
HAL Id: lirmm-00808317
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00808317

Submitted on 5 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Avoiding Moving Obstacles during Visual Navigation
Andrea Cherubini, Boris Grechanichenko, Fabien Spindler, François

Chaumette

To cite this version:
Andrea Cherubini, Boris Grechanichenko, Fabien Spindler, François Chaumette. Avoiding Moving
Obstacles during Visual Navigation. ICRA: International Conference on Robotics and Automation,
May 2013, Karlsruhe, Germany. pp.3054-3059. �lirmm-00808317�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00808317
https://hal.archives-ouvertes.fr

Avoiding Moving Obstacles during Visual Navigation

Andrea Cherubini, Boris Grechanichenko, Fabien Spindler and François Chaumette

Abstract— Moving obstacle avoidance is a fundamental re-
quirement for any robot operating in real environments, where
pedestrians, bicycles and cars are present. In this work, we
design and validate a new approach that takes explicitly into
account obstacle velocities, to achieve safe visual navigation
in outdoor scenarios. A wheeled vehicle, equipped with an
actuated pinhole camera and with a lidar, must follow a path
represented by key images, without colliding with the obstacles.
To estimate the obstacle velocities, we design a Kalman-based
observer. Then, we adapt the tentacles designed in [1], to
take into account the predicted obstacle positions. Finally,
we validate our approach in a series of simulated and real
experiments, showing that when the obstacle velocities are
considered, the robot behaviour is safer, smoother, and faster
than when it is not.

Index Terms— Visual Servoing, Visual Navigation, Collision
Avoidance.

I. INTRODUCTION
Autonomous driving has become a prominent application

domain for robotics research, as witnessed by a cornucopia of
publications in this area [2 - 4]. The success of the DARPA
Urban Challenges [5] has heightened expectations that au-
tonomous cars will soon be able to operate in environments
of realistic complexity. Nevertheless, robot motion safety re-
mains a critical issue. In this context, a fundamental research
field is obstacle avoidance, which has traditionally been
handled by two techniques [6]: the deliberative approach,
usually consisting of a motion planner, and the reactive
approach, based on the instantaneous sensed information. In
the works that we will cite below, the obstacle velocities have
also been considered in the avoidance method.

The approach presented in [7] is one of the first where
static and moving obstacles are avoided, based on their
current positions and velocities relative to the robot. The
manoeuvres are generated by selecting robot velocities out-
side of the velocity obstacles, that would provoke a collision
at some future time. This paradigm has been adapted in [8]
to the car-like robot kinematic model, and extended in [9] to
take into account unpredictably moving obstacles. Another
pioneer method that has inspired many others is the Dynamic
Window [10], that is derived directly from the dynamics of
the robot, and is especially designed to deal with constrained
velocities and accelerations. A generalization of the dynamic
map that accounts for moving obstacle velocities and shapes
is presented in [11], which utilizes a union of polygonal
zones corresponding to the non admissible velocities. In [12],
the Dynamic Window has been integrated in a graph search
algorithm for path planning, to drive the robot trajectories. A
planning approach is also used in [13], where the likelihood
of obstacle positions is input to a Rapidly-exploring Random
Tree algorithm. In [14], motion safety is characterized by
three criteria, respectively related to the model of the robotic

A. Cherubini and B. Grechanichenko are with the Laboratory for
Computer Science, Microelectronics and Robotics LIRMM - Université
de Montpellier 2 CNRS, 161 Rue Ada, 34392 Montpellier, France.
{firstname.lastname}@lirmm.fr.
F. Spindler and F. Chaumette are with INRIA Rennes - Bretagne Atlantique,
IRISA. {firstname.lastname}@inria.fr

ICRA13 - 1 column

v

X

R

φ
φ
.

ω

Y

CURRENT IMAGE I

y
O x

(a) (b)

x*

Visual
Navigation

KEY IMAGES I1… IN

NEXT KEY
IMAGE I*

Fig. 1. General definitions. (a) Top view of the robot (orange), with actuated
camera (blue). (b) Current and next key images, and key image database.

system, to the model of the environment and to the decision
making process. The author proves that motion safety cannot
be guaranteed in the presence of moving objects (i.e., the
robot may inevitably collide at some time in the future).
More recently [15], the same researchers have defined the
Braking Inevitable Collision States as states such that, what-
ever the future braking trajectory, a collision will occur.

Although all these approaches have proved effective, none
of them deals with moving obstacle avoidance during visual
navigation. In [1], we presented a framework that guarantees
that obstacle avoidance has no effect on a visual task. In
the present paper, we further improve that framework, by
designing a reactive approach that can deal with moving
obstacles as well. A wheeled vehicle, equipped with an
actuated pinhole camera and with a forward-looking lidar,
must follow a path represented by key images, without
colliding. Our approach is based on tentacles [16], i.e.
candidate trajectories (arcs of circles) that are evaluated
during navigation, both for assessing the context, and for
designing the task in case of danger. The main contribution
of this paper is the improvement of that framework, to take
into account the obstacle velocities. We have designed a
Kalman-based observer for estimating the obstacle velocities,
and then adapted the tentacles designed in [1], to effectively
take into account these velocities. Our approach is validated
in a series of experiments.

The article is organized as follows. In Sect. II, all the rele-
vant variables are defined. In Section III and IV, we explain
respectively how the obstacle velocities are estimated, and
how they are used to predict possible collisions. Then, in
Sect. V, the control law from [1] is recalled, and adapted to
deal with moving obstacles. Experimental results are reported
in Section VI, and summarized in the Conclusion.

II. PROBLEM DEFINITION
This section is, in part, taken from [1]. Referring to Fig. 1,

we define the robot frame FR (R,X, Y) (R is the robot
center of rotation) and image frame FI(O, x, y) (O is the
image center). The robot control inputs are u = [v, ω, ϕ̇]

>.
These are the translational and angular velocities of the
vehicle, and the camera pan angular velocity. We use the
normalized perspective camera model, and we assume that
the sequence of images that defines the path can be tracked
with continuous v (t) > 0. This ensures safety, since only
obstacles in front of the robot can be detected by our scanner.

The path that the robot must follow is represented as a
database of ordered key images, such that successive pairs

R

(c)

t3=t3 c

ICRA13 - 2 columns

XM
X

 Ym YM
Xm

Y
R

(a)

(X, Y)
. .

(b)
R

t2=t2 c

Fig. 2. Obstacle models. (a) A static (right) and moving (left) object
are observed (black); we show the object velocity in cyan, and future
occupied cells ci in grey, increasingly light with ti0. (b, c) Tentacles
(dashed black), with classification areas (collision in blue, dangerous in
black), corresponding boxes and delimiting arcs of circle, and cells ci ∈ Dj
displayed in grey, increasingly light with increasing tij .

contain some common static visual features (points). First,
the vehicle is manually driven along a taught path, with
the camera pointing forward (ϕ = 0), and all the images
are saved. Afterwards, a subset (database) of N key images
I1, . . . , IN representing the path (Fig. 1(b)) is selected. Then,
during autonomous navigation, the current image, noted I ,
is compared with the next key image I∗ ∈ {I1, . . . , IN},
and a relative pose estimation between I and I∗ is used
to check when the robot passes the pose where I∗ was
acquired. For key image selection, and visual point detection
and tracking, we use the algorithm in [17]. The output of this
algorithm, which is used by our controller, is the set of points
visible both in I and I∗. Then, navigation consists of driving
the robot forward, while I is driven to I∗. We maximize
similarity between I and I∗ using only the abscissa x of the
centroid of points matched on I and I∗ to control the robot
heading. When I∗ has been passed, the next image in the set
becomes the desired one, and so on, until IN is reached.

Along with the visual path following problem, we consider
obstacles which are on the path, but not in the database, and
sensed by the lidar in a plane parallel to the ground. For
obstacle modeling, we use the occupancy grid in Fig. 2(a):
it is linked to FR, with cell sides parallel to X and Y . Its
extension is limited (Xm ≤ X ≤ XM and Ym ≤ Y ≤
YM), to ignore obstacles that are too far to jeopardize the
robot. Any grid cell c = [X,Y]

> is considered currently
occupied (black in Fig. 2(a)) if an obstacle has been sensed
there. For cells lying in the scanner area, only the current
scanner reading is considered. For the other cells, we use
past readings, displaced with odometry. The set of occupied
cells with their estimated velocities, denoted by O, is used,
along with the robot geometric and kinematic characteristics,
to derive possible future collisions. This approach is different
from the one in [1], where only the currently occupied
cells in the grid were considered. To estimate the obstacle
velocities, and therefore update O, we have designed an
obstacle observer, detailed below.

III. OBSTACLE OBSERVER

The detection and tracking of objects is crucial for
collision-free navigation. Of particular interest are potentially
dynamic objects (i.e., objects that could move) since their
presence and potential change of state will influence the
planning of actions and trajectories. Obviously, estimating
the velocity of these objects is fundamental.

Compared to areas where known road network information
can provide background separation, unknown environments
present a more challenging scenario, due to low signal to
noise ratio. Recent works [18], [19] have tackled these issues.
In [18], classes of interest for autonomous driving (i.e., cars,
pedestrians and bicycles) are identified, using shape infor-

mation and a RANSAC-based edge selection algorithm. The
authors of [19] apply a foreground model that incorporates
geometric as well as temporal cues; then, moving vehicles
are tracked using a particle filter. Both works rely on the
Velodyne HDL-64E S2, a laser range finder that provides
rich 3D point clouds, to classify moving obstacles. Instead,
we target solutions based uniquely on a 2D lidar, and we are
not interested in recognizing the object classes.

In practice, we base our work on two assumptions. First,
we consider all objects to be rigid (this is plausible for
the projection on the ground of walls, most vehicles and
even pedestrians). Second, we consider the instantaneous
curvature of their trajectories (i.e., the ratio between their
angular and translational velocities) small enough to assume
that their motion is purely translational over short time
intervals. Hence, the translational velocities of all points on
an object are identical and equal to that of its centroid.

Then, for each object, the state to be estimated will be
composed of the coordinates of its centroid in FR, and by
their derivatives:

x =
[
X,Y, Ẋ, Ẏ

]>
.

Using a first-order Markov model (which is plausible for low
object accelerations), the state at time t is evolved from the
state at t−∆t (∆t is the sampling time) according to:

x (t) = Fx (t−∆t) + w (t) , (1)

where w (t) ∼ N (0,Q) is assumed to be Gaussian white
noise, with covariance Q and, the state transition model is:

F =

 1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 .
At time t, an observation z (t) of the object centroid coordi-
nates is derived from scanner data. It is related to the state by:

z (t) = Hx (t) + v (t) , (2)

where v (t) ∼ N (0,R) is assumed to be Gaussian white
noise with covariance R, and the observation model is:

H =

[
1 0 0 0
0 1 0 0

]
.

Let us outline the steps of our recursive algorithm for
deriving x̂ (t) (our estimate of x (t)), based on current
observations z (t), and on previous states x (t−∆t).

1) At time t, all currently occupied cells in O are clus-
tered in objects, using a threshold on pairwise cell
distance, and the current observation of the centroid
coordinates z (t) is derived for each object.

2) All of the object centroids that have been observed
at some time in the recent past (we look back in the
last 2s) are displaced by odometry, to derive their
coordinates X (t−∆t) and Y (t−∆t).

3) The observed and previous object centroids (outputs of
steps 1 and 2) are pairwise matched according to their
distance. We then discern between three cases:
• For matched objects, the previous centroid velocity

is obtained by numerical differentiation:{
Ẋ (t−∆t) = (z1 (t)−X (t−∆t)) /∆t
Ẏ (t−∆t) = (z2 (t)− Y (t−∆t)) /∆t

.

These complete, along with the outputs of step 2,
the state vector x (t−∆t). A Kalman filter can
then be applied to equations (1) and (2), to derive
x̂ (t).

• For unmatched objects currently observed, we set:

x̂ (t) =

[z (t)
0
0

]
.

• For unmatched unobserved objects, the centroid
coordinates are memorized (these will be the in-
puts for step 2).

The output of our algorithm is, at each iteration t, the esti-
mate of the object centroid coordinates and of its velocities:

x̂ (t) =
[
X̂ (t) , Ŷ (t) , ˆ̇X (t) , ˆ̇Y (t)

]>
.

Then, each currently occupied cell ci is associated to the
estimated velocity of the object it belongs to, or to null
velocity, if it has not been associated to any object. Set O is
finally formed by all the occupied cell states:[

ci
ċi

]>
∈ O,

that encode the cell current coordinates and velocities in the
robot frame. In the next section, we will show how O is
used to predict possible collisions, and accordingly adapt
the control strategy. We will assess the danger of each cell
by considering the time that the robot will navigate before
eventually colliding with it. Without loss of generality, in the
next section this time is measured from the current instant t.

IV. OBSTACLE MODELLING

A. Obstacle occupation times

At this stage, the trajectory of each occupied cell in O can
be predicted to evaluate possible collisions with the robot.
More concretely, we will just estimate the times at which
each cell in the grid will be - eventually - occupied by an
obstacle. We assume that velocities of all occupied cells in O
remain constant over time horizon T . Then, for each ci that
may be occupied by an obstacle within T , we can predict
initial

ti0 (ci,O) ∈ [0, T]

and final

tif (ci,O) ∈ [ti0, T]

obstacle occupation times, as a function of the set of occu-
pied cell states O. For cells occupied by a static object and
belonging to O, we obtain t0 = 0 and tf = T . For cells that
will not be occupied within time T , we set t0 = tf = ∞.
Examples of a static (1 cell) and moving (3 cells) object are
shown in Fig. 2(a), with future occupied cells ci displayed
in grey, increasingly light with increasing ti0. Below, we
explain how the cell occupation times t0 and tf will be used
to check collisions with the possible robot trajectories.

B. Tentacles
As in [1], we use a set of drivable paths (tentacles),

both for perception and motion execution. Each tentacle j
is a semicircle that starts in R, is tangent to X , and is
characterized by its curvature (i.e., inverse radius) κj , which
belongs to K, a uniformly sampled set:

κj ∈ K = {−κM , . . . , 0, . . . , κM} .

The maximum desired curvature κM > 0, must be feasible
considering the robot kinematics. In Fig. 2(b, c), the straight
and the sharpest counterclockwise (κ = κM) tentacle are
dashed. When a total of 3 tentacles is used, these correspond
respectively to j = 2 and j = 3. Each tentacle j is
characterized by two classification areas (dangerous and
collision), which are obtained by rigidly displacing, along
the tentacle, two rectangular boxes, with decreasing size,
both overestimated with respect to the real robot dimensions.
For each tentacle j, the sets of cells belonging to the two
classification areas (shown in Fig. 2) are noted Dj and Cj ⊂
Dj . As we will show below, the largest classification area D
will be used to select the safest tentacle, while the thinnest
one C determines the eventual necessary deceleration.

C. Robot occupation times
For each dangerous cell in tentacle j, i.e., for each cell

ci ∈ Dj), we compute the robot occupation time tij . This is
an estimate of the time at which the large box will enter the
cell, assuming the robot follows the tentacle at the current
velocity. To calculate tij , we assume that the robot motion
is uniform, and displace the box at the current robot linear
velocity v, and at angular velocity ωj = κjv. We can then
calculate robot occupation time tij :

tij (ci, v, κj) ∈ IR+.

For instance, if the robot is not moving (v = 0), for every
tentacle j, the cells on the box will have tij = 0, and all other
cells in Dj will have tij =∞. Also note that for a given cell,
ti may differ according to the tentacle that is considered. In
Fig. 2(b, c), the cells ci ∈ Dj have been displayed in grey,
increasingly light with increasing tij .

D. Dangerous and collision instants
Once the obstacle and robot occupation times have been

calculated for each cell, we can derive the earliest time
instant at which a collision between obstacle and robot may
occur on each tentacle j. By either checking all cells in
Dj , or focusing just on Cj , we discern between dangerous
instants and collision instants. These are defined as:

tj = infci∈Dj

{tij : ti0 ≤ tij ≤ tif} ,

and
tcj = infci∈Cj

{tij : ti0 ≤ tij ≤ tif} .

In each case, we seek the minimum robot occupation time
among the cells that can be simultaneously occupied by
both obstacle and box. Assuming constant robot and obstacle
velocities, these metrics give a conservative approximation of
the time that the robot can travel along the tentacle without
colliding. Obviously, overestimating the bounding boxes size
leads also to more conservative values of tj and tcj . In
the following, we explain how these metrics are used: in
particular, with tj we assess the danger on each tentacle to

decide whether to follow it or not, while tcj determines if the
robot should decelerate on tentacle j. Computation of tj and
tcj is illustrated, for j = {2, 3}, in the example of Fig. 2.

E. Tentacle risk function
The danger on each tentacle is assessed by tentacle risk

function Hj . This scalar function is derived from the tentacle
dangerous instant, and will be used by the controller as
explained in Sect. V. We use tj and tuned thresholds td > 0
and ts > td (d stands for dangerous, and s for safe), to
design the tentacle risk function:

Hj=

0 if tj≥ ts
1
2

[
1 + tanh

(
1

tj−td + 1
tj−ts

)]
if td<tj<ts

1 if tj≤ td.

Note that Hj smoothly varies from 0, when possible colli-
sions are in the far future, to 1, when they are forthcoming.
If Hj = 0, the tentacle is tagged as clear. All the Hj are
compared (with a strategy explained below), to determine H
in (3) and select the best tentacle for navigation.

V. CONTROL SCHEME
In our control scheme, the desired behaviour of the robot is

related to the surrounding obstacles. When the environment
is safe, the vehicle should progress forward while remaining
near the taught path, with camera pointing forward (ϕ = 0).
If avoidable obstacles are present, we apply a robot rotation
for circumnavigation with an opposite camera rotation to
maintain visibility. The rotation makes the robot follow the
best tentacle in K, which is selected using the strategy
explained below. Finally, if collision is inevitable, the vehicle
should simply stop. To assess the danger at time t, we use
situation risk function H ∈ [0, 1], also defined below.

Stability of the desired tasks has been guaranteed in [1] by:
v = (1−H) vs +Hvu
ω = (1−H)

λx(x
∗−x)−jvvs+λϕjϕ̇ϕ

jω
+Hκbvu

ϕ̇ = H λx(x
∗−x)−(jv+jωκb)vu

jϕ̇
− (1−H)λϕϕ

(3)

In the above equations:
• H is the risk function on the best tentacle: H = Hb;

hence, it is null if and only if the best tentacle is clear.
• vs > 0 is the translational velocity in the safe context

(i.e., when H = 0). It must be maximal on straight
path portions, and smoothly decrease when the features
quickly move in the image, i.e., at sharp robot turns
(large ω), and when the camera pan angle ϕ is strong.
The expression of vs (ω, ϕ) is given in [1].

• vu ∈ [0, vs] is the translational velocity in the unsafe
context (H = 1). It is designed as:

vu (δb) =

 vs if tcb ≥ tcs
vs
√
tcb − tcd/tcs − tcd if tcd < tcb < tcs

0 if tcb ≤ tcd
(with tcd > 0 and tcs > tcd two thresholds corresponding
to dangerous and safe collision times) to guarantee that
the vehicle decelerates (and eventually stops) as the
collision instant on the best tentacle tcb decreases.

• x and x∗ are abscissas of the feature centroid respec-
tively in the current and next key image.

• λx > 0 and λϕ > 0 are empirical gains determining the
convergence trend of x to x∗ and of ϕ to 0.

• jv , jω and jϕ̇ are the components of the Jacobian
relating ẋ and u. Their expression is given in [1].

• κb is the curvature of the best tentacle. Here we detail
how such tentacle is determined. Initially, we calculate
the path curvature that the robot would follow if H = 0:

κ = ω/v = [λx (x∗ − x)− jvvs + λϕjϕ̇ϕ] /jωvs.

In [1], we proved that κ is always well-defined, i.e.,
that jω 6= 0. We constrain κ to the interval of feasible
curvatures [−κM , κM], and derive its two neighbors in
K: κn and κnn. Let κn be the nearest one, denoted
as the visual tentacle1. Its situation risk function Hv is
obtained by linear interpolation of the neighbours:

Hv =
(Hnn −Hn)κ+Hnκnn −Hnnκn

κnn − κn
.

If Hv = 0, the visual tentacle is clear and can be
followed: we set κb = κn. Instead, if Hv 6= 0, we seek
a clear tentacle (Hj = 0). First, we search among the
tentacles between the visual task one and the best one at
the previous iteration2, noted κpb. If many are present,
the closest to the visual tentacle is chosen. If none of
the tentacles within [κn, κpb] is clear, we search among
the others. If no tentacle in K is clear, the one with
minimum Hj is chosen. Ambiguities are again solved
first with the distance from κn, then from κnn.

Let us shortly recall the main features of (3), which are
detailed in [1]. When H = 0 (i.e., if the 2 neighbour tentacles
are clear), the robot tracks at its best the taught path: the
image error is regulated by ω, while v is set to vs to improve
tracking, and the camera is driven forward (ϕ = 0). When
H = 1, ϕ̇ ensures the visual task, and the two other inputs
guarantee that the best tentacle is followed: ω/v = κb. In
general (H ∈ [0, 1]), the robot navigates between the taught
and the best paths, and a high velocity vs can be applied if
the path is clear for future time tcs.

VI. EXPERIMENTS
Here, we report the simulated and real experiments (also

shown in the video attached to this paper) that we performed
to validate our approach. We compare the new approach that
is presented here, and that takes into account the obstacle
velocities, with the original one designed in [1]. In the
following, we denote these respectively as approach M and
S (for Mobile and Static). All experiments have been carried
out on our CyCab vehicle, set in car-like mode (i.e., using
the front wheels for steering). For simulations, we made
use of Webots3, where we designed a virtual CyCab, and
distributed random visual features, represented by spheres,
in the environment. The CyCab is equipped with a coarsely
calibrated 640× 480 pixels 70◦ field of view, B&W Marlin
(F-131B) camera mounted on a TRACLabs Biclops Pan/Tilt
head (the tilt angle is null, to keep the optical axis parallel to
the ground), and with a 4-layer, 110◦ scanning angle, laser
SICK LD-MRS. The grid is built by projecting the laser
readings from the 4 layers on the ground, and by using:
XM = YM = 10 m, Xm = −2 m, Ym = −10 m. The cells
have size 20×20 cm. For the situation risk function, we use
ts = 6 s and td = 4.5 s, for the unsafe translational velocity,

1We consider that intervals are defined even when the first endpoint is
greater than the second: [κn, κnn) must be read (κnn, κn] if κn > κnn.

2At the first iteration, we set κpb = κn.
3www.cyberbotics.com

Fig. 3. Six steps of the simulations: the taught path (black) must be followed by the robot (orange) with methods S (top) and M (bottom) and 4 moving
and 1 static obstacles. Visual features are represented in green, the occupancy grid in yellow, and the replayed paths in red.

Fig. 4. First real experiment: Comparison between methods S (top) and M (bottom) as a pedestrian crosses the path in front of the robot.

we use tcs = 5 s, and tcd = 2 s, and as control gains: λx = 1
and λϕ = 0.5. A compromise between computational cost
and control accuracy must be reached to tune the size of
K, i.e., its sampling interval. In all experiments, we used 21
tentacles, with κM = 0.35 m−1.

At first, no obstacle is present in the environment, and
the robot is driven along a taught path. Then, moving and
static objects are present on the path, while the robot replays
it to follow the key images. The metrics for assessing the
experiments are the image error with respect to the visual
database x − x∗ (in pixels), and the robot linear velocity
v, both averaged over the whole experiment and denoted
respectively ē and v̄. We do not consider the 3D pose error
with respect to the taught path, since our task is defined
in the image space, and not in the pose space. Besides,
some portions of the replayed paths, corresponding to the
obstacle locations, are far from the taught ones. However,
these deviations are indispensable to avoid collisions.

Let us firstly describe the simulations, shown in Fig. 3.
The taught visual path is a closed clockwise loop of N = 20
key images, and the robot must replay it, while avoiding
4 moving obstacles, with velocity norms up to 1 ms−1,
and a static one. Higher obstacle velocities are difficult to
estimate due to the low frequency of laser processing (12.5
Hz). However, it is noteworthy to point out that 1 ms−1
is the walking speed of a quick pedestrian. With approach
M, the vehicle is able to follow the whole path without
colliding, whereas when S is used, the robot collides with
the third obstacle. Let us now detail the robot behaviour in
the two cases. The first obstacle (a cyan box moving straight
towards the robot) is avoided by both approaches, although
with M motion prediction leads to a smoother and earlier
circumnavigation. With M, the robot is faster, and reaches
the brown box while it is crossing its way; but since the box
is expected to leave, the robot just waits for the path to return
free. With S, the robot arrives at the same point late, when
the box is far. The third, grey box moves straight towards
the robot, like the cyan one. Since it is slightly faster, this
time S is not reactive enough, and a collision occurs. On the
other hand, with M the grey box as well as the remaining

ICRA13-mov

 1.1

 -0.3

ICRA13-not mov

30

15 5 10 20 25

 1.1

 -0.3

 0.4

 -0.4

10 20 22

time (s)

distance covered (m)

10 20

5 15

time (s)

Fig. 5. First real experiment. Top and center, respectively: control inputs
using S and M, with v (black, in ms−1), ω (green, in rads−1), ϕ̇ (red,
in rads−1), and iterations with strong H highlighted in yellow. Bottom:
applied curvature ω/v (in m−1) using S (red) and M (black).

pink and blue ones, are easily avoided. The new approach
also prevails in speed: the average velocity v̄ = 0.67 ms−1
with M, and v̄ = 0.49 ms−1 with S, although the image
errors are alike (ē = 41 pixels with M, and ē = 42 with S) .

After the simulations, the framework has been ported on
our CyCab vehicle. First, we have compared methods S and
M in an experiment, where a pedestrian crosses the taught
path in front of the robot. Then, in a second experiment,
two pedestrians are passing during navigation: one crosses
the path, and the other walks straight towards the robot.

The first experiment is shown in Fig. 4, with control inputs
in Fig. 5. With controller S (top in both figures), the robot
attempts avoidance on the right, since tentacles on the left are
occupied by the person. This is clearly a doomed strategy,
which leads the robot toward the pedestrian. Then, the robot
must decelerate and almost stop (v ≈ 0 after 15 s) when
the pedestrian is near. Navigation is resumed only once the
path is clear again. On the other hand, with controller M,
as the pedestrian walks, the prediction of his future position
makes him irrelevant from a safety viewpoint: risk function
H (yellow in Fig. 5), which was relevant with S, is now null.
Hence, the robot does not need to decelerate (v̄ is 0.89 ms−1
with M, and 0.76 ms−1 with S) nor to deviate from the path
(in Fig. 5, the applied curvature is smaller). The image error
is also reduced with M: ē = 7 instead of 12 pixels.

For the second experiment, we show relevant iterations
with the corresponding occupancy grids and currently viewed

Fig. 6. Ten relevant iterations of the second experiment, where the robot avoids two pedestrians while replaying the taught path with approach M. For
each iteration, we show the occupancy grid (left) and current image (right). In the occupancy grid, the dangerous cell sets associated with the visual tentacle
and to the best tentacle (when different) are respectively shown in red and blue, and two black segments indicate the scanner amplitude. Only cells that
we predict to be occupied in the next T s have been drawn in green. The green segments link the current and next key image points.

images, in Fig. 6. This time, the robot is controlled with
M, as two pedestrians interfere with the navigation. In
the occupancy grid, the propagation of cells occupied by
the persons is visible at iterations 2-8. With the crossing
pedestrian (iterations 2-5), since no collision is predicted,
the robot keeps following the visual tentacle (red). Instead,
with the forward walking pedestrian, a collision is predicted
at iteration 7; then, the robot selects the best tentacle (blue)
to avoid the person. Visual path replaying is again successful,
with v̄ = 0.87 ms−1 and ē = 10 pixels.

VII. CONCLUSIONS

In this work, we have introduced a novel reactive ap-
proach that takes into account obstacle velocities to achieve
safe visual navigation in outdoor scenarios. To estimate
the obstacle velocities, we have designed a Kalman-based
observer. Then, we utilize the velocities to predict possible
collisions between robot and obstacles within a tentacle-
based scheme. Our approach is validated in a series of
experiments, where it is compared with a similar controller
that does not consider obstacle velocities. We show that, by
predicting the obstacle displacements within the candidate
tentacles, the robot behaviour is safer and smoother, and
higher velocities can be attained. In the future, we will
investigate more realistic scenarios, where obstacles are not
translating, as assumed here, and can approach the vehicle
from behind. For the latter case, the current configuration
(forward-looking lidar) must be modified.

REFERENCES

[1] A. Cherubini and F. Chaumette, “Visual navigation of a
mobile robot with laser-based collision avoidance”, Int.
Journal of Robotics Research, OnlineFirst, September 4, 2012
DOI:10.1177/0278364912460413.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. Van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian and P. Mahoney, “Stanley: The robot that won
the DARPA Grand Challenge” in Journal of Field Robotics, vol. 23,
no. 9, 2006, pp. 661 - 692.

[3] U. Nunes, C. Laugier and M. Trivedi, “Introducing perception, plan-
ning, and navigation for Intelligent Vehicles” in IEEE Trans. on
Intelligent Transportation Systems, vol. 10, no. 3, 2009, pp. 375–379.

[4] A. Broggi, L. Bombini, S. Cattani, P. Cerri and R. I. Fedriga, “Sensing
requirements for a 13000 km intercontinental autonomous drive”,
IEEE Intelligent Vehicles Symposium, 2010, San Diego, USA.

[5] M. Buehler, K. Lagnemma and S. Singh (Editors), “Special Issue on
the 2007 DARPA Urban Challenge, Part I-III”, in Journal of Field
Robotics, vol. 25, no. 8–10, 2008, pp. 423–860.

[6] J. Minguez, F. Lamiraux and J.-P. Laumond, “Motion planning and
obstacle avoidance”, in Springer Handbook of Robotics, B. Siciliano,
O. Khatib (Eds.), Springer, 2008, pp. 827–852.

[7] P. Fiorini and Z. Shiller, “Motion Planning in Dynamic Environments
Using Velocity Obstacles”, in Int. Journal of Robotics Research, vol.
17, no. 7, 1998, pp. 760 – 772.

[8] D. Wilkie and J. Van den Berg, D. Manocha, “Generalized Ve-
locity Obstacles”, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2009.

[9] A. Wu and J P. How, “Guaranteed infinite horizon avoidance of
unpredictable, dynamically constrained obstacles”, in Autonomous
Robots, vol. 32, 2012, pp. 227-242.

[10] D. Fox, W. Burgard and S. Thrun, “The Dynamic Window approach
to obstacle avoidance”, in IEEE Robotics and Automation Magazine,
vol. 4, no. 1, 1997, pp. 23–33.

[11] B. Damas and J. Santos-Victor, “Avoiding Moving Obstacles: the
Forbidden Velocity Map”, IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2009.

[12] M. Seder and I. Petrović, “Dynamic window based approach to mobile
robot motion control in the presence of moving obstacles”, IEEE Int.
Conf. on Robotics and Automation, 2007.

[13] C. Fulgenzi, A. Spalanzani, C. Laugier, “Probabilistic motion plan-
ning among moving obstacles following typical motion patterns”, in
IEEE/RSJ Int. Conf. on Intelligent RObots and Systems, 2009.

[14] T. Fraichard, “A Short Paper about Motion Safety”, IEEE Int. Conf.
on Robotics and Automation, 2007.

[15] S. Bouraine, T. Fraichard and H. Salhi, “Provably safe navigation for
mobile robots with limited field-of-views in dynamic environments”,
in Autonomous Robots, vol. 32, 2012, pp. 267-283.

[16] F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller,
and H.-J. Wuensche, “Driving with tentacles - Integral structures of
sensing and motion”, in Journal of Field Robotics, vol. 25, no. 9,
2008, pp. 640 – 673.

[17] E. Royer, M. Lhuillier, M. Dhome and J.-M. Lavest, “Monocular
vision for mobile robot localization and autonomous navigation”, in
Int. Journal of Computer Vision, vol. 74, no. 3, 2007, pp. 237–260.

[18] D. Zeng Wang, I. Posner and P. Newman, “What Could Move? Finding
Cars, Pedestrians and Bicyclists in 3D Laser Data”, in IEEE Int. Conf.
on Robotics and Automation, 2012.

[19] N. Wojke and M. Häselich, “Moving Vehicle Detection and Tracking
in Unstructured Environments”, in IEEE Int. Conf. on Robotics and
Automation, 2012.

