far away in its moving direction. Moreover, we added
about 27% artificial errors to each wheel. In order to make the
robot find kidnapping more quickly, the sensitive coefficient ξ
was given a medium sensitive value.

Figure 24 illustrates the distribution of the self-adaptive
sample set during the process of recovering from kidnapping.
In the beginning, the robot is well localized as shown in
Figure 24(a). Then the robot is kidnapped from position A
to position B (position B is about 7m far away from position
A in the robot’s moving direction). Next, kidnapping brings
on probabilities of particles reducing. When the maximum
of probabilities is less than ξ, global samples are divided
from the sample set and distributed in SER, as shown in
Figure 24(b). The robot moves forward and perceives the
environment. Because of the quasi-symmetry of environment,
SAMCL generates three probable poses of the robot after
resampling, depicted in Figure 24(c). The robot continues to
move and perceive, SAMCL finally discards two probable
poses and confirms the correct pose of robot, shown in Figure
24(d).

In this experiment, the final pose of the Pioneer robot
is measured, that is x = 0.79, y = 0.02 in the Cartesian
coordinate. For the convenience of analysis, trajectories given
by the SAMCL algorithm (line A) and odometry (line B) are
decomposed to X-axis and Y-axis. As shown in Figure 25, the
final pose of localization is x = 0.43, y = 0.09, but the final
pose of odometry is x = −2.96, y = −4.35. Obviously, the
localization results are much better than odometry. From the
figure, we can also find that the robot perceives kidnapping
at 3rds and recovers at 6ths. In the later process, it mistakes
once, but it re-localizes in less than 2s interval. Average errors
of the final poses of the SAMCL algorithm and odometry are
shown in Table III.

D. The success rate of recovering from kidnapping

We have presented that sampling in SER is more efficient
and more effective than sampling randomly from the theo-
retical view. Here, this conclusion was demonstrated by the
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Fig. 24. Distribution of the self-adaptive sample set during the process of recovering from kidnapping.

(a)

(b)

Fig. 25. SAMCL for robot kidnapping. Trajectories are decomposed to (a)
X-axis and (b) Y-axis. Line A and line B depict the trajectories of SAMCL
and odometry, respectively.

TABLE III
AVERAGE ERRORS OF THE FINAL POSES IN KIDNAPPING

x y θ
Localization 0.605m 0.076m 13.2◦

Odometry 5.6728m 5.017m 45.3◦

simulation based on the experiment. Figure 26 shows the
success rate of recovering from kidnapping as a function of
the number of particles. The success rate is defined as:

success rate =
the number of successful recoveries

the total number of tests
(19)

The success rate increases with the number of particles, both
for sampling in SER and for sampling randomly. However,
with the same size particle set, the success rate of sampling
in SER is much higher than sampling randomly. For example,
when using 300 particles, the success rate of sampling in SER
may achieve to 33%, while this rate of sampling randomly is
only 11%. To reach the same success rate, sampling randomly
has to use 900 particles, while using 900 particles, the success
rate of sampling in SER has achieved to 91%.

Fig. 26. The success rate of recovering from kidnapping as a function of
the number of particles.



VII. CONCLUSIONS

In this paper, we proposed an improved Monte Carlo
localization with self-adaptive samples (SAMCL) to solve the
localization problem. Comparisons of SAMCL and other three
plain Markov localization algorithms (EKF, grid localization
and MCL) are summarized in Table IV.

TABLE IV
COMPARISON OF SAMCL, EKF, GRID LOCALIZATION AND MCL.

EKF Grid lo-
calization

MCL SAMCL

Posterior rep-
resentation

Gaussian
(µt, Σt)

histogram particles particles

Position
Tracking

yes yes yes yes

Global
Localization

no yes yes yes

Kidnapping no yes no yes
Efficiency fast slow medium fast

• The SAMCL algorithm inherits all the advantages of
MCL, moreover it improves in several aspects. SAMCL
employs an off-line pre-caching technique to reduce the
expensive on-line computational costs of regular MCL.
We defined Similar Energy Region (SER), which provides
potential information of the robot’s pose. Hence sampling
in SER is more efficient than sampling randomly in
the entire environment. By using self-adaptive samples,
SAMCL can deal with the kidnapped robot problem as
well as position tracking and global localization.

• We tested respectively the abilities of SAMCL to solve
position tracking, global localization and the kidnapped
robot problem by simulations. Position tracking and
global localization were tested by using the same sim-
ulation settings as MCL. Results show that SAMCL
performs as well as MCL both in position tracking and
global localization.

• We compared SAMCL with regular MCL in compu-
tational efficiency. Due to employing the pre-caching
technique, SAMCL is much more efficient than regular
MCL without the pre-caching technique.

• Kidnapping was tested by three simulations with different
difficulties. In the first one, the robot is kidnapped from
the corridor to the room and its heading direction after
kidnapping is supposed to be known. In the second one,
the robot is kidnapped in the same corridor. It is more
difficult because SAMCL cannot feel kidnapping in the
same environment. Kidnapping is recovered until the
robot moves into a different terrain. In this simulation, the
robot also knows its heading direction after kidnapping.
The third one is the most challenging, since there are no
knowledge about the heading direction of the robot after
it is kidnapped from the corridor to the room. SAMCL
performed well in all the three simulations.

The future work would address to the issue of applying the
SAMCL algorithm in the multi-robot localization problem.
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