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Abstract—The Dirty Paper Trellis Code (DPTC) watermarking
scheme [1] is a very efficient high rate scheme. It has however a
major drawback: its computational complexity. This problem is
addressed by using a faster embedding technique. The embedding
space is built by projecting some wavelet coefficients onto secret
carriers. The fast embedding is achieved with a dichotomous
rotation in the Cox, Miller, and Bloom plane. Besides, a modern
watermarking scheme should manage the psychovisual impact
due to the watermarking signal. This is addressed by using a
psychovisual mask. Our low complexity watermarking scheme is
compared to two other psychovisual low complexity approaches
and results show a good behavior in terms of robustness. The
obtained results give a very clear vision, in realistic conditions
of use, of the current state-of-the-art for high-rate watermarking
schemes of low complexity.

Index Terms—Watermarking, Dirty-Paper Trellis Codes, high
rate, informed embedding, robustness, rotation-based embedding,
psychovisual watermarking, low complexity.

I. INTRODUCTION

The digital watermarking studies started in the early

nineties. In 1998, Costa work is rediscovered [2] and a

“new generation” of watermarking schemes, the informed

watermarking schemes, has been proposed [1], [3]–[7],...

Those informed approaches generally outperform the previous

non side-informed approaches. With informed approaches, the

message is coded by taking into account the host signal. In

practice, this reduces the interference due to the host signal

and thus increases the channel capacity [2].

We may broadly define two categories of multi-bit informed

watermarking systems: schemes based on lattice codes, more

commonly known as quantized based codes (DC-QIM [3],

SCS [5], ...) and schemes based on trellis (DPTC [1]). In this

paper we address the trellis codes whose original approach [1]

is known for its robustness and its high embedding payload.

Nevertheless, Dirty Paper Trellis Code (DPTC) has a major

weakness: the embedding step uses a Monte Carlo approach

which is computationally complex. We propose, in this paper a

less complex DPTC. In order to reduce the complexity we pro-

pose a rotation based approach in the Cox, Miller, and Bloom

plane (abbr. MCB). Besides, we include a generic solution in

order to use a psychovisual mask. We also propose by means

of experiments on robustness, a better comprehension of the

current state-of-the-art for high-rate watermarking schemes of

low complexity. Moreover, the obtained conclusions provide

additional knowledge to the community and are interesting for

practitioners.

Compared to the original DPTC [1], we use a wavelet

domain; There is thus no more “block artifacts” (the DCT

domain is used in the original DPTC approach), we make

difficult the attack presented in [8], since we perform the

embedding in a high dimension secret space, we increase the

robustness and reduce the distortion by increasing the size of

the trellis (as shown [9]); This is made in practice possible

thanks to the embedding space and because our technique is

fast, we propose a dichotomous rotation in the Cox, Miller,

and Bloom (abbr. MCB) plane [10] in order to rapidly embed

the message codeword, we propose a general solution in order

to use any psychovisual mask.

In Section II we re-introduce the concepts of informed

coding and informed embedding. This section presents the

original DPTC concepts [1].

In Section III, first, we detail the interesting properties of the

embedding space, second, we present the embedding approach,

third, we give a solution in order to use a psychovisual mask,

and fourth, we have a discussion on security aspects.

In Section IV, four different attacks at various powers are

tested on 100 different 256× 256 8-bits grey-levels images.

In Section V we conclude and give some perspectives on

DTPC.

II. THE ORIGINAL DPTC

The general scheme of DPTC is shown in Fig. 1.

Fig. 1. General watermarking scheme of DPTC [1].

The first step is the image DCT transform in order to obtain

the host signal x.

The second step is the informed coding. The input message

m is coded into a codeword c∗ by taking into account the host

signal x. To perform this encoding, a non-deterministic trellis

and the Viterbi algorithm are used.
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The last step of the DPTC scheme is the informed embed-

ding. It consists in modifying the host signal x in order to

“displace it” in the Voronoı̈ region of the codeword c∗. The

displacement vector is named the watermark signal w. The

addition of the host signal x and the watermark signal w gives

the watermarked signal y.

Let’s now define more precisely the trellis structure, the

informed coding and the informed embedding.

A. Trellis structure

Convolutional codes are a famous form of error correcting

codes. For those codes, a states-machine represents the possi-

ble transitions given inputs source sequences. Fig. 2 shows

a states-machine with four states. One input bit causes a

transition to a new state and outputs two bits. The states

diagram can also be represented as it evolves in time with

a trellis diagram. Fig. 3 shows the trellis associated to the

states-machine of Fig. 2. Usually, a trellis is built by placing

all the states in column and each possible transitions are drawn

by an arc between states at t time and states at t + 1 time.

By convention, bold arcs represent the 1 inputs and non-bold

arcs the 0 inputs.

Fig. 2. Binary convolution code’s states-machine with 4 states.

Fig. 3. Binary convolution code’s trellis with 4 states.

A convolutional coder takes a sequence of bits in input and

generates an output sequence thanks to the states-machine.

The output sequence i.e. the codeword is then transmit on a

network or stored. The decoder, when receiving the degraded

codeword, finds the closest codeword and returns the input

sequence related to that codeword. In order to find this closest

codeword, a Viterbi algorithm is often used [11]. The principle

of the Viterbi algorithm is the same as the Dijsktra shortest

path algorithm [12] but is adapted to the very structured form

of the trellis. Instead of exploring all the possible paths of

the trellis, in order to find the closest codeword, the Viterbi

algorithm solves dynamically the problem by keeping the

best sub-path at each state at each given time. This way the

algorithm does not have to keep track of all possible sub-paths

but only one sub-path per state.

Fig. 4. Dirty paper code’s trellis with 4 states and 4 arcs per state.

In DPTC [1], a special trellis is used. In this trellis, each

state owns multiple possible transitions given an input bit.

Each transition generates output real coefficients. In Fig. 4

we give an example of a trellis with 4 states and 4 arcs

per state. With this trellis, an input sequence owns multiple

possible output codewords (a codeword is the result of the

concatenation of outputs coefficients) since for each state there

are multiple possible transitions for the same input bit. An

input sequence may thus be coded with different codewords.

In the original DPTC algorithm, the trellis owns 64 states,

64 arcs per state and there are Narc = 12 real coefficients

pseudo-randomly generated as output arcs values. A bit from

the message will be carried by (spread on) Narc = 12
coefficients of the host signal x. Note that the Narc = 12
value is chosen depending on the message length which is

fixed by the user.

Furthermore, Wang et al. have experimented, using different

trellises, the robustness of the embedding on synthetic signals,

with a simple blind additive embedding. The trellises have

from 1 to 64 states with 1 to 128 arcs per states. Wang et al. [9]

show that the configuration that gives the best robustness, for

a comparable number of codeword, is the one with the largest

number of state and with a number of arcs per state lower

than or equal to the number of state. A trellis with 64 states

and 64 arcs per state is a choice that gives good robustness

results but in counterpart the computational complexity during

the embedding is relatively high (see Section II-C).

B. Informed coding

Informed coding has been introduced in watermarking

community around 1998 [3], [4]. Previous non-informed ap-

proaches such as Spread-Spectrum [13] usually do not take

the host signal x into account in order to choose the codeword

c∗. The nice property of informed coding approaches is that

theoretically, with Gaussian assumptions, and a high dimen-

sion random codebook, the host signal x does not influence

the channel capacity [2]. Thus, with those assumptions, the
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only capacity limitation comes from the attack power. With a

non-informed approach and those assumptions, the capacity is

limited by the host signal power and the attack power.

Fig. 5. Dirty Paper Trellis Codes apply on a 240× 368 image.

The DTPC [1] belongs to the informed category. In the

original scheme, an image is 8 × 8 DCT transformed, the

twelve first ACs coefficients of each DCT blocks are ex-

tracted and pseudo-randomly ordered in a vector x of size

12 × N/64 = 3 × N/16 (with N the image size). Fig. 5

illustrates the host signal x construction, the informed coding

and the informed embedding steps on a 240× 368 image.

The set of all the trellis paths i.e. all the possible outputs

sequences, is the codebook C of the coder. A codeword ci ∈ C
is the resultant coding of a message m. The informed coding

is a way to choose the codeword ci (encoding a given message

m) the closest (for a given distance) to the host signal x. Thus,

informed coding allows to encode a message m by taking into

account the host signal x.

In the DPTC algorithm, given a message m, the informed

coding is achieved:

• by pruning the trellis in order to keep the only valid paths.

Thus, for a given transition, there are only the 0 input arcs

or the 1 input arcs;

• by running a Viterbi decoder algorithm on this pruned

trellis in order to find the closest codeword c∗. The

distance used in order to compare the codewords with the

original host x is the scalar product. The Viterbi decoder

thus retains the path (i.e. the codeword c∗) of highest

correlation with the host signal x.

C. Informed embedding

In the original DPTC algorithm [1], a Monte Carlo approach

is used in order to displace the host signal x into the Voronoı̈

region of the codeword c∗. This embedding is achieved in

order to meet a given robustness. Moreover the modification

of x is achieved by taking into account the psycho-visual

degradation by using the Watson perceptual measure [14].

The monte-carlo principle is iterative and consists of at-

tacking and counter-attacking a watermarked signal y. The

attack is achieved by gradually adding a Gaussian noise of

increasing power, in order to do fail the decoder (bit errors

on the message), and be under the threshold robustness value

(see [1]). The counter attack is achieved by modifying the

watermarked signal in order to resist to the previous successful

attack. The iterative process is stopped after a sufficient

number of successive unsuccessful attacks.

The Monte Carlo approach requires to run the Viterbi

algorithm a high number of times. Even with the proposed

optimizations in [1], the computational complexity is very high

and this is at present a strong brake for intensive experiments

studies1. The DPTC watermarking scheme is thus seriously

competed with faster quantization-based approaches [5], [16].

Other sub-optimals approaches have been proposed in order

to reduce the computational complexity. Wang et al. [9] uses

an additive approach such that y = x + α c∗. This allows

intensive experiments but a weak embedding capacity.

In [17], Wang et al. modifies the host signal x in order

to displace it, in the Voronoı̈ region of c∗ but exactly in the

same direction of c∗ such that y = ||x||
||c∗||c

∗. With such an

approach, and supposing that all the codewords own the same

norm ||c∗||, the closest codeword found (at the decoder) in

the watermarked signal y is c∗. Indeed, the correlation of any

codeword ci is:

∀ci ∈ C,y.ci = ||y||.||ci||. cos θi

= ||x||.||c∗||. cos θi,

with θi the angle between y and ci. The correlation y.c∗

is the highest one, since the angle is null. The Wang et al.

approach [17] is interesting but does not take into account

the degradation aspect of the host signal. The robustness is

strong since the watermarked signal is exactly in the center of

the Voronoı̈ region but the modification of x is too high and

inacceptable for real images.

A less degrading approach has been proposed by Lin et al.

[18]. Fig. 6 illustrates Voronoı̈ regions in case of an embedding

space of size 3. Supposing that the codewords own the same

norm, each black dot on the sphere represents a codeword.

A Voronoı̈ region of a codeword is a space area delimited by

planes whose intersections with the sphere are drawn by edges

surrounding the codewords.

In the Lin et al. [18] approach, once the closest codeword

c∗ has been computed (see section informed coding II-B), the

closest codeword c’ to c∗ is computed. This is achieved by

modifying the Viterbi algorithm in order to extract the second

best path. The first most correlated codeword to c∗ is c∗ and

the second one is c’.

Knowing c∗ and c’, we deduce the circular hyper-cone

whose apex is 0, whose axis is the vector c∗, and whose surface

goes through (c∗+c’)/2 (see Fig. 6). The host vector x is then

projected inside the cone onto the hyper-hyperboloid defined

by a fixed robustness. See Cox, Miller and Bloom for more

details [10].

1The experimentation (payload = 1/64 bpp, 100 embeddings, and 5000
attacks, 8-bits images of 256×256) takes more than one week running on a
single-core PC with 3GHz. If we would set the SSIM [15] quality metric,
for each image, it would take around 10 times longer. Moreover, in order to
obtain satisfying results, the numbers of iterations have to be increased, and
the granularity of the attack power has to be attenuated. It would result in a
huge increase of time. The DPTC is clearly not suitable for payload of 1/64
bpp.
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Fig. 6. 3D representation of Voronoı̈ regions and Lin et al. [18] hyper-cone.

The Lin et al. approach [18] is a very clever way to reduce

the computational complexity and ensure a tradeoff between

robustness and distortion. Nevertheless, the watermarked sig-

nal y is often too far from the optimal robustness-distortion

point. It follows a too strong distortion during the embedding

process [19]. This may geometrically be explained on the

Fig. 6 where a vast part of the Voronoı̈ region is not used

as embedding space whereas the optimum point could have

been in this zone.

III. NEW EMBEDDING APPROACH

In this section, we present our proposed method: the em-

bedding space, the embedding approach and a psychovisual

extension.

A. Embedding space

Fig. 7 illustrates our proposition : the Rotation-Based Dirty

Trellis Codes (RB-DPTC). Our new embedding space is

obtained by first, a wavelet transform of the image, and second,

projections of the host signal x of dimension Nwlt (x is the

concatenation of sub-bands coefficients except LL sub-band’s

coefficients2) onto Nsec carriers (noted ui with i ∈ [1, Nsec])
in order to obtain the vector vx of dimension Nsec. Carriers

are normalized bipolar pseudo-random sequences. In high

dimension, carriers are quasi-orthogonal. A projection is just

a scalar product.

Note that during the extraction process, each projection

brings together many wavelet coefficients into a single co-

efficient of the embedding space vx. The projections increase

the Watermak-to-Content-Ratio (WCR) and thus improve the

robustness of the scheme. The concepts of projections and

retro-projections (spreading) come from the non-informed

techniques of Spread Spectrum [13].

Also note that the complexity of the projection is reduced

to a linear complexity with a Space Division Multiplexing

2In many watermarking approaches such as BA [20], the coefficients of
low frequencies are not used to avoid that the image degradation, due to the
message embedding, be perceptible.

approach [21] 3. The obtained vector vx of dimension Nsec

may then be used for the informed coding (see Section II-B)

and informed embedding (see Section II-C).

Fig. 7. Our Rotation-Based Dirty Paper Trellis Codes (RB-DPTC) scheme.

This embedding space allows to spread the watermark signal

on almost all the frequency domain. Moreover, the projections

onto Nsec carriers give to the embedding space a Gaussian

aspect (Central Limit Theorem) which is known for its good

property for the channel capacity4 [2]. Finally, the wavelet

domain is known for its good psycho-visual properties and

introduces less disturbing effects than the block effects from

the DPTC domain [1].

B. Embedding algorithm

The informed coding is the same as the original one (see

section II-B) but is achieved with the host vector vx ∈ RNsec

(secret space). After achieving the informed coding, the code-

word c∗ ∈ RNsec is extracted. As explained in Section II-C,

the solution proposed in Lin et al. [18], in order to speed-up

the embedding and keep a good robustness-distortion tradeoff,

is not satisfying since the degradation is too strong [19]. On

the contrary, our approach gives a good compromise between

complexity, robustness and distortion.

Remember that at the decoder, the most correlated code-

word c̃∗ ∈ RNsec is obtained by running the Viterbi algorithm

on the “unpruned” trellis. This codeword c̃∗ belongs to the

codebook C and maximizes the correlation with the attacked-

watermarked vector ṽy ∈ RNsec such that:

c̃∗ = arg
ci

max
∀ci∈C

(ṽy.ci)

= arg
ci

max
∀ci∈C

(||ṽy||.||ci||. cos θi), (1)

with θi the angle between ṽy ∈ RNsec and ci ∈ RNsec .

Knowing that all the codewords own the same norm, the

Viterbi algorithm extracts the codeword ci owning the smallest

angle θi with ṽy. A low-power Additive White Gaussian Noise

attack is uncorrelated to c∗ and thus does not modifies the

initial angle θi. During the extraction, assuming that the attack

was an AWGN, we should retrieve the codeword c∗ used at

the embedding.

In order to embed the message m, it is thus sufficient to

reduce the angle between the host vector vx and the codeword

3The Space Division Multiplexing approach (SDM) [22] consists to apply
a shuffling to the host signal x, to divide the vector x into disjoint regions of
quasi-equal sizes, and to use a carrier by region. The computational complexity
is thus linear in function of the image size N instead of being quadratic.

4Costa [2] uses Gaussian hypothesis on the host source distribution in order
to demonstrate that the source does not influence the channel capacity (the
capacity is the quantity of bits that may be transmit without any errors).
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c∗ until obtaining the smallest angle regarding all the other

angles ̂(vx, ci).
In order to reduce the angle between vx ∈ RNsec and c∗ ∈

RNsec , we first express these two vectors in the Miller, Cox and

Bloom (MCB) plane [10]. Fig. 8 illustrates this MCB plane.

The MCB plane is defined by an ortho-normalized basis (v1,

v2), with v1 ∈ RNsec and v2 ∈ RNsec , such that vx and c∗

belong to that plane (Gram-Schmidt algorithm):

v1 =
c∗

||c∗|| ,

v2 =
vx − (vx.v1)v1

||vx − (vx.v1)v1||
.

In the MCB plane, the 2D coordinates of the host vector vx

are:

v2D
x (1) = vx.v1,

v2D
x (2) = vx.v2,

and the 2D coordinates of the codeword c∗ are:

c∗2D(1) = ||c∗||,
c∗2D(2) = 0.

A rotation of the host vector v2D
x ∈ R2 of a θ angle in the

MCB plane is such that:

v2D
y (1) = cos θ.v2D

x (1)− sin θ.v2D
x (2),

v2D
y (2) = sin θ.v2D

x (1) + cos θ.v2D
x (2). (2)

The vector vy ∈ RNsec is then obtained by expressing

v2D
y ∈ R2 in the Nsec dimension space:

vy = v2D
y (1).v1 + v2D

y (2).v2

If we reduce the absolute angle between the host vector

vx and the codeword c∗ in the MCB plane, it increases the

correlation vx.c∗. With a dichotomous approach on rotation

angle, one can rapidly find a Voronoı̈ frontier i.e the frontier

angle θf . The algorithm obtaining this Voronoı̈ frontier is

iterative and dichotomous5

Vectors vx and c∗ are the inputs of the algorithm. Let us

define two variables θmax ← 0 and θmin ← (v̂x, c∗) (note

that θmin ≤ 0) and set variable θf ← (θmin + θmax)/2. The

algorithm repeats sequentially step 1 to step 3 (there are less

than 10 iterations):

1) rotate vx (in the MCB plane) of an angle θf in order to

obtain vy (see equation 2),

2) run the Viterbi decoder with vy as input. If the extracted

message is error free, vy belongs to the Voronoı̈ region,

otherwise it does not.

3) modify the rotation angle depending on Voronoı̈ region’s

belonging: if the extracted message (at step 2) was error

free then θmin ← θf else θmax ← θf ; Update the

rotation angle θf ← (θmin+θmax)/2. Return to 1 while

|θmin − θmax| is greater than a given threshold.

5In computer science, a dichotomous approach (dichotomic search approach
with a “divide and conquer” strategy) is an iterative or recursive search
algorithm, where, at each step, we divide in two parts a research space which
becomes restricted to one of these two parts. In our approach we are looking

for angle θf in the research range [(v̂x, c∗), 0].

Fig. 8. Rotation-based embedding in the Miller, Cox and Bloom plane.

Once the frontier angle θf in the MCB is found, we improve

the embedding robustness by penetrating inside the Voronoı̈

region with a given angle θR. Our informed embedding is thus

a rotation of the host vector vx of an oriented angle equals to

the max(θf + θR, (v̂x, c∗)). Fig. 8 illustrates vx, vy, θf and

θR in the MCB plane. Note that a safety criteria proposed in

[23] to counter the attack by principal component analysis of

[24], and try to improve the algorithm of Broken Arrows [20]

is to impose ||vx|| = ||vy||. This is exactly what we do by

making a rotation of vx; the norm of vy equals the norm of

vx.

We then compute the watermark vector vw = vy−vx, retro-

project it onto carriers in order to obtain the watermark signal

w:

w =

i=Nsec
∑

i=1

vw(i).ui, (3)

with vw(i), the ith component from vector vw, and ui the ith

secret carrier defined in Section III-A. Then, we compute the

watermarked signal y = x+w. The inverse wavelet transform

of y gives the watermarked image. At the extraction we project

wavelet coefficients onto secret carriers and then retrieve the

closest codeword (and thus the message) from the codebook

C thanks to the Viterbi algorithm.

Fig. 9 shows the proposed embedding solution and the

Lin et al. one [18] on a 2D Voronoı̈ scheme. The Lin et

al. embedding region is inside the circle centered on c∗

codeword. As discussed previously, this embedding region is a

strong reduction of the Voronoı̈ region. With our approach, we

displace the host vector vx inside the Voronoı̈ region, toward

c∗, and with a fixed angle penetration. The advantage of the

approach on real data i.e. images, is that PSNR may be greater

than 42 dB which is not the case with Lin et al. approach

which gives an average maximum PSNR of 34 dB [19] on the

100 first images from the BOWS-2 database6.

C. A psychovisual extension

In order that the impact of the watermarking is psycho-

visually invisible, it is classical to “shape” the signal thanks

6The BOWS-2 database is downloadable at http://bows2.gipsa-lab.inpg.fr/.
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Fig. 9. 2D representation of embedding solutions.

to a psychovisual masking. Roughly speaking, the watermark

signal strength should be reduced in uniform regions and

should be increased in contours areas or textured regions. Our

mask is obtained, first, by filtering the image with a high-pass

filter, second, by applying a wavelet transform to the filtered

image, and third, by linearly transforming the absolute values

of the wavelet coefficients between [1, 8]. The mask for the

Barbara 8-bit image (Figure 10.a), crop to a 512×512 image,

is given in Figure 10.c.; values are multiplied by 255. The

Figure 10.b gives the wavelets decomposition in 3 levels with

the 9/7 Daubechies decomposition; Values are centered on the

value 127. Note that this mask is recomputed at the extraction

side.

(a) Barabara image (b) Wavelet

decomposition

(c) Mask

Fig. 10. Illustration of the psychovisual mask in the wavelet domain

The psychovisual extension briefly presented here is dis-

cussed more in detail in [25]. Note that in this psychovisual

extension we also added an encoding of the message by an

error correcting code of rate 1/2.

Fig. 11 shows the general embedding scheme with the use

of a psychovisual mask. Referring to that figure, there are three

majors steps compared to the scheme of Fig. 7:

1) the construction of a psychovisual space xpsy. In this

space, coefficients are psychovisually equivalents. One

can fairly embed in each coefficient. This psychovisual

space is such that: ∀i ∈ [1, Nwlt],xpsy[i] = x[i]/α[i],
with α the psychovisual mask;

2) the shaping of the watermark signal with the mask α:

∀i ∈ [1, Nwlt],w[i] = wpsy[i] × α[i]. This shaping

reduces the psychovisual impact of watermarking in the

areas where it would have been visible. For example, the

value of α will be small in regions where light intensity

is uniform to reduce the power of w in those areas;

3) the shaped watermark embedding. This embedding is

such that: ∀i ∈ [1, Nwlt],y[i] = w[i] + x[i].

Fig. 11. Embedding scheme with a psychovisual mask.

In the DPTC [1] or BA (Broken Arrows) [20] algorithms,

the psychovisual impact is taken into account during the

embedding, and it is not necessary to recompute a mask

at the decoder. The approaches used in BA and DPTC are

nevertheless difficult to reapply in the rotation-based DPTC

approach, either because the assumptions are not appropriates,

either because the computational complexity is too high. In

the [26] approach, the shaping of the watermark signal is

achieved in the phase of retro-projection onto carriers. With

our approach, we can use any psychovisual mask from the

literature and moreover each coefficients from the embedding

space are psychovisually equivalent.

The computation of the mask, during extraction, is a delicate

phase. The mask must be the same as that used during

embedding. If the masks are too different the message might

be incorrectly extracted. Thus, the mask must also have

properties of robustness to various attacks of a watermarking

system. Other masks, in the wavelet domain, may been used

like the mask proposed by Xie and Shen [27], which is an

improvement of the well known pixel-wise masking model

of Barni et al. [28], but some experiments show that the

robustness is not improved [25]. There is still research to

achieve in the future about robust psychovisual masks.

Thus, the decoder extracts the wavelet vector ỹ from the

watermarked-attacked image, divides each component i by

α[i] (α is re-computed at the decoder), and projects the

resulting vector onto the secret carriers in order to obtain

a vector ṽy. All those steps are the same than those of

embedding process (and are shown in Figure 11). As explained

in Section III-B, the most correlated codeword c̃∗ ∈ RNsec is

obtained by running the Viterbi algorithm on the “unpruned”

trellis. When running the Viterbi algorithm, we are searching

to the codeword c̃∗ that belongs to the codebook C and

that maximizes the correlation with the attacked-watermarked

vector ṽy (see Equation 1). The path in the trellis associated

to the most correlated codeword c̃∗ is the message m̃ that we

retrieve.

D. Discussion on security aspects

The recent work of Bas and Doërr [8] about security of

DPTC shows that in the Kerckhoffs’s framework [29], i.e.

when embedding and extracting algorithms are known by an
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attacker, the trellis codebook may be retrieved7 by observing

a large number of watermarked images. Those conclusions are

drawn based on a simplified version of the DPTC algorithm

(non pseudo-random-ordering of DCT coefficients) but show a

certain security weakness of DPTC [1]. The private space, that

we use in this paper, allows to hide the structure of the trellis.

A security attack based on the principle exposed in [8] is thus

at least as difficult to lead with our proposition. Moreover,

it is certainly very difficult to estimate the secret projections

in the same way as [24] since there is a high number of

codewords (with a trellis made of 128 states and 128 arcs

per state and with a payload of 1024 bits, there are more than

10387 codewords). Note that there is a big difference between

attacks on the robustness and attacks on the security. An attack

on security consists to estimate the secret parameters (a secret

key, the secret vectors, ...). In this article we will not address

security attacks. This will be discussed in future work. For a

better understanding of the difference between robustness and

security, the reader will find practical scenarios on the website

of the BOWS2 competition [30], and interesting definitions of

security in [31], [32].

IV. RESULTS

The experiments were performed on the first 100 images of

the BOWS-2 database8 with images resized to 256 × 2569.

These images are grayscale photos taken by amateurs and

coded on 8 bits.

Four types of attacks to robustness have been tested: the

Gaussian noise attack, the filtering attack, the valumetric

scaling attack, and the JPEG attack. In case of real images,

the use of those four types of attacks in order to analyze the

robustness is a classical methodology [1]. For the analysis

of one image, those four types of attacks necessitate 50

different executions with varying parameters. The four attacks

are described in detail in [1]. Note that we have also achieved

an evaluation of a JPEG2000 lossy compression attack, with

the JasPer software [33]. None of the three algorithms are

able to face this attack even at very small compression rates.

This is mainly because the embedding space, for the three

algorithms, is not adapted. Moreover, we have chosen some

difficult experimental conditions: a high payload (1/64 bpp)

and a high SSIM10 [15] (98%).

Let us remark that we do not address the malicious robust-

ness attacks in the paper. A malicious attack on the robustness,

like the Westfeld denoising attack [34], would suppress the

watermark signal. Those attacks are borderline for high-rate

watermarking schemes. The aim of the high-rate watermarking

schemes is usually to propose a robust communication on a

noisy channel and not on a malicious channel.

7More precisely, these are the coefficients attached to the arcs of the trellis
that can be fairly well estimated.

8The BOWS-2 database is downloadable at http://bows2.gipsa-lab.inpg.fr/.
9The image sub-sampling has been achieved with the xnview program using

Lanczos interpolation.
10SSIM is a classical measure well correlated to the Human Visual System.

The SSIM values are real positive numbers lower or equal to 1. Stronger is
the degradation and lower is the SSIM measure. A SSIM value of 1 means
that the image is not degraded. To compute the SSIM value, we use the C++
implementation of Mehdi Rabah available at http://mehdi.rabah.free.fr/SSIM/.

The Bit Error Rate (BER) is computed from the extracted

message and is equal to the number of erroneous bits divided

by the total number of embedded bits. The BER is computed

for each attack. We fixed the degradation to a SSIM [15] value

of 98%. The payload is such that there is 1 bit embedded in 64

pixels such as the original DPTC algorithm [1]. The number

of embedded bits is thus 1024 bits.

Three algorithms are competing: our psychovisual Rotation-

Based algorithm (PRB-DPTC), multi-Hyper-Cube watermark-

ing scheme (MHC) [35] which is a P-QIM like algorithm [36],

and Turbo-TCQ algorithm (T-TCQ) [26]. For each algorithms,

the payload and the SSIM value are the same. All those

algorithms are multi-bit high rate watermarking schemes, and

take into account the psychovisual impact of the watermark.

Those algorithms have been defined and tested for real images,

and not only on pure Gaussian signals. Moreover, they have

a small O(size) complexity with size the size of the image.

The embedding computational time is around few seconds for

a CIF 360 × 288 on a low cost laptop (Processor = Intel(R)

Core(TM)2 Duo CPU P86000 2.4 GHz, RAM = 4GB).

For PRB-DPTC algorithm, the trellis structure owns 128
states with 128 arcs per state. Outputs arcs labels are drawn

from a Gaussian distribution and there are 10 coefficients per

output arc. Wavelet transform is a 9/7 Daubechies with l = 3
decomposition levels. Except the LL sub-band, all the other

sub-bands are used to form the host signal x. With 256 ×
256 images, the wavelet space size is thus Nwlt = 64 512

coefficients. In order to embed the 2×1024 bits (the correcting

code rate is 1/2), with a trellis with Narc = 10 coefficients per

arcs, the private space size should be Nsec = 2×1024×10 =
20 480 coefficients. The inside angle penetration is tune in

order to reach a SSIM = 98%. The selected psychovisual mask

is the one based on a high-pass filtering [25].

The multi-Hyper-Cube watermarking scheme (MHC) [35],

[36] is achieved in the DCT domain and is a TCQ-based

watermarking approach using the Watson perceptual metric.

The Turbo-TCQ (T-TCQ) [26] approach is also achieved in

the DCT domain with a TCQ-based approach and the use of

turbo principle coming from correcting codes domain.

A. Computational cost

In order to give an idea of the computational complexity

we measured the CPU cost, averaged on 100 images, for an

embedding in an image with a SSIM = 98% (this requires

around 10 dichotomous iterations by image) for the three

algorithms. The computer is a low cost laptop with a processor

Intel(R) Core(TM) 2 Duo CPU at 2,4GHz with 4GB RAM.

The results are given in the Table I. The MHC [35] approach

is the faster with a cost below one second. This is a classical

result for quantized based approaches. The T-TCQ [26] is

around 5 times longer since it necessitates applying the turbo

principle which is expensive. The RB-DPTC is around 12

times longer than MHC. Remark that the original approach [1]

would take around 10 hours on the same PC with the same

conditions. Our approach greatly reduces the computation cost.
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Algorithm CPU cost (seconds)

MHC [35] 0.98

T-TCQ [26] 5.73

PRB-DPTC 12.74

TABLE I
COMPARISON OF CPU COSTS FOR THE EMBEDDING IN AN 8-BITS IMAGE

256× 256 WITH A SSIM = 98%.

B. Valumetric scaling attack

The valumetric attack modifies the pixels intensity of a

scaling factor ν ∈ R+. An intensity value v is transformed in

ν.v. Thus, for a scaling factor below 1 the image is darkened

and for a scaling factor above 1 the image is brightened.

The results for the valumetric attack are given in Fig. 12.

Usually, the T-TCQ [26] outperforms the other approaches,

but for the valumetric one, it has very poor performances. This

was already observed in [26] and it is a classical observation

for quantization-based approaches. Indeed, the valumetric at-

tack introduces desynchronizations: the quantized values are

different from those computed at the embedding. In order

to suppress this sensitivity the RDM trick [37] is used in

MHC [35]. The PRB-DPTC has very good performance facing

valumetric attack, especially for downscaling. This very good

behavior was already observed in [1] and is still true with our

rotation based approach. This comes from the low sensitivity

to valumetric downscaling of the correlation measure used for

the decoding in the Viterbi algorithm.

Fig. 12. BER for the valumetric scaling attack.

C. Low pass filtering attack

Fig. 13 shows BER results of a low pass filtering. The filter

is a Gaussian filter of kernel size 9 × 9, with a 0 mean, a

standard deviation σ and whose kernel coefficients are:

k(u, v) =
1

σ
√

2π
× e

−(u
2+v

2)

2σ2 , (4)

with u and v the line and column positions related to the center

of the kernel.

The Turbo-TCQ [26] has very good performances since it

is robust to a filtering below 0.5 standard deviation. MHC is

Fig. 13. BER for the Gaussian filtering attack.

a little bit less efficient but is robust to a power lower to 0.4.

The PRB-DPTC owns very low BER under a power attack

of 0.4. We should note that a more efficient correcting code

would probably nullify the BER. We may conclude that the

PRB-DPTC owns a similar behavior to MHC, for the filtering

attack. Remark that low-pass filtering is an attack which

destroys the high frequencies. The Turbo-TCQ, and in to a

lesser extend MHC, are less sensitive because their embedding

spaces, mainly use low frequency coefficients. The Turbo-TCQ

generally outperforms other approaches due to the use of a

turbo principle coming from correcting codes and ensuring

near-optimal performances. Remark that Turbo-TCQ results

are given in order to have a kind of upper bound for almost

all the experiments (except for the valumetric downscaling

attack).

D. Gaussian noise attack

The results for the Gaussian noise attack (zero mean and a

standard deviation ranging from 0 to 10) are given in Fig. 14.

Similarly to the filtering results, the MHC and the PRB-

DPTC get the same performances. Those performances are

similar because the quantization (principle in MHC), and the

correlation (principle in PRB-DPTC), own a similar sensitivity

to the Gaussian noise attack. Note that the obtained results are

coherent to those obtained with synthetic signals (Gaussian).

The T-TCQ obtains even better performances due to the turbo

coding. We should point out that the turbo principle could be

included in the PRB-DPTC in order to fill the performance

gap with T-TCQ.

E. Jpeg attack

In order to simulate (in a reproducible way) a JPEG com-

pression, we decompose the image in 8×8 DCT blocks. Each

coefficient c(i, j), i ∈ [0, 7] and j ∈ [0, 7] of a DCT block is

quantized and de-quantized such that:

cq(i, j) = Q.q(i, j)

⌊

c(i, j)

Q.q(i, j)
+ 0.5

⌋

, (5)
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