
HAL Id: lirmm-00808461
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00808461v1

Submitted on 5 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A methodology to recover feature models from
object-oriented source code

Ra’Fat Ahmad Al-Msie’Deen, Abdelhak-Djamel Seriai, Marianne Huchard,
Christelle Urtado, Sylvain Vauttier, Hamzeh Eyal-Salman

To cite this version:
Ra’Fat Ahmad Al-Msie’Deen, Abdelhak-Djamel Seriai, Marianne Huchard, Christelle Urtado, Syl-
vain Vauttier, et al.. A methodology to recover feature models from object-oriented source code.
VARY’2012: VARiability for You, Sep 2012, Innsbruck, Austria. , 2012. �lirmm-00808461�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00808461v1
https://hal.archives-ouvertes.fr

Software Product Line Engineering

A methodology to recover feature models from object-oriented source code
���

Ra’fat AL-MSIE’DEEN*, Abdelhak Djamel SERIAI*, Marianne HUCHARD*,

Christelle URTADO**, Sylvain VAUTTIER**, Hamzeh EYAL SALMAN*

**LGI2P, Ecole des Mines d’Alès, Nîmes, France
{Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

*LIRMM, UMR 5506, CNRS and UM2, Montpellier, France
{Rafat.Al-msiedeen, Abdelhak.Seriai, Marianne.Huchard, eyalsalman}@lirmm.fr

A Software Product Line is "a set of software intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market segment or mission and are
developed from a common set of core assets in a prescribed way" [1].

SPLE (Software Product Line Engineering) focuses on capturing the commonalities and
variations between several software products that belong to the same family. Capturing variants
is the key activity that distinguishes SPLE from other software development approaches: it is
called variability management.

Overview of our Methodology

Software product line engineering steps

Variations among software families are modeled and variability managed in most cases using a
de facto standard formalism called feature models [2].

Motivations
SPLs are often designed after a number of product variants have been implemented using ad
hoc techniques such as copy / paste / modify.

In order to migrate software products which are deemed similar to a product line, it is
necessary to detect common features and variations between a set of product variants. Reverse
engineering a feature model from existing software is a challenging activity.

Creating manually a feature model for an existing system is time-consuming, error-prone, and
requires substantial effort from a modeler [3]. Automatic extraction of feature models from
source code would improve product maintenance, ease system migration, and the extracted
feature model may lead to the production of new products.

In recent years, a lot of work on reverse engineering has addressed the extraction of feature
models from different artifacts but not from source code for a set of software product variants
except [6].

Here, we present a methodology to extract a feature model from O.O. source code for a set of
product variants to support the migration process from conventional software development to
SPLE.

Source code analysis

Variation to feature mapping model

[1] Clements, P. and Northrop, L. M. (2001). Software Product Lines : Practices and Patterns.
Addison-Wesley. p.9, p.10, and p.12.
[2] Acher, M., Heymans, P., and Michel, R. 2012. Next-generation model-based variability
management: languages and tools. In Proceedings of the 16th International Software Product
Line Conference - Volume 2 (SPLC '12), Vol. 2. ACM, New York, NY, USA, 276-277.
[3] She, S., Lotufo, R., Berger, T., Wąsowski, A., and Czarnecki, K. 2011. Reverse engineering
feature models. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE '11). ACM, New York, NY, USA, 461-470.
[4] Ryssel, U., Ploennigs, J., and Kabitzsch, K. 2011. Extraction of feature models from formal
contexts. In Proceedings of the 15th International Software Product Line Conference, Volume
2 (SPLC '11), Ina Schaefer, Isabel John, and Klaus Schmid (Eds.). ACM, New York, NY, USA, ,
Article 4 , 8 pages.
[5] Loesch, F., and Ploedereder, E. 2007. Restructuring Variability in Software Product Lines
using Concept Analysis of Product Configurations. In Proceedings of the 11th European
Conference on Software Maintenance and Reengineering (CSMR '07). IEEE Computer Society,
Washington, DC, USA, 159-170.
[6] Ziadi, T., Frias, L., Silva, M., and Ziane, M. 2012. Feature Identification from the Source
Code of Product Variants. In Proceedings of the 2012 16th European Conference on Software
Maintenance and Reengineering (CSMR '12). IEEE Computer Society, Washington, DC, USA,
417-422.

References

Overview of our methodology

Step 3: Variation to feature mapping model is defined. The aims of this model are to identify
block of variations and atomic block of variations. Each block of variation in the model
contains one or more atomic block of variations and each atomic block of variations
represents one and only one feature. Source code elements has one or more source code
variation, and each block of variations have one or more source code variation.

Step 4: Feature model elements such as root node, mandatory / optional features, parent
features, cross-tree constraints or parent (group of features) constraints are extracted.
Mandatory features appear on the common block, and optional features appear on the block
of variations, the feature model constraints appear in block of variations. For example, if a
single block has two features, it means that one requires the other. Finally, the feature model is
synthesized.

Source code analysis plays an important role in our methodology. Our analysis technique
provides both abstract and detailed information for each software product variant and
considers variation in both names and contents.

A block of variation is a set of variations that appear together in all products or in a single
product. Each block of variation has one or more features. Each atomic block of variation
represents a single atomic feature. We use partitioning techniques to identify atomic blocks of
variation.

Variation to feature mapping model for source code variants

Source code analysis for product variants

1 http://www.ic.unicamp.br/~tizzei/mobilemedia/index.html

Ryssel et al. [4] propose an approach to extract feature diagrams using FCA from incidence
matrix that contain matching relation as input. It shows the parts of a set of function- block-
oriented models that describe different controllers of a DC motor. Loesch et al. [5] present a new
method based on FCA to analyze the realized variability in a software product line, and
construct a lattice that provides a classification of the usage of variable features in real products
derived from the product line. Ziadi et al. [6] propose an automatic approach for feature
identification from source code for a set of product variants. This approach assumes that the
product variants use the same vocabulary to name packages, classes, attributes and methods in
its source code.

Related Work

So our aim is the extraction of feature models that represent variations among a set of
product variants, and enable to calculate product configurations using formal concept
analysis (FCA).

We investigate products in which variability is represented by the names of packages, classes,
attributes, methods, and bodies of methods (i.e. different choices for algorithms, methods
invocation). We also investigate products in which variability lies in the contents of packages,
classes, attributes, and methods.

The methodology that we propose is illustrated in Figure below.

Ø  Methodology Steps:

Step 1: O.O. source code is analyzed to extract source code elements (packages, classes,
methods, attributes) for all product variants.

Step 2: Commonalities and variations are extracted for all product variants using FCA. FCA is

a mathematical method that provides a way to identify “meaningful groupings of objects
that have common attributes” [5]. We have tested it on a mobile media1 case study and
obtained promising results.

Our methodology is based on 4 steps, We already have implemented step 1 (extract source
code elements) and step 2 (extract commonalities and variations). We have tested them on
some standard case study and obtained promising results. We are still working on steps 3 & 4.

