
An approach to recover feature models from
object-oriented source code

R. AL-Msie’deen* , A. Djamel Seriai* , M. Huchard* , C. Urtado** ,
S. Vauttier** , and H. S. Eyal Salman*

* LIRMM (CNRS and Univ. Montpellier 2), Montpellier, France,
** LGI2P / Ecole des Mines d’Alès, Nîmes, France

ABSTRACT. Software Product Line (SPL) is a development paradigm that targets the creation of
software system variants that belong to the same domain. Usually software system variants,
developed with clone-and-own approach, form a starting point for building SPL. To migrate
software systems which are deemed similar to a product line, it is necessary to detect the com-
mon features and variations between a set of software system variants. Reverse engineering the
feature model (FM) of an existing system is a challenging activity. FM describes the common
and variable characteristics of a product line. In recent years, a lot of work has addressed the
extraction of FM from different artefacts. Little work addressed extraction of FM from source
code. This paper proposes a general approach to extract initial FM from the object-oriented
(OO) source code of a set of software system variants in order to support the migration pro-
cess from conventional software development to software product line engineering (SPLE). We
present an approach to extract features of FM from the analysis of object-oriented source code
for a set of software product variants. This approach is based firstly on the definition of the
mapping model between object-oriented elements (OOE) and those of FM. Secondly; it uses an
identification process exploiting on the one hand Formal Concept Analysis (FCA) as a method
for clustering OOE corresponding to the implementation of features and on the other hand La-
tent Semantic Indexing (LSI) to define a similarity measure on which is based this clustering.

KEYWORDS: Software product line engineering; feature identification; feature model; source code
variation; OO source code reverse engineering; software system variants; Formal Concept
Analysis; Latent Semantic Indexing.

1re soumission à JLP 2012, le April 5, 2013.

2 1re soumission à JLP 2012.

1. Introduction

Several definitions of SPLs can be found in the literature; according to Clements
and Northrop [CLE 01] a SPL is "a set of software intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular market
segment or mission and are developed from a common set of core assets in a pre-
scribed way". A SPL is usually characterized by two sets of features: the features
that are shared by all products in the family, called the SPL’s commonalities, and, the
features that are shared by some, but not all, products in the family, called the SPL’s
variability. These two sets define the mandatory and optional parts of the SPL.

In order to provide a more subtle description of the possible combinations of op-
tional features (e.g., some optional feature might exclude another and require a third
one), SPLs are usually described with a defacto standard formalism called feature
model [ACH 12]. A feature model characterizes the whole software family. It de-
fines all the valid feature sets or configurations. Each valid configuration represents
a specific product (either it be an existing product or a valid product-to-be). Feature
modelling is a method for describing commonalities and variabilities in software prod-
uct line. Feature model was first introduced in the Feature-Oriented Domain Analysis
(FODA) method by [KAN 90].

Software product line engineering (SPLE) is the process to both model the soft-
ware family (also called domain engineering) and develop a software that sticks to
the software family definition (also called application engineering) [CLE 01]. When
investigating the actually practiced development methods, it appears that the need for
a disciplined SPLE process appears after the development of several product variants
[DUS 11]. These variants are developed using ad hoc techniques such as copy, paste,
modify without explicit plan or strategy for reuse. Once released, if the products meet
their market, similar products are to be developed [JOH 09] and it becomes too com-
plex to develop and maintain them and too costly without switching to SPLE.

Manual analysis of the existing products and manual feature model reverse engi-
neering for the existing software family is time-consuming and error-prone, and re-
quires substantial effort. Automating the reverse engineering of a feature model from
source code would be of great help. Expected benefits are to improve product mainte-
nance, ease system migration, and discover new valid configurations that may lead to
the production of new software products [CHI 90]. We use FCA and IR to get these
objectives.

We use Formal Concept Analysis to extract commonalities and variabilities for a
set of product variants. FCA is a mathematical method that provides a way to identify
"meaningful groupings of objects that have common attributes"[LOE 07]. Information
retrieval (IR) has proven useful in many disciplines such as software maintenance
and evolution, image extraction, speech recognition and horizontal search engines like
Google. Furthermore feature location is one of the most common applications of IR
in software engineering [DAV 11]. IR methods sort the documents against queries
by extracting information about the occurrences of terms within them. The extracted

Reverse Engineering Feature Models 3

information is used to find similarity between queries and documents. LSI assumed
that there are some implicit relationships among the words of documents that always
appear together even if they do not share any terms; that is to say, there are some latent
semantic structures in free text [DAV 11].

In recent years, a lot of work on reverse engineering has addressed the extraction of
feature models from different artefacts[ZIA 12, RYS 11]. Few works have addressed
the problem of identification of FM from the source code of product variants [ZIA 12]
(see Section 7).

The main goal of our work is to recover the features from OO source code based
on FCA to extract commonalities and variations from product variants and integrate
Latent Semantic Indexing (LSI) with FCA to recover the features.

The remainder of this paper is organized as follows. Section 2 shows an overview
of the approach and the variation-feature mapping model, and presents our proposed
feature model extraction process from object-oriented building elements (OBE). Sec-
tion 3 discusses source code variability identification from OO source code for a set
of product variants. Section 4 explains the extraction process for commonalities and
variations using FCA. Section 5 explains the extraction process for the atomic block
of variations (feature) from block of variations using LSI and FCA. Section 6 dis-
cusses the implementation. Section 7 discusses related work that addressed reverse
engineering feature models from different artefacts. Finally, we conclude and draw
perspectives for this work in Section 8.

2. Approach Overview

In this section, we will explain the main concepts of our approach and how these
concepts can be used to apply our approach.

2.1. Features versus object-oriented elements: the mapping model

The general objective of our approach is to extract FM which model common
and variable features of software product variants. We present in this paper the part
concerning features identifications. We rely on the following definition of the feature:
"a feature is a prominent or distinctive and user-visible aspect, quality, or characteristic
of a software system or systems" [KAN 90]. We consider that a feature represents
an aspect valuable to the customer. It is represented by a single term. We adhere to
the classification given by [KAN 90] which distinguishes three categories of features:
Functional, operational, and presentation features. To identify features we rely on the
mapping model between these features and object-oriented building elements (OBE)
(see Fig. 1).

As there are several ways to implement the features [BEU 04], we assume that the
features are implemented at the programming language level. Thus, the elements of
the source code can reflect these features. For object-oriented source code, the manda-

4 1re soumission à JLP 2012.

Figure 1. Variation-feature mapping model

tory features are realized by object-oriented building elements (OBE) (i.e. packages,
classes, etc.) that are shared by all product variants. However, the optional features are
realized by variable elements that appear only in some variants. We consider that a
feature corresponds to one and only one set (group) of OBE. This means that a feature
always has the same implementation in all products where it is present.

An optional feature is implemented by variable object-oriented building elements
(VOBE) in all products where it is present. So we define a block of variations (BV) as
a set of (VOBE) which are always associated (i.e., which are always identified together
in all the products in which they appear).

It is clear that a VOBE cannot occur in a product unless accompanied by all the
VOBE that are part of the implementation of the corresponding feature. This is also the
case for VOBE that belong to interdependent features (linked via "and" or "require"
constraints). Therefore, a VOBE implements an optional feature that necessarily be-
longs to one and only one BV. Following our approach a BV can gather VOBE that
represent one or more features linked by "and" or "require" constraints. The BV are
found thanks to FCA.

The subsets of VOBE that belong to a BV and represent one and only one feature
are called atomic blocks of variations (ABV). A BV is composed of set of ABVs. To
determine its sub-parts, we rely on the clustering of the closest VOBEs considering
the similarity measures that are related to LSI method.

The mandatory features are implemented by common object-oriented building ele-
ments (COBE) in all product variants. In the same way as for the identification of ABV,

Reverse Engineering Feature Models 5

Figure 2. Illustrative example.

we rely on the clustering of the closest OBE in the common block (CB) to determine
the parts of this partition. Each part will be considered as a mandatory feature.

Fig. 2 shows an example of a set of product variants (3 products). This is an abstract
example to show the main concepts that exist in the variation-feature mapping model.

2.2. Feature model extraction process

The approach that we propose is illustrated in Fig. 3. Feature model extraction
process consists of the following steps:

Figure 3. Feature model extraction process

- OO Source code is analyzed to extract object-oriented building elements (packages,
classes, methods, attributes) for all product variants.
- Commonalities and variations are extracted for all product variants using FCA.

6 1re soumission à JLP 2012.

Blocks of variations are given by using FCA.
- Blocks of variations are divided into atomic blocks of variations. Each atomic block
of variations corresponds to one and only one feature. In this step, we use LSI and
FCA to identify features based on the textual similarity.

3. Identification of source code variability: OO source code analysis

Any OO source code can hold four levels of variations: package variation, class
variation, attribute variation, method variation (see Fig. 4). Package variation shows
variation on two levels: package set variation (set of packages that appear in some
products but not all products), and package content variation (means all product vari-
ants have the same packages but with different contents). Variation at the class level
can appear in the class signature, attribute set and method set. Class signature varia-
tion means that two or more classes have the same name in many packages but de-
clare different relations, or different access levels. Method and attribute set variation
captures the differences between product variants in term of provided functionalities.
Attribute variation can be found in attribute declarations such as: access level, data
type, etc. Method variation can appear in the method signature (access level, returned
data type, parameter list, parameter list order and method exception) and in the body
of the method (local variable, method invocation, access).

Figure 4. Object-oriented source code variations.

4. Commonality and variation identification using FCA

We use FCA to extract commonalities and variabilities for a set of product variants.
In the concept lattice the upper concept represents all source code elements that are
shared by all products (common block), while other concepts reflect variability among

Reverse Engineering Feature Models 7

this family (variabilities) and contain all source code variations shared by some prod-
ucts but not all products (block of variations). In the formal context, products con-
stitute the rows while source code elements (packages, classes, methods, attributes)
constitute the columns (see Table 1).

Table 1. Part of the formal context describing text editing systems by source code
elements

Pa
ck

ag
e

(N
am

e:
um

.li
rm

m
.te

xt
ed

ito
r.c

ha
ng

ed
is

pl
ay

se
tt

in
gs

)

C
la

ss
(N

am
e:

C
re

at
e,

ow
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.fi

le
m

an
ag

em
en

t.fi
le

)

C
la

ss
(N

am
e:

PD
F,

ow
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.fi

le
m

an
ag

em
en

t.p
ri

nt
)

C
la

ss
(N

am
e:

V
ie

w
H

el
p,

ow
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.v

ie
w

he
lp

)

C
la

ss
(N

am
e:

Sa
ve

,o
w

ne
r:

um
.li

rm
m

.te
xt

ed
ito

r.fi
le

m
an

ag
em

en
t.s

av
efi

le
)

C
la

ss
(N

am
e:

Se
le

ct
A

ll,
ow

ne
r:

um
.li

rm
m

.te
xt

ed
ito

r.fi
le

m
an

ag
em

en
t.e

di
t)

M
et

ho
d

(N
am

e:
Se

le
ct

A
ll,

ow
ne

r:
Se

le
ct

A
ll)

C
la

ss
(N

am
e:

R
es

iz
e,

ow
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.c

ha
ng

ed
is

pl
ay

se
tt

in
gs

.r
es

iz
e)

C
la

ss
(N

am
e:

C
le

ar
,o

w
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.fi

le
m

an
ag

em
en

t.c
le

ar
)

C
la

ss
(N

am
e:

R
ea

dO
nl

y,
ow

ne
r:

um
.li

rm
m

.te
xt

ed
ito

r.fi
le

m
an

ag
em

en
t.r

ea
do

nl
y)

C
la

ss
(N

am
e:

U
nS

pl
it,

ow
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.c

ha
ng

ed
is

pl
ay

se
tt

in
gs

.u
ns

pl
ita

ll)

C
la

ss
(N

am
e:

H
or

iz
on

ta
l,

ow
ne

r:
um

.li
rm

m
.te

xt
ed

ito
r.c

ha
ng

ed
is

pl
ay

se
tt

in
gs

.sp
lit

))

C
la

ss
(N

am
e:

Ve
rt

ic
al

,o
w

ne
r:

um
.li

rm
m

.te
xt

ed
ito

r.c
ha

ng
ed

is
pl

ay
se

tt
in

gs
.sp

lit
)

M
et

ho
d

(N
am

e:
se

tV
er

tic
al

,o
w

ne
r:

Ve
rt

ic
al

)

L
oc

al
Va

ri
ab

le
(N

am
e:

Ve
rt

ic
al

,o
w

ne
r:

se
tV

er
tic

al
)

M
et

ho
d

In
vo

ca
tio

n
(N

am
e:

pr
in

t,
A

cc
es

se
d-

in
:[

Ve
rt

ic
al

],
ow

ne
r:

se
tV

er
tic

al
)

TextEditingSystem1 × × × × × × × × × × × × × × ×
TextEditingSystem2 × × × × × × × × × × × × × × ×
TextEditingSystem3 × × × × × × × × × × × × × ×
TextEditingSystem4 × × × × ×
TextEditingSystem5 × × × × × × ×
TextEditingSystem6 × × × × × × × × × × × ×
TextEditingSystem7 × × × × × × × × ×
TextEditingSystem8 × × × × × × × × × × × ×

The concept lattice is presented in Fig. 5. The common block contains all the
source code elements that implement mandatory features. The source code elements
that are shared by more than one product are called a block of variations. A Block of
variations contains source code elements that appeared every times together to imple-
ment a set of features for some product.

5. Atomic block of variations (feature) identification using LSI and FCA

To identify the atomic block of variations that represent a single feature from a
block of variations, we consider LSI and FCA to recover all atomic block of variations.
In our case, each line in the block of variations represents a single document and at
the same time represents a query.

8 1re soumission à JLP 2012.

Figure 5. The concept lattice for the formal context of Table 1

Most of the existing tools about FCA are referenced from the web page of Uta
Priss 1. For this paper, we used the eclipse eRCA platform 2 and Concept Explorer 3.

All information in the block of variations must be manipulated and normalized to
become suitable as input of LSI. This preprocessing step includes: all capital letters
must be transformed into lower case letters, removing stop-words (such as articles,
punctuation marks, numbers, etc.), all lines must be split into terms and performing
word stemming.

Similarity between lines is described by a similarity matrix. In the similarity matrix
columns represent lines vectors and rows represent lines vectors also. LSI uses each
line in the block of variations as a query to retrieve all lines that have similarity with it,
according to cosine similarity. In our work, we consider the most widely used thresh-
old for cosine similarity that is equals to 0.70 [DAV 11]. We use the similarity matrix
(see Table 2) (LSI result) as input for the FCA to group the similar elements together
based on the lexical similarity; after that, we ignore any document that has similarity
with itself only (see Table 4). Table 3 shows the formal context of the similarity matrix
(threshold for cosine similarity equals to 0.70). So we take the interchanged context
as input for FCA; FCA identifies the meaningful groupings of objects that have com-
mon attributes. In our case, the concept lattice (see Fig. 6) shows two atomic block

1. http://www.upriss.org.uk/fca/fca.html
2. http://code.google.com/p/erca/
3. http://conexp.sourceforge.net/

Reverse Engineering Feature Models 9

of variations. Each atomic block represents one and only one feature. Note that each
document (Doc−i) represents a line from a block of variations.

Table 2. The similarity matrix (SimMat).
Doc 1 Doc 2 Doc 3 Doc 4 Doc 5 Doc 6 Doc 7 Doc 8

Doc 1 1 0.70 0 0 0 0.70 0 0
Doc 2 0.70 1 0 0 0 0.70 0 0
Doc 3 0 0 1 0 0 0 0 0
Doc 4 0 0 0 1 0.70 0 0 0
Doc 5 0 0 0 0.70 1 0 0 0
Doc 6 0.70 0.70 0 0 0 1 0 0
Doc 7 0.70 0.70 0 0 0 0.70 1 0
Doc 8 0.70 0.70 0 0 0 0.70 0 1

Table 3. The context (SimMat) for θ= 0.70.
Doc 1 Doc 2 Doc 3 Doc 4 Doc 5 Doc 6 Doc 7 Doc 8

Doc 1 x x x
Doc 2 x x x
Doc 3 x
Doc 4 x x
Doc 5 x x
Doc 6 x x x
Doc 7 x x x x
Doc 8 x x x x

Table 4. The interchanged (SimMat) context.
Doc 1 Doc 2 Doc 6 Doc 4 Doc 5

Doc 1 x x x
Doc 2 x x x
Doc 4 x x
Doc 5 x x
Doc 6 x x x
Doc 7 x x x
Doc 8 x x x

6. Approach implementation

To validate our approach, we used a text editing software product line 4 as a case
study. A text editor is a computer program that lets a user enter, change, store, and usu-
ally print text, and provide the basic operations that satisfy the end user. This family
has eight product variants. Each product implements a simple text editing application.
Features are collected in what it is called a FM to specify the variations between these
products. The feature model of the text editing system is shown in Fig. 7; the features
with white circles on top are optional features while all features with black circles on
top are mandatory features. Fig. 5 shows small part of the concept lattice for these
products. We extract the common block that contains all common (mandatory) fea-
tures, and a set of blocks of variations that contain source code elements for optional

4. http://www.lirmm.fr/TextEditingSystemSPL

10 1re soumission à JLP 2012.

Figure 6. The concept lattice for the formal context of Table 4.

Figure 7. Text editing system FM.

features. Each block of variations has at least one atomic block of variations that rep-
resents a single optional feature. In the text editing system, the concept lattice shows
that unsplit, split horizontal, and split vertical features all times appear together in the
same block of variations. After applying LSI with FCA on this block we recover three
atomic blocks of variations (each one represent a single feature) based on the textual
similarity. Concept lattice (see Fig. 8) shows the recovered features from this block.

7. Related work

Ziadi et al. [ZIA 12] propose an automatic approach for feature identification from
source code for a set of product variants. Their approach only investigates products
in which the variability is represented in the name of classes, methods and attributes,
without considering a product lines in which the variability is mainly represented in
the body of methods. The recovered feature model contains only one mandatory fea-
ture, and optional features. The extracted feature model has only one level of hierar-
chy, without distinction between the mandatory features, without any feature group
and group constraints, and without cross tree constraints. We use FCA to extract com-
monalities and variations from product variants and distinguish between the manda-
tory features by using LSI and FCA based on the lexical similarity, and extracts all
optional features and constraints such as: "and" and "require".

Reverse Engineering Feature Models 11

Figure 8. Concept lattice shows three atomic blocks of variations extracted from one
block of variations.

Ryssel et al. [RYS 11] propose an approach to extract feature diagrams using FCA
from an incidence matrix that contains matching relation as input. It shows the parts
of a set of function- block oriented models that describe different controllers of a
DC motor. They introduce an automatic approach to recognize variants in a set of
models and identify the variation points and their dependencies within variants. In
our approach the incidence matrix contains source code elements for a set of product
variants, and we use FCA to extract commonalities and variations for these product
variants.

Our approach focuses on recovering an initial feature model from a set of product
variants to support the migration process from conventional software development to
software product line engineering.

8. Conclusion

In this paper, we proposed an approach based on FCA and LSI to extract a feature
model from the object-oriented source code of software system variants. FCA can be
used to extract variations blocks. Then LSI is used with FCA to recover atomic blocks
of variations that represent a single feature, using the textual similarity.

12 1re soumission à JLP 2012.

As future work, we will apply a clustering algorithm on the commonality and
variability blocks to determine more precisely each feature implementation based on
both textual and semantic similarity. For the semantic similarity, we rely on all avail-
able information and links that exists between variable object-oriented building ele-
ments such as: inheritance (which class inherits from which class), invocations (which
method invokes which method). Also we will try to organize the extracted features as
a feature model including all cross-tree constraints, using information contained in the
concept lattice.

9. References

[ACH 12] ACHER M., HEYMANS P., MICHEL R., “Next-generation model-based variability
management: languages and tools”, Proceedings of the 16th International Software Product
Line Conference, vol. 2 of SPLC ’12, New York, NY, USA, 2012, ACM, p. 276–277.

[BEU 04] BEUCHE D., PAPAJEWSKI H., SCHRÖDER-PREIKSCHAT W., “Variability manage-
ment with feature models”, Sci. Comput. Program., vol. 53, num. 3, 2004, p. 333–352,
Elsevier North-Holland, Inc.

[CHI 90] CHIKOFSKY E. J., CROSS II J. H., “Reverse Engineering and Design Recovery: A
Taxonomy”, IEEE Software, vol. 7, num. 1, 1990, p. 13–17, IEEE.

[CLE 01] CLEMENTS P. C., NORTHROP L. M., Software product lines: practices and pat-
terns, Addison-Wesley, 2001.

[DAV 11] DAVID B., LAWRIE D., “Information Retrieval Applications in Software Mainte-
nance and Evolution”, In Encyclopedia of Software Engineering, 2011, p. 454-463.

[DUS 11] DUSZYNSKI S., KNODEL J., BECKER M., “Analyzing the Source Code of Multiple
Software Variants for Reuse Potential”, p. 303-307, IEEE Computer Society, Los Alamitos,
CA, USA, 2011.

[JOH 09] JOHN I., EISENBARTH M., “A decade of scoping: a survey”, Proceedings of the
13th International Software Product Line Conference, Pittsburgh, PA, USA, 2009, Carnegie
Mellon University, p. 31–40.

[KAN 90] KANG K. C., COHEN S. G., HESS J. A., NOVAK W. E., PETERSON A. S.,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study”, November 1990.

[LOE 07] LOESCH F., PLOEDEREDER E., “Restructuring Variability in Software Product
Lines using Concept Analysis of Product Configurations”, KRIKHAAR R. L. VER-
HOEF C. L. G. A. D., Ed., Proceedings of the 11th European Conference on Software
Maintenance and Reengineering, Amsterdam, Netherlands, March 2007, IEEE, p. 159–
170.

[RYS 11] RYSSEL U., PLOENNIGS J., KABITZSCH K., “Extraction of feature models from
formal contexts”, Proceedings of the 15th International Software Product Line Conference,
Volume 2, Munich, Germany, 2011, ACM, p. 4:1–4:8.

[ZIA 12] ZIADI T., FRIAS L., DA SILVA M. A. A., ZIANE M., “Feature Identification from
the Source Code of Product Variants”, MENS T. CLEVE A. F. R., Ed., Proceedings of
the 15th European Conference on Software Maintenance and Reengineering, Los Alamitos,
CA, USA, 2012, IEEE, p. 417–422.

