
HAL Id: lirmm-00808114
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00808114v1

Submitted on 4 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualization assisted by parallel processing
Benoit Lange, Nancy Rodriguez, William Puech, Hervé Rey, Xavier Vasques

To cite this version:
Benoit Lange, Nancy Rodriguez, William Puech, Hervé Rey, Xavier Vasques. Visualization assisted
by parallel processing. Electronic Imaging, Jan 2011, San Francisco, CA, United States. pp.78720B,
�10.1117/12.872481�. �lirmm-00808114�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00808114v1
https://hal.archives-ouvertes.fr


A 3D particle visualization system for temperature

management

Lange B.a, Rodriguez N.a, Puech W.a, Rey H.b and Vasques X.b

aLIRMM, 141 rue ADA, Montpellier, France;
bIBM, Rue de la vieille poste, Montpellier, France

ABSTRACT

This paper deals with a 3D visualization technique proposed to analyze and manage energy efficiency from a data
center. Data are extracted from sensors located in the IBM Green Data Center in Montpellier France. These
sensors measure different information such as hygrometry, pressure and temperature. We want to visualize in
real-time the large among of data produced by these sensors. A visualization engine has been designed, based
on particles system and a client server paradigm. In order to solve performance problems, a Level Of Detail
solution has been developed. These methods are based on the earlier work introduced by J. Clark in 19761 . In
this paper we introduce a particle method used for this work and subsequently we explain different simplification
methods applied to improve our solution.

Keywords: 3D Visualization, Sensors, Particles, Client/Server, Level Of Details

1. INTRODUCTION

In this paper, we present a method to produce a 3D visualization for analyzing and managing temperature. Data
are extracted from sensors located in the IBM Green Data Center in Montpellier, which provides many different
types of information like temperature, pressure or hygrometry. In our system, sensors are placed in a virtual
room and the internal space is modeled using particles. The main constraint here is to produce a real-time
rendering. However, latency appears du to the number of vertices. In this paper, we use a solution called LOD
(Level Of Detail) to produce multi resolution 3D objects. This solution has been introduced in 1976 by J. Clark1

. In this paper, J. Clark introduces the use of several mesh resolutions to simplify the 3D scene complexity.
In our work, we use various simplification methods to provide interactive rendering and allows rendering the
most important part of data extracted from sensors. In this paper, we describe how we create a room, and the
methods used to produce different resolution visualization.
In Section 2, we introduce related work on particles systems and LOD. In Section 3, we expose our solution to
simplify particles system. In Section 4 we give some results and finally, in Section 5 we present our conclusions
and future work.

2. RELATED WORK

In this section we present several previous works concerning data visualization, particle systems and level of
detail methods.
Some previous work present solutions to visualize large data flow extracted from mantle convection. M. Damon et

al.2 and K. E. Jordan et al.3 present interactive viewers for this kind of data. These data are computed by using
Hight Performance Computing (HPC) and visualized on a large display. The rendering is calculated by using
another HPC. The data flow is very important and a real-time 3D simulation is hard to obtain. W. Kapfer and

Further author information:
Lange B.: E-mail: benoit.lange@lirmm.fr
Rodriguez N.: E-mail: nancy.rodriguez@lirmm.fr
Puech W.: E-mail: william.puech@lirmm.fr
Rey H.: E-mail:REYHERVE@fr.ibm.com
Vasques X.: E-mail: xavier.vasques@fr.ibm.com



T. Riser6 introduce how to use particle system to visualize astronomic simulation, particles representing space
objects. The number of particles is extremely important for computing motion in real-time. GPU computing is
preferred to render instead of a common HPC solution. To display their data, they have developed their own 3D
graphical engine. The space objects are represented by point sprite instead of sphere. Lights are used to give
a spherical aspect to the point sprite. This solution allows to render more stars than spherical object method.
The 3D engine provides different rendering methods to group space objects: cell simplification or extraction of
isosurface. The use of GPU seems quite well for a particle solution, parallel processing allows to render large
data; the astrological data seems to be well suited.
In 1976, J. Clark introduces Level Of Detail (LOD) concept1 . LOD consists to produce several resolution meshes
for using them at different distance from the camera. Firstly, designer produces these meshes. First algorithms,
in 1992 Schroeder et al. developed a method by decimation for simplify the mesh7 . It analyses mesh geometry
and evaluates the complexity of triangles. Vertices are removed if only constraints set by the user are respected.
Vertices are removed and gaps are filled using triangulation. These algorithms of simplification are not enough
to simplify mesh efficiently because shape is not always totally respected. D. Luebke, in 1997, has proposed a
taxonomy of mesh simplification8 . He presented the most used algorithms. He extracted different ways to use
each algorithm. But in this paper, only one solution works with volumetric mesh9 . T. He et al. propose a
method based on voxel simplification by using a grid for clustering voxels. A marching cube10 algorithm was
applied to produce a surface mesh. But this simplification algorithm did not preserve the shape of the mesh. In
our work, we look for point cloud simplification. Indeed, previous methods which deal with simplification for
surface point cloud like11–13 are not adapted to our case. All of these methods produce LOD for surface mesh
and point cloud is extracted from scanner.

3. PROPOSED APPROACH

This section presents the different methods that are used to visualize a kind of data from Green Data Center
(GDC). The main goal is to be able to visualize in real-time the evolution of temperature in the data center. For
this, we use a special particle method. Particles are located using a segmentation algorithm based on Voronöı
cell extraction and Delaunay triangulation. The latency due to the large flow of particles is avoided by using a
client server paradigm. We improve our solution by using LOD methods to simplify rendering.

3.1 Particle systems

Rooms are the bases of our study. For modeling a room, we extract the shape of the space representation which is
composed by a box with three measures: length (l ∈ R), width (w ∈ R), height (h ∈ R). Sensors are represented
by S = {S1, ..., SM}, where M is the number of sensors. Sensors Si (i ∈ {1, ..., M}) are placed on the space on
a layer L ∈ N and have a location represented by: {Xi, Yi, Lj} with Xi ∈ R, Yi ∈ R and j is the layer used.
For modeling the space inside a room, we use a particle system instead of 2D map representations which have
some lacks.14 Actually 2D map does not allow having a real visualization of space. A particle visualization gives
a better efficiency for modeling space. We use a large number of particle to represent the entire space. N ∈ N

represents the number of particles in the room. It can be calculated using:

N =
((l + 1)× (h+ 1)× (w + 1))

δ3
, (1)

where δ ∈ R is the space between particles. The particle grid is regular. In this model, three layers of
temperature sensors compose rooms. They are defined according to their real locations in the data center.
Figure ?? presents the different layers of sensors in the data center.
Particles carry information, and flow motion can be simulated if needed by changing the value of particles and
the computational cost is inferior.



3.2 Segmentation algorithms

In our solution, each sensors has an influence on surrounding particules. To calculate the set of particles in the
sensor range, we use two methods: Voronöı cells extraction and Delaunay triangulation.
Voronöı cells is a method to extract a partition of space15 . This method is available for φ dimensions where
φ ∈ [1,+∞], but most of implementations are done in 2D. Tools for extracting 3D Voronöı diagrams exist:
Voro++16 and QHull17 but particles are discrete and these solutions are not suitable because they extract
Voronöı diagram in a continuous way. Then we designed our own method based on sphere expansion. We search
nearest sensors for each particle. This part allows to weight particles outside the sensors mesh. A second method
to weight the interior of the sensors mesh is used. We extract the mesh tetrahedron of sensors using the Delaunay
triangulation implemented in QHull17 . This method was used to analyze the location of particle. We compute
the exact location using ray tracing18 on the soup of tetrahedron. First, we search the nearest particles inside
the hull of each tetrahedron. We extract the normal of each face of tetrahedron and we apply these normals on
each particle. If the ray cuts three faces or more, the particle is inside the tetrahedron. This method is cost
expensive and done in preprocessing. Moreover, particles are static and position didn’t need to be update.

3.3 Client server paradigm

To improve computation, a client server paradigm is used. We define a low cost communication protocol to
transfer data from a server to a client. Server computes the modification of particles and the client displays
the results. This protocol works in five steps. These steps are: sending header, sending sensor data, sending
particle data, sending footer and receiving acknowledgment/command from client. At each step, the server waits
the acknowledgment from the client. We develop two ways to send data. The first sends the entire point cloud
(sensors and particles). The biggest problem of this method is the transmission of data. Sensors are sent with
their coordinates and their value. We encode these data in bit words. For the particles data, the same method
was used. The footer was sent for closing the communication. The second method is used to reduce efficiently
the communication cost. We only send modified sensors and particles. The id and the new value is sent instead
of coordinates. The last step is the command sent by the client. It allows the user to interact with the server.
We use it to modify the camera viewpoint.

3.4 Level of detail for particles

Level of detail (LOD) is one of the most important methods in computer graphics. It allows to solve rendering
problems or performance problems. This method consists by producing several resolution of a 3D object. In our
works, we use some features to define the object resolution: hardware and viewpoint. Hardware and viewpoint
do not need the same data structure and we need to recompute it for each modification of the viewpoint or when
hardware changes. LOD was defined by two problems statement. The first one uses a sample of original points,
the second one uses a new point data set. In this part, we define six methods to produce LOD. The four first
methods are for the client, the other are for the server.

Problems statement:

For this two approaches, we have a set ω of Vertices V, V = {V1, ..., Vω}. Each vertex is defined in R
3. Simplify

a mesh using a sample vertex means ω > ω2, where ω2 is the size of the second data set. For approach 1, we
obtain a new object V2 = {V21, ... , V2ω} with fewer point than V but V2 is a subset of V. For approach 2, we
obtain a new object V3 = {V31, ... , V3ω} with fewer point than V but each point in V3 is a new vertex.

In Section 2 we have presented methods to produce simplification. A few were designed for volumetric
simplification. In this section, we propose several methods to produce different volumetric simplifications on our
client. We develop four approaches to simplify 3D objects: clustering, neighbor simplification and two approaches
based on server.
Clustering method was based on He et al.9 works, it consists of clustering particles using a 3D grid. Cells
sizes of grid are set depending to the viewpoint of the camera. Clusters were being weight with the average of
the different values of particles. The position is the barycenter of these particles. Figures 1(a)-1(e) give some
examples of simplification using clustering solution. Figure 1(a) present the original point of cloud mesh. Figure



1(b) and 1(d) give two different methods for clustering. And finally, Figure 1(c) and 1(e) give the results of
clustering methods.

(a) Original point
cloud.

(b) First simplifica-
tion cluster.

(c) First new point
cloud.

(d) Second simplifica-
tion cluster.

(e) Second new point
cloud.

Figure 1. Clustering method for simplification point cloud.

The second solution used is based on neighborhood extraction. Before runtime, we extract all neighbors of a
particle. We measure the distance between each particle. Some optimization can help to decrease complexity:
we can estimate easily in our structure which particle is closer to another one (using the fact that particle grid
is regular). After this, we extract the main value of particles. We explore each neighbor of particles and we
keep the most important. In some cases, the most important can be the high values, in other the low values
and in other both of them. This solution is able to produce a low resolution model with the most important
information structure. Several low resolution models are created by exploring deeper in neighborhood. Figures
2(a)-2(c) illustrate a neighbor, and two simplifications of this mesh.

(a) Neighborhood of point
cloud.

(b) Simplification using a
neighborhood of 1.

(c) Simplification using a
neighborhood of 2.

Figure 2. Neighbor method for simplification.

Other methods were based on server instead of client. Client sent via TCP connection his viewpoint. The
server recomputes the particles structure and recreates the entire structure. With this solution, it is possible to
produce a point cloud resolution depending on hardware. Figure 3(a) presents particles rendering with a distance
of 2 from the camera. Figure 3(b) is the decimation produced with a distance of 3 and Figure 3(c) is a distance
of 1.

Another method was based on Voronöı diffusion of temperature. The bandwidth for transmitting data is
limited. We developed Voronöı temperature diffusion to solve this communication. In this approach, we update
data using sphere expansion. Each time, we update particles depending on their distance from sensors. The more
particles are distant from sensors the later they will be refreshed. This method sends only modified particles.
The bandwidth is saved and the visualization gives a flow effect. Figure 4(a) represents values at time 0. At time
1, values of sensors change, 4(b). After time 2, we update a first range of particles 4(c) and finally the second
range 4(d).



(a) Particles produce by
server (D = 2).

(b) Particles produce by
server (D = 3).

(c) Particles produce by
server (D = 1).

Figure 3. Particle simplification using server and distance.

(a) Particles and sensors (T
= 0).

(b) Sensors update(T = 1). (c) First range (T = 2). (d) Second range (T = 3).

Figure 4. Simplification using bandwidth size.

4. EXPERIMENTAL RESULTS

The data are extracted from two rooms of the IBM data center. Firstly, we present our method for rendering
the room, and later we present our results using Level Of Detail methods.

4.1 Data visualization

We want to visualize and manage the consumption of a data center. For the visualization, we want to use an
IFC viewer. But the IFC model for GDC is not available yet. Data center extraction of the room space is for
the moment done by hand. The room is empty and was represent by a simple shape a box with 4 meters length,
3 meters width and 2.5 meters height. We use point cloud visualization based on particle paradigm. We use
the two rooms of the data center and we put the same number of particles (30000) and 35 sensors distributed
on three layers at 1 meter, 2 meter and on the ground. We define high and low temperature regarding the real
sensors value. Figure 5(a) presents temperature color scale, Figure 5(b) and Figure 5(c) present data center
sensors.

The next step is to interpolate data from sensors. For this, we extract the sensor mesh. We use QHULL
to produce a soup of tetrahedrons. Particles need to be located. We can determine which tetrahedron is the
nearest, we extract the box hull of tetrahedron and we apply for each particle the norms of each tetrahedron
face. If these rays cut three or more faces, then particle is inside the tetrahedron. With this method, we can
determine exactly the location of each particles regarding to the tetrahedrons, a weight is given to them easily.
It was used to apply a coefficient to the value of each vertex of tetrahedron. For the outside particles, another
solution was used: Voronöı cells. This method is based on a discrete extraction of Voronöı cells. We use our own
method because other method like Voro ++ or QHull extract Voronöı diagram in a continuous way.



(a) Temperature Color. (b) Room one. (c) Room two.

Figure 5. Data use to model the system.

4.2 Level of details

In the earlier days of this project, first solution proposed gives a low frame rates, about 15 FPS (Frame Per
Second): visualization was not in real-time (real-time is about 24 FPS). For solving this problem, we define a
client server paradigm. This solution allows to produce a real-time rendering on the client. Figure ?? gives an
example of LOD for particles. We use Openscenegraph20 as a 3D engine. It owns several features useful in LOD.
A special object is defined to manage multi-resolution model. It calculates the distance of the object from the
camera. For our experimentation we use five resolutions of mesh. The first mesh was the original mesh, it is set
at 0 to 500. The next mesh was set at 500 to 1000, the next at 1000 to 1500 and the other at 1500 to 2000.
These three meshes were constructed by specific LOD methods: clustering and significant vertices. Clustering
defines a 3D grid inside the room. The size of each cell depends on the viewpoint location. The size of the cluster
depends on the visibility of the clustered particles. First results are given Figure 6(a) and 6(b). Value of cluster
is an average of clustered value. The number of points of the final mesh depends on the grid size. Table 1 shows
the results at several distances.

D = 0 to 500 D = 500 to 1000 D = 1000 to 1500 D = 1500 to 2000
C = X 30 000 3 900 240 36

Table 1. Results of clustering simplification.

(a) D = 500 to 1000. (b) D = 1000 to 1500.

Figure 6. Clustering visualization algorithms.

Significant points method extracts the neighbors for each particle. We extract the highest and lowest tem-
peratures, by exploring the neighborhood of a particle, in order to have significant vertices of the model. For the
first step of simplified model we explore neighbor. For the second model, we explore neighbor and neighbor of
neighbor, etc. This solution simplifies drastically the model. First results are given Figure ??-??. Table 2 shows
the number of vertices at several distance.



D = 0 to 500 D = 500 to 1000 D = 1000 to 1500 D = 1500 to 2000
C = X 30 000 22 950 4 554 3 524

Table 2. Results of neighbor simplification.

(a) Neighborhood 1. (b) Neighborhood 2.

Figure 7. Clustering visualization algorithms using neighbor.

The first server solution receives orders from client as presented Section 3.4. We calculate the viewpoint
distance and we send data according to it. A new structure is recalculated if the camera is too far from the
object. After the recomputing, we send the new data. This solution allows the user to receive more or less data
according to its distance to the object. Table 3 shows some different resolutions produced with this method.

D = 0 to 500 D = 500 to 1000 D = 1000 to 1500 D = 1500 to 2000
C = X 120 000 30 000 7 500 1 875

Table 3. Several resolution of model.

Another solution is to use bandwidth latency. We send data at several times, we do not send the entire set
of data but only modified particles. We send at first time the sensors data, and subsequently we send a range
of data (the nearest). After few minutes, all data are sent. This solution gives good results, and simulates a
thermal diffusion in the whole structure of particles. Figure 8(a)-8(c) illustrate this method.

(a) T = 0. (b) T = 1. (c) T = 4.

Figure 8. Bandwidth simplification.

5. CONCLUSION

In this paper, we have presented a method to visualize sensors data extracted from a Green Data Center. This
approach produces interpolation visualization for managing and visualizing data. This interpolation used a De-
launay triangulation and a cell extraction based on Voronöı . An unusual way of use particles helps to process
data. First results present the solution proposed to visualize the inside of a GDC space. The second results



proposed in this paper aim to improve the rendering.
For this, first step introduces a client/server protocol a second step illustrates methods to simplify the model.
With these different approaches we improve the rendering time, preserving most important data are kept. In
future works, we will work on data ”dressing”. We want to find a way to improve rendering of the scene using
meatballs or marching cube algorithms. A main constraint of this work is real-time computation. Future work
also concern to add rooms to the visualization. At present, we only visualize a single room. We want to visualize
building, and complex form, by using an IFC loader.

ACKNOWLEDGMENTS

We want to thanks the PSSC (Products and Solutions Support Center) team of IBM Montpellier for having
provided the necessary equipment and data need for this experimentation. And we thank the FUI (Fonds
Unique Interministriel) for their financial support.

REFERENCES

[1] Clark, J. H., “Hierarchical geometric models for visible surface algorithms,” Communications of the

ACM 19(10), 547–554 (1976).

[2] Damon, M., Kameyama, M., Knox, M., Porter, D., Yuen, D., and Sevre, E., “Interactive visualization of 3d
mantle convection,” Visual Geosciences (2008).

[3] Jordan, K. E., Yuen, D. A., Reuteler, D. M., Zhang, S., and Haimes, R., “Parallel interactive visualization
of 3d mantle convection,” IEEE Comput. Sci. Eng. 3(4), 29–37 (1996).

[4] Reeves, W. T., “Particle systems - a technique for modeling a class of fuzzy objects,” ACM Transactions

on Graphics 2, 359–376 (1983).

[5] Latta, L., “Building a million particle system,” (2004).

[6] Kapferer, W. and Riser, T., “Visualization needs and techniques for astrophysical simulations,” New Journal

of Physics 10(12), 125008 (15pp) (2008).

[7] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E., “Decimation of triangle meshes,” 65–70 (1992).

[8] Luebke, D., “A survey of polygonal simplification algorithms,” (1997).

[9] He, T., Hong, L., Kaufman, A., Varshney, A., and Wang, S., “Voxel based object simplification,” in [Proc.
SIGGRAPH Symposium on Interactive 3D Graphics ], 296–303 (1995).

[10] Lorensen, W. E. and Cline, H. E., “Marching cubes: A high resolution 3d surface construction algorithm,”
SIGGRAPH Comput. Graph. 21(4), 163–169 (1987).

[11] Pauly, M., Gross, M., and Kobbelt, L. P., “Efficient simplification of point-sampled surfaces,” (2002).

[12] Moenning, C., , Moenning, C., and Dodgson, N. A., “Intrinsic point cloud simplification,” (2004).

[13] Song, H. and Feng, H.-Y., “A progressive point cloud simplification algorithm with preserved sharp edge
data,” The International Journal of Advanced Manufacturing Technology 45, 583–592 (November 2009).

[14] Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S. P., and Kröller, A., “Spyglass: a wireless sensor network
visualizer,” SIGBED Rev. 2(1), 1–6 (2005).

[15] Avis, D. and Bhattacharya, B., “Algorithms for computing d-dimensional voronoi diagrams and their duals,”
1, 159–180 (1983).

[16] Rycroft, C. H., “Voro++: a three-dimensional voronoi cell library in c++,” Chaos 19 (2009). Lawrence
Berkeley National Laboratory.

[17] Barber, C. B., Dobkin, D. P., and Huhdanpaa, H., “The quickhull algorithm for convex hulls,” ACM Trans.

Math. Softw. 22(4), 469–483 (1996).

[18] Snyder, J. M. and Barr, A. H., “Ray tracing complex models containing surface tessellations,” SIGGRAPH

Comput. Graph. 21(4), 119–128 (1987).

[19] Hoppe, H., “Progressive meshes. computer graphics,” SIGGRAPH96 Proceedings , 99108 (1996).

[20] Burns, D. and Osfield, R., “Open scene graph a: Introduction, b: Examples and applications,” 265 (2004).


