N

N

Security FPGA Analysis

Eduardo Wanderley, Romain Vaslin, Jérémie Crenne, Pascal Cotret,
Jean-Philippe Diguet, Jean-Luc Danger, Philippe Maurine, Viktor Fischer,
Benoit Badrignans, Lyonel Barthe, et al.

» To cite this version:

Eduardo Wanderley, Romain Vaslin, Jérémie Crenne, Pascal Cotret, Jean-Philippe Diguet, et al..
Security FPGA Analysis. Security Trends for FPGAS From Secured to Secure Reconfigurable Systems,
pp.7-46, 2011, 10.1007/978-94-007-1338-3_ 2 . lirmm-00809327

HAL Id: lirmm-00809327
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00809327
Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00809327
https://hal.archives-ouvertes.fr

Chapter 2
Security FPGA Analysis

E. Wanderley, R. Vaslin, J. Crenne, P. Cotret, G. Gogniat, J.-P. Diguet,
J.-L. Danger, P. Maurine, V. Fischer, B. Badrignans, L. Barthe, P. Benoit,
and L. Torres

Abstract Security is becoming since several years a major issue in the domain of
embedded systems. Fine grain reconfigurable architectures like FPGAs are provid-
ing many interesting features to be selected as an efficient target for embedded sys-
tems when security is an important concern. In this chapter we propose an overview
of some existing attacks, a classification of attackers and the different levels of secu-
rity as promoted by the FIPS 140-2 standard. We identify the main vulnerabilities of
FPGAs to tackle the security requirements based on the security pyramid concept.
We propose a presentation of some existing countermeasures at the different levels
of the security pyramid to guarantee a defense-in-depth approach.

2.1 Introduction

Standardized cryptographic algorithms, like AES or RSA, are designed to resist
cryptanalysis attacks, such as differential cryptanalysis. Only exhaustive attacks
against the cipher key are possible, so the security of these algorithms relies on the
length of the cipher key and if it is sufficiently long, such attacks are then impos-
sible. Table 2.1 summarizes current minimum strength recommendations for cryp-
tographic algorithms. In 2011, a minimum of 112 security bits is required for all
cryptographic algorithms [5].

Thus cryptography algorithms are mathematically designed to be strong enough
for current processing technologies. However, hackers can also attack software or
hardware implementations for a lower cost. In such cases, implementation may be
the weak point of the encryption process. For example, a new software side channel
attack, called Branch Prediction Analysis (BPA) attack, was recently discovered and
shown to be practically feasible on popular commodity PC platforms. This shows
that a carefully written spy process, run simultaneously with an RSA process, can
collect almost all the secret key bits in a single RSA signing execution. For this
reason, security needs to be considered at different levels, i.e. from the technology
to the application. If all these levels and the links between them are not taken into

G. Gogniat ()
Lab-STICC—UMR CNRS 3192, Bretagne-Sud University, Lorient, France
e-mail: guy.gogniat@univ-ubs.fr

mailto:guy.gogniat@univ-ubs.fr

E. Wanderley et al.

Table 2.1 NIST recommendation for cryptographic algorithms

Date Min of Symmetric key ~ Asymmetric Hash (A) Hash (B)
strength algorithms (RSA)
2006 to 2010 80 2TDEA” 1024 SHA-1"" SHA-1
3TDEA" SHA-224 SHA-224
AES-128 SHA-256 SHA-256
AES-192 SHA-384 SHA-384
AES-256 SHA-512 SHA-512
2011 to 2030 112 3TDEA" 2048 SHA-224 SHA-1
AES-128 SHA-256 SHA-224
AES-192 SHA-384 SHA-356
AES-256 SHA-512 SHA-384
SHA-512
>2030 128 AES-128 3072 SHA-256 SHA-1
AES-192 SHA-384 SHA-224
AES-256 SHA-512 SHA-356
SHA-384
SHA-512

Hash (A): Digital signatures and hash-only applications

Hash (B): HMAC, Key Derivation Functions and Random Number Generation. The security
strength for key derivation assumes that the shared secret contains sufficient entropy to support
the desired security strength. The same remark applies to the security strength for random number
generation

“TDEA (Triple Data Encryption Algorithm). The assessment of at least 80 bits of security for
2TDEA is based on the assumption that an attacker has 240 matched plaintext and ciphertext
blocks at the most

“SHA-1 has been shown to provide less than 80 bits of security for digital signatures; the security
strength against collisions is assessed at 69 bits. The use of SHA-1 is not recommended for the
generation of digital signatures in new systems; new systems should use one of the larger hash
functions. SHA-1 is included here to reflect its widespread use in existing systems, for which the
reduced security strength may not be of great concern when only 80 bits of security are required

consideration, weaknesses can easily and rapidly appear in the devices concerned.
Classical implementations of cryptography algorithms and secure embedded sys-
tems have been performed on ASICs and processors, but FPGAs are becoming in-
creasingly attractive for cost and performance reasons and should be considered as
a new alternative for security issues. As we explain in this chapter, FPGAs provide
several key features that are recommended for security. For example when SRAM
technologies are used, it is possible to dynamically change the functionality of the
system to react to an attack. It is also possible to update some new hardware cryp-
tography cores by remote reconfiguration even when the system has already been
used for several years. This helps maintain the security level of a system at a time
when cryptanalysis techniques are undergoing constant improvement. FPGAs pro-

2 Security FPGA Analysis

vide an appropriate performance level for most embedded systems and, when com-
bined with a processor core, can provide a whole secure solution. In this chapter we
present an extensive analysis of FPGAs and their security in order to define the role
that this technology could play in future applications.

The rest of the chapter is organized as follows: in Sect. 2.2, to give the reader
some general background in the field, we describe the security principles and per-
form an initial analysis of attacks against FPGAs. In Sect. 2.3, we describe the secu-
rity requirements for cryptographic modules according to the Federal Information
Processing Standard Publication (FIPS PUB 1402) [33]. This point is very impor-
tant when building a secure system. In Sect. 2.4, we analyze the vulnerabilities of
FPGAs according to the security pyramid and describe possible technology, logic,
architecture and system levels. In Sect. 2.5, we describe several countermeasures
that have been developed and demonstrate how they can be used to build a secure
system. Finally in Sect. 2.6, we present a number of conclusions.

2.2 Security Principles and Attacks Against FPGAs

The five main principles on which security is based to ensure the correct execution
of a program and the correct management of the communications are:

o Confidentiality: only the entities involved in the execution or the communication
have access to the data;

e [ntegrity: the message must not be damaged during transfer and the program must

not be altered before being executed;

Availability: the message and/or the program must be available;

e Authenticity: the entity must be sure that the message comes from the right entity
and/or the system must trust the program source code;

e Non-repudiation: the entities involved in the execution or the communication
must not be able to deny the exchange.

Guaranteeing all these points in a system is intellectually and financially costly.
Efforts by attackers to disrupt one of these elements use two different approaches:
extracting secret information (or the keys used to codify the information); or disturb-
ing the system. The latter can also be classified in several levels: stop the system;
temporarily stop the system; and/or change the functionality of the system (some-
times by opening doors to retrieve secret information).

Attackers are considered as adversaries, with varying abilities and with varying
financial means at their disposal, and their attempts to disturb a system must be
stopped. Generally, the power of an attacker can be classified using the description
provided by IBM [1], as described into Chap. 1.

10 E. Wanderley et al.

2.2.1 Hardware Attacks

The main goal of hardware attacks depends on the goal of the attacker. There are
generally several objectives. The first is obtaining secret information like cipher
keys. The second is causing a breakdown of the system (e.g. denial of service at-
tack). We first describe attacks that aim to obtain secrets, and second, denial of
service attacks. Some attacks are difficult to classify, hardware modification of the
main memory being one of them since this kind of attack can be considered as a
software attack but relies on a hardware technique to modify the memory content.
The goal of this attack is to insert a malicious program in the system. A similar
attack targets FPGAs by altering the bitstream.

To be able to decrypt information, the attacker needs the cipher key. One way to
obtain cipher keys is to listen to side channels. This kind of attack is called a side
channel attack and can take several different forms [19]. The best known relies on
the power signature of the algorithm [25]. By analyzing the algorithm signature it is
possible to infer the round of the algorithm. What is more, differential analysis com-
bined with a statistical study of the power signature can lead to the extraction of the
cipher key. However to reach this goal, the attacker has to make certain assumptions
about the value of the key. The two methods are called SPA: Simple Power Analy-
sis and DPA: Differential Power Analysis. Similar solutions are also possible using
electromagnetic emissions (Differential Electromagnetic Analysis) [3]. Instead of
analyzing the power signature, the attacker analyzes electromagnetic signature of
the chip. One important aspect is the cost of such attacks. This type of attack is
much cheaper than a reverse engineering attack which requires an electronic mi-
croscope to study the structure. Temporal analysis or timing attack [24] is another
way to obtain cipher keys. The temporal reaction of the system leaks information
enables the attacker to extract the cipher key or other secret information such as a
password. Like with DPA, the attacker has to make certain assumptions about the in-
formation to be extracted, e.g. knowledge of the algorithm, in which case the branch
instructions in the program can also help to solve a secret since a timing model of
the algorithm can be established. Indeed, timing hypotheses are possible as the pro-
gram running on the target device is often known. In this case, thanks to statistical
studies, information can be extracted.

Fault injection [26] is the last way to obtain secrets through a side channel. How-
ever, like reverse engineering, more equipment is required than for the types of
attacks described above. The injection of a fault into a system through the mem-
ory, for example, corresponds to a modification of a bit (laser or electromagnetic
waves). Knowledge of the implementation of the algorithm is crucial to solve a se-
cret. In most cases, the fault is inserted in the last round of an algorithm [26]. This is
because the trace of the fault is more visible in the ciphered result. The goal of such
hardware attacks is to obtain secret information from the chip. Regular improve-
ments in side-channel attacks have been made in the last ten years and use advanced
techniques to extract information. This book provides extensive discussions on the
subject.

2 Security FPGA Analysis 11

Denial of service attacks are different and the aim here is to cause a system
breakdown. In autonomous embedded systems, power is an essential concern. It
is one of the most important constraints on the system. To give an example, with
a cell phone or a PDA, an attacker can perform a large number of requests that
aim to activate the battery and hence to reduce the life of the system [27, 31]. In
wireless communication systems, another type of attack activates the transmitter
antenna to obtain the same result (i.e. reducing the life of the system). Increasing
the workload of a processor is another way of consuming more battery. Indeed the
workload of the system is related to power consumption, so an attacker may try to
force the processor to work harder [27, 31]. As a consequence, the lifetime will be
affected.

The range of attacks against a system is wide and depends on several parameters:
the goal, the budget, and the type system concerned. Hardware attacks are already
a serious threat to embedded systems but software attacks are becoming more and
more dangerous and need to be recognized and prevented.

2.2.2 Software Attacks

Like in servers and workstations, embedded systems are being increasingly affected
by viruses and worms [9]. The difference between a virus and a worm is that a
virus requires the help of a human to infect a system and then to spread, whereas
a worm does not. A worm is considered to be autonomous. All computer science
concepts can be transposed to the embedded system domain. The replacement of
a program by a malicious threatens the security of the system. The malicious pro-
gram may either try to access sensitive data or to shut down the system. Concerning
secret data, cipher keys are the most sensitive data as once the attacker knows the ci-
pher keys, he/she has access to all the information in plain. Encrypting memory and
protecting cipher keys are classical solutions to these attacks. However protections
used in computer science are not appropriate for embedded systems (less comput-
ing power and memory). As a result, dedicated solutions for embedded systems are
gradually emerging (e.g. bus or program monitoring) [8]. The number of attacks tar-
geting embedded systems is also increasing rapidly. For example, a virus or a worm
can be sent to the same system several times to launch the antivirus. Scanning the
whole system increases the workload of the processor and thus decreases the battery
lifetime which may be critical for autonomous systems. The concept of embedded
systems extends the scope of viruses and of worms.

The classification of hardware and software attacks (as depicted in Fig. 2.1) is
generic and can be applied to different platforms. Here we focus on attacks against
FPGA-based designs which are more hardware oriented, as we explain in the fol-
lowing sections.

12 E. Wanderley et al.

Fig. 2.1 Hardware and
software attacks coverage
against embedded systems

Hardware Oriented

Software Oriented

2.3 Objective of an Attacker

The most common threat against an implementation of a cryptographic algorithm is
obtaining a confidential cryptographic key, that is, either a symmetric key or the pri-
vate key of an asymmetric algorithm. Given that in most commercial applications,
the algorithms used are public knowledge, obtaining the key will enable the attacker
to decrypt future communications (assuming the attack has not been detected and
countermeasures have not been taken) and, which is often more dangerous, to de-
crypt past communications that were encrypted.

Another threat is the one-to-one copy, or cloning of a cryptographic algorithm
together with its key. In some cases this is enough to run the cloned application in
decryption mode to decipher past and future communications. In other cases, exe-
cution of a particular cryptographic operation with a presumably secret key is—in
most applications—the only criterion used to authenticate a party to a communica-
tion. An attacker who can perform the same function can attack the system.

Yet another threat is applications in which the cryptographic algorithms are pro-
prietary. Even though such an approach is not common, it is a standard practice in
applications such as pay-TV and in government communications. In such scenar-
ios, it is advantageous for an attacker to reverse-engineer the encryption algorithm
itself. The associated key might be recovered later by other means (bribery or clas-
sical cryptanalysis, for instance). The above discussion generally assumes that an
attacker has physical access to the encryption device. Whether that is the case or not
depends to a great extent on the application concerned. However, we believe that
in many scenarios such access can be taken for granted, either through outsiders or
through dishonest insiders.

2.3.1 Security System Using FPGAs

Based on reports by Wollinger et al. [50] and Wollinger and Paar [49], we list the
potential advantages of FPGAs in cryptographic applications.

[\

Security FPGA Analysis 13

Algorithm agility. This term refers to cryptographic algorithms switching during
operation of the targeted application. While algorithm agility is costly with tradi-
tional hardware, FPGA can be reprogrammed on the fly.

e Algorithm upload. Upgrading fielded devices is conceivable with a new encryp-
tion algorithm. FPGA-equipped encryption devices can upload the new configu-
ration code.

o Architecture efficiency. In certain cases hardware architecture can be much more
efficient if it is designed for a specific set of parameters. One example of a pa-
rameter for cryptographic algorithms is the key. FPGA allows this type of archi-
tecture, and enables optimization using a specific set of parameters. Depending
on the type of FPGA, the application can be completely or partially modified.

e Resource efficiency. The majority of security protocols are hybrid protocols that
require several algorithms. As they are not used simultaneously, the same FPGA
device can be used for both through runtime reconfiguration.

e Algorithm modification. There are applications that require modification of stan-
dardized cryptographic algorithms.

e Throughput. General purpose microprocessors are not optimized for rapid exe-
cution. Although typically slower than ASIC implementations, FPGA implemen-
tations have the potential to run much faster than software implementations (as
with a processor).

e Cost efficiency. There are two cost factors that have to be taken into considera-

tion when analyzing the cost efficiency of FPGAs: the cost of development and

the unit price. The cost of developing an FPGA implementation for a given algo-
rithm is much lower than for an ASIC implementation. Unit prices are not high
compared with the cost of development. However, for high-volume applications

(more than one million circuits) ASIC is usually the most cost-efficient choice.

FPGAs obviously have some interesting features and should not be discarded for
security applications. To analyze the problem of FPGA security, it is important to
define the model of computation to be used and the areas to be protected. There are
three possibilities: The first is considering the FPGA and its surrounding (normally
a processor and memory) as a trusted area; the second is restricting the trusted area
to the FPGA itself; and the third is when certain functional parts inside the FPGA
are considered to be trustworthy and others are not.

2.3.1.1 FPGA Based Security Models

In the context in which the FPGA and its environment is considered as a trusted area
(Fig. 2.2), the main element involved in the system security is the I/O interface. In
this case, the data entering or leaving the system need to be protected (for example,
confidentiality and authentication). In fact three interfaces can be used depending
on the boundary of the security perimeter. The first is related to the I/Os of the
system. In a secure execution context no information should leak from this interface
so all the data has to be encrypted. The second is related to the FPGA configuration
file if remote configuration is possible. In this case, it is essential to protect the

14 E. Wanderley et al.

Vulnerability

/0
-~

Trusted area | Bus
r

{ ~ {

Vulnerability
bitstream

Fig. 2.2 FPGA, processor and memory trusted area: model one for FPGA-based secure systems

bitstream by encrypting it. If all the configurations are within the trusted area, they
can be in clear form. The third interface is related to all the critical information
dealing with the security of the system, for example the transfer of a new key or a
new certificate. In this case, the interface needs to be different from the I/O one in
order to increase the security of the system; this interface should also be protected.
Generally authentication mechanisms are needed to ensure that only an authorized
party can send new data through this interface.

In the second context, the FPGA is considered as a trusted area but its environ-
ment is not (Fig. 2.3). For such a model, in addition to protecting the I/O interfaces
with the system as a whole, it is necessary to protect the communication inside the
system in a per-block (Memory, Processor, FPGA) granularity. In this case, several
techniques need to be considered in order to provide authentication, confidential-
ity and integrity verification. Furthermore, as the number of communications over
the bus is generally critical, very efficient and optimized cryptography resources

Vulnerability

/0
Vulnerability A

t A t Vulnerability

Vulnerability

Trusted area

bitstream] Sy T S |

FPGA Proces?\ Memory

Vulnerability

Fig. 2.3 FPGA trusted area: model two for FPGA-based secure systems

2 Security FPGA Analysis 15

Vulnerability

1/0
Vulnerability 4
\ v Bus

Vulnerability t ¥ t Vulnerability

1 o

Vulnerability : g :
\ -« T
HER 7 B

H I

L~

=

bitstream | I
FPGA Process Memory

Vulnerability

Fig. 2.4 Modules of FPGA trusted area: model three for FPGA-based secure systems

are needed. The latency of the exchanges is of paramount importance and needs
to be tackled. In the second context, protecting the FPGA configuration is also an
important issue.

Finally, in the third context, the FPGA itself contains regions that are trusted and
regions that are not (Fig. 2.4). In such a situation, only the configurations (i.e. bit-
streams) that compose the FPGA functionality need to be encrypted. FPGA’s trusted
area needs to be protected, but at this granularity, fine aspects of bitstreams have to
be considered. This solution involves the same challenges as the previous ones since
data exchanged within the FPGA but also exchanged with external resources need
to be protected, but the solutions should lead to a very low overhead so as to not pe-
nalize the execution of the whole system. This model is clearly the most challenging
one to design.

2.3.1.2 Threats Against FPGAs

Before building a solution it is essential for designers to clearly define the execution
context and the kinds of threats they will be facing.

In this section, we describe several types of attacks against FPGAs. However,
some of them will be discussed in detail in subsequent sections when we deal with
FPGAs’ vulnerabilities and countermeasures.

Black Box Attack—In this type of attack, the intruder sends all possible input
combinations and with the results he/she obtains, he/she may be able to reverse-
engineer a chip. In practice, this type of attack is difficult to perform on complex
systems.

Read-Back Attack—Read back attacks are based on the ability to read the FPGA
configuration, usually using the JTAG plug. This feature is provided in most FPGAs
to promote debugging capabilities. The aim of the attack is to read the configuration

16 E. Wanderley et al.

of the FPGA through the JTAG or programming interface to obtain secret informa-
tion. Recently FPGAs vendors have considerably improved their devices to increase
the level of protection.

Cloning of SRAM FPGAs—SRAM FPGA based systems normally store the con-
figuration file in a non-volatile memory outside the FPGA. In such a situation, an
eavesdropper can easily retrieve the configuration file flowing through the port, and
possibly clone the same design in other FPGAs. The only possible way to protect
the system in this case is to encrypt the bitstream. FPGAs vendors provide this pos-
sibility in their most recent devices.

Physical Attack against SRAM FPGAs—The goal of an attack targeting the phys-
ical layer of an FPGA is to investigate the chip design in order to obtain secret in-
formation by probing points inside the FPGA. These attacks target the parts of the
FPGA that are not available through the normal I/O pins. Using instruments based
on focused ions (FIB), for example, the attackers can inspect the FPGA structure
and retrieve the design or the keys. Such attacks are hard to implement due to the
complexity of the equipment required. Moreover, some technologies, like Antifuse
FPGAs and Flash FPGAs, which have their own limitations, can make attacking
even harder.

Side-Channel Attacks—In this case, the physical implementation of the systems
is used to leak information like energy consumption, execution time and electro-
magnetic fields. By observing these phenomena, an attacker can obtain the power,
time and/or electromagnetic signatures of the system, which, in turn, can reveal se-
crets concerning the underlying implementation. Gathering such signatures is one
step in the problem. In fact, the data obtained still has to be processed to obtain the
desired results. Very sophisticated techniques have been developed in the last few
years that require few measurements to attack a system.

Data analysis—In fact, the data acquired by read back attacks, as well as those
from side channel attacks, are considered as noise. The fact that an attacker pos-
sesses this information does not imply that he/she will be able to obtain the original
design running in the FPGA, but nevertheless makes this possible.

Reverse-engineering is the work done after the bitstream has been obtained, for
example, when it is necessary to discover the data structure used by the manufac-
turer to codify the configuration of the FPGA. Reverse engineering is not limited to
bitstreams but can also be achieved by observing bus activities during program exe-
cution in a softcore processor implemented in the FPGA. Many reverse engineering
attempts on FPGAs succeed, and normally the manufacturers use a disclosure term
to morally refrain the attackers, which is not sure at all.

Leakage data is processed using techniques like Simple Power Analysis (SPA)
or Differential Power Analysis (DPA). Normally the aim of these approaches is to
identify energy consumption patterns similar to the ones obtained in the known exe-
cution pattern of a cryptographic algorithm. Then, finding the key is only a question
of time and of the quantity of statistics obtained.

2 Security FPGA Analysis 17

2.4 Security Requirements for Modules

The security of systems used to protect sensitive information is provided by crypto-
graphic modules. Security requirements for cryptographic modules are specified in
the Federal Information Processing Standard Publication (FIPS PUB 140-2) [33].
These requirements are related to the secure design and implementation of a cryp-
tographic module.

2.4.1 Security Objectives

Security requirements for cryptographic modules are derived from the following
high-level functional security objectives:

e To employ and correctly implement the approved security functions for the pro-
tection of sensitive information.

e To protect a cryptographic module from unauthorized operation or use.

e To prevent the unauthorized disclosure of the contents of the cryptographic mod-
ule, including plaintext cryptographic keys and other critical security parameters
(CSPs).

e To prevent the unauthorized and undetected modification of the cryptographic
module and cryptographic algorithms, including the unauthorized modification,
substitution, insertion, and deletion of cryptographic keys and CSPs.

e To provide indications of the operational state of the cryptographic module.

e To ensure that the cryptographic module performs properly when operating in an
approved mode of operation.

e To detect errors in the operation of the cryptographic module and to prevent the
compromise of sensitive data and CSPs resulting from these errors.

While the security requirements specified in the FIPS 140-2 standard are intended
to maintain the security provided by a cryptographic module, conforming with this
standard is necessary but is not sufficient to ensure that a particular module is secure.
The operator of a cryptographic module is responsible for ensuring that the security
provided by the module is sufficient and acceptable to the owner of the information
that is being protected, and that any residual risk is acknowledged and accepted.

Similarly, the use of a validated cryptographic module in a computer or telecom-
munication system is not sufficient to ensure the security of the whole system. The
overall security level of a cryptographic module must provide the level of security
that is appropriate for the security requirements of the application and of the envi-
ronment in which the module has to be used, and for the security services that the
module has to provide.

18 E. Wanderley et al.

Level 4 Complete protection envelope for intrusion detection

Environmental fluctuation testing

High-security trusted operationg system +
Level 3 CPS zeroization in response to intrusion detection

Plaintext CPS I/O port and data I/O port physically separated

Identity based autehentication

Security

-+

Level 2 Tamper evidence
Role-based or identity based authentication
Trusted operating system

-+

Level 1
At least one approved cryptographic algorithm or
approved cryptographic function implemented

Fig. 2.5 Security requirements in four security levels, according to the FIPS 140-2 Standard

2.4.2 Security Levels

The standard defines four qualitative levels of security—Level 1 to Level 4
(Fig. 2.5). These four increasing levels of security enable cost effective solutions
that are appropriate for different degrees of data sensitivity and different application
environments.

Security Level I requires only the use of an approved algorithm or security func-
tion. It allows the software and firmware components of a cryptographic module to
be executed on a general purpose computing system using an unevaluated operating
system. No specific physical security mechanisms are required in a Security Level 1
cryptographic module beyond the basic requirement for production-grade compo-
nents. Security Level 2 enhances the physical security of the module by adding the
requirement for tamper evidence and a role based authentication of an operator. A
trusted (verified) operating system with an approved degree of security should be
used starting from Level 2. In Security Level 3, the security mechanisms should de-
tect and respond to attempts at physical access, unauthorized use or modification
of the cryptographic module. The tamper detection circuitry should “zeroize” all
plaintext CSPs when a physical intrusion is detected. At this security level, the role
based authentication from Level 2 is replaced by identity based authentication. At
Level 3, the I/Os of plaintext CSPs should be performed using ports that are physi-
cally separated from other data ports. Security Level 4 is the highest security level.
The module should be enclosed in a complete protection envelope. Intrusion into
the module should have a very high probability of being detected and the module
should detect fluctuations in environmental conditions, namely voltage and temper-
atures that are outside the normal operating range.

2.4.3 Security Requirements

The security requirements specified in the FIPS 140-2 standard cover 11 ar-
eas related to the design and implementation of a cryptographic module. These

2 Security FPGA Analysis 19

areas include cryptographic module specifications; module ports and interfaces;
roles, services, and authentication; finite state models; physical security; oper-
ational environment; cryptographic key management; electromagnetic interfer-
ence/electromagnetic compatibility (EMI/EMC); self tests; and design assurance.
The last area concerned with the mitigation of other attacks has not yet been tested
but the vendor is required to document implemented controls (e.g. differential power
analysis). While most of these areas are related to the technology used (FPGAs in
our case), some only concern design methodology (e.g. finite state models). Below,
we analyze only those design and implementation areas that are directly related to
the application of FPGAs in security modules. These areas include:

Cryptographic module specification
Cryptographic module ports and interfaces
Physical security

Operational environment

Cryptographic key management
EMIVEMC

Self-tests

Cryptographic module specification deals with a combination of hardware, soft-
ware and firmware means used to implement cryptographic functions and protocols
within a defined cryptographic boundary. A cryptographic module should imple-
ment at least one approved security function used in an approved mode of operation.
A cryptographic boundary should consist of an explicitly defined perimeter that es-
tablishes the physical bounds of a cryptographic module. If a cryptographic module
consists of software or firmware components, the cryptographic boundary should
contain the processor(s) and other hardware components that store and protect the
software and firmware components. Hardware, software, and firmware components
of a cryptographic module can be excluded from the security requirements if it is
demonstrated that these components do not affect the security of the module.

Cryptographic module ports and interfaces—Two hierarchical levels of I/O ports
are defined by the standard: physical ports and logical interfaces. The module should
have at least four logical interfaces (data input, data output, control input and sta-
tus output) that can share the same physical port. Data input and output are used
to transfer plaintext and ciphertext data and plaintext (only up to Security Level 2)
and ciphertext CSP. Starting from Security Level 3, the I/O port for plaintext CSP
should be physically separate from other data ports. All data output via the data
output interface should be prevented when an error state exists and during self tests.
The control input interface serves to provide commands and signals, and to control
data (including function calls and manual controls such as switches, buttons, and
keyboards). The status output interface enables the design to send signals, indica-
tors, and status data (including return codes and physical indicators such as Light
Emitting Diodes and displays).

Physical security—A cryptographic module is protected by physical security
mechanisms in order to restrict unauthorized physical access to the contents of the
module and to avoid unauthorized use or modification of the module (including

20 E. Wanderley et al.

substitution of the entire module) when installed. All hardware, software, firmware,
and data components within the cryptographic boundary should be protected. Phys-
ical security requirements are specified for three defined physical embodiments of a
cryptographic module:

e Single-chip cryptographic modules use a single integrated circuit (IC) chip as
a stand alone device. Examples of single chip cryptographic modules include
smart cards with a single IC chip. Although single chip cryptographic modules
are the most vulnerable to side channel attacks, they are usually used in a hostile
environment. Single chip modules based on FPGAs have not been used up to now,
since they involve the use of a non-volatile technology.

o Multi-chip embedded cryptographic modules are physical devices in which two
or more IC chips are interconnected. If possible, they should be embedded in
an opaque enclosure. Examples of multi-chip embedded cryptographic modules
include adapters and expansion boards.

e Multi-chip stand-alone cryptographic modules are physical embodiments in
which two or more IC chips are interconnected and the entire enclosure is phys-
ically protected. Examples of multi-chip, stand alone cryptographic modules in-
clude encrypting routers or secure radios.

Operational environment—The operational environment of a cryptographic
module refers to the management of the software, firmware, and/or hardware com-
ponents required for the module to operate. The operational environment can be
non-modifiable (e.g. firmware contained in ROM, or software contained in a com-
puter with I/O devices disabled), or modifiable (e.g. firmware contained in RAM
or software executed by a general purpose computer). An operating system is an
important component of the operating environment of a cryptographic module.

Cryptographic key management—The security requirements for cryptographic
key management encompass the entire life cycle of cryptographic keys, crypto-
graphic key components, and CSPs used by the cryptographic module. Key man-
agement includes random number and key generation, key establishment, key dis-
tribution, key entry/output, key storage, and key zeroization. Secret keys, private
keys, and within the cryptographic module, CSPs should be protected from unau-
thorized disclosure, modification, and substitution. Inside the cryptographic module,
public keys should be protected against unauthorized modification and substitution.
A cryptographic module may use random number generators (RNGs) to generate
cryptographic keys and other CSPs internally. There are two basic classes of gen-
erators: deterministic and nondeterministic. A deterministic RNG consists of an al-
gorithm that produces a sequence of bits from an initial value called a seed. A non-
deterministic RNG produces output that depends on some unpredictable physical
source that is beyond human control. There are no FIPS Approved nondeterministic
random number generators. If intermediate key generation values are sent outside
the cryptographic module, the values should be sent either (1) in encrypted form
or (2) under split knowledge procedures. Key establishment can be performed by
automated methods (e.g. use of a public key algorithm), manual methods (use of
a manually-transported key loading device), or a combination of automated and

2 Security FPGA Analysis 21

manual methods. Cryptographic keys stored inside a cryptographic module should
be stored either in plaintext or encrypted. Plaintext secret and private keys should
not be accessible to unauthorized operators from outside the cryptographic module.
A cryptographic module should associate a cryptographic key (secret, private, or
public) stored inside the module with the correct entity (e.g. the person, group, or
process) to which the key is assigned. A cryptographic module should provide meth-
ods to zeroize all plaintext secret and private cryptographic keys and CSPs inside the
module. Zeroization of encrypted cryptographic keys and CSPs or keys otherwise
physically or logically protected inside an additional embedded validated module
(meeting the requirements of this standard) is not required.

Electromagnetic Interference Compatibility (EMI/EMC)—Cryptographic mod-
ules should meet EMI/EMC requirements. While the metallic enclosure of the multi-
chip cryptographic module enables these requirements to be met quite easily, stan-
dard single chip modules are difficult to design.

Self-Tests—A cryptographic module should perform power up self tests and con-
ditional self tests to ensure that the module is functioning properly. Power up self
tests should be performed when the cryptographic module is powered up. Condi-
tional self tests should be performed when an applicable security function or opera-
tion is invoked (i.e. security functions for which self tests are required). If a crypto-
graphic module fails a self test, the module should enter an error state and output an
error indicator via the status output interface. The cryptographic module should not
perform any cryptographic operations while in an error state. All data output should
be inhibited when an error state exists. A cryptographic module should perform the
following power up tests: cryptographic algorithm test, software/firmware integrity
test, and critical functions test. It can also perform the following conditional self
tests: pair-wise consistency test, software/firmware load test, manual key entry test,
continuous random number generator test, and bypass test.

2.4.4 Security Policy

A cryptographic module security policy should consist of a specification of the secu-
rity rules, under which a cryptographic module should operate, including the secu-
rity rules derived from the requirements of the standard and the additional security
rules imposed by the vendor. There are three major reasons that a security policy is
required:

e It is required for FIPS 140-2 validation.

e It allows individuals and organizations to determine whether the cryptographic
module, as implemented, satisfies the stated security policy.

e It describes the capabilities, protection, and access rights provided by the crypto-
graphic module, allowing individuals and organizations to determine whether it
meets their security requirements.

22 E. Wanderley et al.

Attacks Countermeasures
[\Application/
©
H . pkernel
= Software Attacks Operating
= . . Memory Access Control
8 (Viruses, Trojan Horses, Worms) s‘<7m Monitoring
Memory Access Control
Board level attacks Monitoring
(bus probing, System

memory tampering)
[
E Encryption \
= Integrity Checking & Authentication
© Differential Fault Analysis (DFA) . Fault Tolerance, Twice encryption
5 Timing Attack Architecture \
I

/ Logic \ Fixed time or unpredictable delay
Dual rail - Triple track
/ Techno \ Asynchronous

Abstraction level

Differential Power Analysis (DPA)
{ is (EMA]

Fig. 2.6 Security pyramid: toward a defense-in-depth

2.5 Vulnerabilities of FPGAs

When dealing with security, it is important for the designer to not disregard any
parts of the security barriers. The strength of a system is defined by its weakest
point; there is no reason to enhance other means of protection if the weakest point
remains untreated. To address this fundamental issue, the different hierarchical lev-
els of a design (from application to technological levels) must be reviewed. Each
level has specific hardware or software weaknesses, so specific mechanisms need
to be defined in order to build a global secure system (i.e. defense in depth). De-
pending on the requirements and the security to be reached, several levels have to
be considered. Thus it is important to clearly define the security boundaries for the
system to be protected. In this chapter, we tackle this point by defining the security
pyramid that covers the levels of security. In the following sections we address the
different levels from technological to system levels as highlighted in Fig. 2.6 and
slightly discussed into the Chap. 1. Operating system and application levels are be-
yond the scope of this chapter as we only deal with hardware solutions. However
it is important to bear in mind that they need to be taken into consideration for a
complete system. A lot of threats have to be considered, all information that leaks
from a cryptographic device can be exploited by an attacker. For example, attacks
based on power consumption or electromagnetic emission can be performed with
low competencies and at low cost. Furthermore, attackers can cause errors during
the encryption (or decryption) process aimed at to obtaining secret information, such
as cryptographic keys. Therefore cryptographic devices must be protected against
fault injection and leakage information. Many countermeasures are now well estab-
lished for ASIC, but this is not yet the case for FPGA devices. Only a few academic
or industrial studies have been conducted to ensure the confidentiality and integrity
of FPGA devices. Nevertheless, this topic has attracted a lot of attention in the last
few years and major progress is underway.

2 Security FPGA Analysis 23

2.5.1 Technological Level

The technological level corresponds to the device and mainly concerns tamper evi-
dence or resistance. Many authors have targeted the technological level but mainly
for ASIC-based designs. However in [50] and [49], the authors performed an in-
depth analysis of attacks against FPGAs at the technological level. Several tech-
nologies are possible for FPGAs, the most widespread being SRAM, Flash and
Antifuse. Each technology has advantages but also some limits. Secured ASICs fre-
quently incorporate mechanisms able to detect an attempt by an attacker to make an
invasive attack, for example by removing package sealing and by inserting probes
at appropriate points in order to obtain cipher keys. At chip level, the mechanism
could be distributed sensors to check the package has not been removed. These se-
cured packages are also suitable for FPGA devices. However at die level, FPGA
users are limited by the capabilities of the device, they cannot add special security
mechanisms such as analog sensors. The level of protection provided by FPGAs
technologies is an interesting metric to identify the studies required to improve the
security level. In the IBM Systems Journal, Abraham et al. [1] defined the security
levels for modern electronic systems.

e Level 0 (ZERO)—No special security features added to the system. It is easy to
compromise the system with low cost tools.

e Level 1 (LOW)—Some security features in place. They are relatively easily de-
feated with common laboratory or shop tools.

e Level 2(MODLOW)—The system has some security against non-invasive attacks;
it is protected against some invasive attacks. More expensive tools are required
than for level 1, as well as specialized knowledge.

e Level 3 (MOD)—The system has some security against non-invasive and invasive
attacks. Special tools and equipments are required, as well as some special skills
and knowledge. The attack may be time consuming but will eventually succeed.

e Level 4 (MODH)—The system has strong security against attacks. Equipment
is available but is expensive to buy and operate. Special skills and knowledge
are required to use the equipment for an attack. More than one operation may
be required so that several adversaries with complementary skills would have to
work on the attack sequence. The attack could fail.

e Level 5 (HIGH)—The security features are very strong. All known attacks have
failed. Some research by a team of specialists is necessary. Highly specialized
equipment is necessary, some of which might have to be specially designed and
built. The success of the attack is uncertain.

According to this classification, it is possible to specify a general security level for
existing FPGA technologies and ASIC circuits. These levels are not fixed and de-
pend on the factory and the type of circuit (several families may be processed in the
same factory and some of them may be highly security efficient, like military fam-
ilies). Table 2.2 lists the security levels of existing technologies, especially FPGA
circuits.

24 E. Wanderley et al.

Table 2.2 Security level of

classical integrated circuits Integrated circuit Security level

SRAM FPGA

ASIC gate array

Cell-based ASIC

SRAM FPGA with bitstream encryption
Flash FPGA

Antifuse FPGA

A A W W WO

SRAM FPGAs need a bitstream transfer from the root EEPROM at power up
(due to the configuration memory that is an SRAM volatile memory). Consequently,
it is easy for a hacker to read the bitstream during the transfer using a simple probe.

Thus unprotected SRAM FPGAs are not efficient for safe design. However,
with a bitstream encryption it is possible to considerably improve the security
level since the security weakness is overcome. SRAM FPGAs have a good resis-
tance against some attacks like power analysis. Although ASICs are often con-
sidered to be a secure technology, they are actually relatively easy to reverse en-
gineer. Because, unlike FPGAs, ASICs do not have switches, and it is thus pos-
sible to strip the chip and copy the complete layout to understand how it works.
Methods to reverse engineer ASIC exist. The cost of reverse engineering is high
since the tools required are expensive and the process is time consuming. It is
not a simple process and the security level is 3 for such devices. Contrary to
ASICs, FPGAs, like antifuse or flash, are security efficient since they are based
on switches. With these FPGAs, no bitstream can be intercepted in the field (no bit-
stream transfer, no external configuration device). In the case of antifuse FPGAs,
the attacker needs a scanning electron microscope to identify the state of each anti-
fuse. Nevertheless, the difference between a programming and a non-programming
antifuse is very difficult to see. Moreover, such analysis is intractable in a de-
vice like Actel AX2000 that contains 53 million antifuses and, according to Actel
(http://www.actel.com/products/solutions/security/), only 25% (on average) of these
antifuses are programmed. For flash FPGAs, there is no optical difference after con-
figuration, so invasive attacks are very complex. The same advantages are cited by
QuickLogic to promote their flash FPGAs with ViaLink technology. Even if the an-
tifuse and the flash FPGAs are very security efficient, they can only be configured
(or programmed) once, so they are not reconfigurable devices. Furthermore as de-
fined by the FIPS 140-2 standard, for security levels 3 and 4, it has to be possible to
zeroize all the secret information, which is not possible with technologies like flash
and antifuse. The system built with these devices is thus not flexible. If the designer
wants a reconfigurable device, he should choose an SRAM FPGA. Moreover, the ca-
pacities of the SRAM FPGAs are the highest for FPGA devices. The market share
of SRAM FPGAs is more than 60% (just counting the two leading companies Xil-
inx (http://www.xilinx.com) and Altera (http://www.altera.com)). Further research
is required to improve the security level of such FPGAs and particularly to improve
bitstream encryption. In recent years, FPGAs vendors have been tackling this point

http://www.actel.com/products/solutions/security/
http://www.xilinx.com
http://www.altera.com

2 Security FPGA Analysis 25

in order to provide their customers with efficient solutions to encrypt the SRAM
FPGA bitstream. However, they still have some drawbacks and could be further
improved by taking the latest innovations of these FPGAs into account.

2.5.2 Logical Level

It is now widely recognized that the Achilles’ heel of secure applications, such as
3DES and AES ciphering algorithms, is their physical implementation. Among all
the potential techniques to retrieve the secret key, side channel attacks are worth
mentioning. Although there are a lot of different types of side channel attacks, the
DPA attack is considered to be one of the most efficient and most dangerous since
it requires few skills and little equipment to be succeed. Thus at the logical level,
all attacks that are possible on ASICs, like side channel attacks and fault attacks,
are reproducible in FPGAs. Secret leakage can even be amplified, which makes the
attack easier. At first sight, FPGAs appear to be less robust than ASICs. This could
have different causes:

e The FPGA structure has heavy loaded wires made up of long lines or lines seg-
mented by pass transistors. As power consumption is proportional to the capaci-
tance load, this makes measuring power consumption more easy.

e The designers often take advantage of pipelining in FPGAs, as the DFF (D Flip
Flop) is “free” in every cell. The DFF is not only used as a power contributor to
power consumption in CMOS ASICs but as predictor (for correlation attacks) of
relevant key dependent consumption for the attack strategies. The FPGAs have
very rapid (for performances and fighting metastability) and high power consum-
ing DFFs at their disposal but they also drive logic that could be predictable.

e The use of pass transistors generates a power consumption expression that varies
partly in Vdd> and not only in Vdd?, and as the CMOS gates are just under the
conduction threshold, this helps make measuring the power consumption easier
in FPGAs.

All these reasons make FPGAs more vulnerable to attacks since they are based on
variations in power (analyzed for passive attacks and provoked for fault attacks)
on cells where the key is involved. When analyzing power consumption during a
ciphering operation, peaks are clearly discernible in the acquisition trace at every
clock period. An efficient attack on FPGA is based on predicting the transitions
of relevant DFF or logic driven by these DFFs, where there could be contribution
to or leak from the key. For instance, it is possible to predict logic states at the
S-box outputs during the first and last round of symmetric key algorithms. Many
attacks on FPGA implementations have been reported in the last five years. For
example, in [34], an SPA was successfully used in an unprotected implementation of
an elliptic curve cryptographic algorithm. Furthermore as underlined in [34], attacks
on FPGAs allow a hacker to:

e Evaluate the intrinsic resistance or vulnerability of this device class;

26 E. Wanderley et al.

e Assess the resistance or vulnerability of the algorithms, executed on a real con-
current platform. Compared to a simulation, measurements made on an emulating
device are indeed expected to be closer to the final projection in an ASIC.

In [42] and [39], the authors describe successful correlation power attacks (CPAs)
against DES and AES implementations programmed into FPGA. The attacks sce-
nario does not differ from that of ASICs (such as smart cards). Unsurprisingly, in
all cases, the attacks were just as successful as when carried out against hardwired
devices. As a consequence, there is a real incentive to devise countermeasures that
take the architecture of FPGAs into account. It is important to come up with inno-
vative solutions based on accurate knowledge of the FPGAs’ internals in order to
counter these attacks. Current FPGAs vendors have not yet taken up this challenge.

2.5.3 Architecture Level

Logical errors can be used to perform attacks at algorithmic level. A simple exam-
ple is an attack against RSA algorithm implementation. RSA is based on modular
exponentiation, decryption of a ciphered message C follows the following formula:

M=cCE mod N,

where C is the ciphered message, E the private exponent, N the public modulus,
and M the unciphered message

The usual way to perform this calculus is the square and multiply algorithm, for
either software or hardware implementation.

In the original algorithm, multiplication is carried out only if the exponent bit
concerned is 1. So a dummy operation can be inserted in order to have a constant
computation time. Supposing that an attacker can create an error at a precise algo-
rithm step, he/she could easily guess the decryption key, which is secret information.
To succeed, the attacker must create an error during the first multiplication and only
the first; at the end of the algorithm, if the result is wrong, the multiplication was
not a dummy one, so the first bit of the exponent is 1. If the result is correct, the
multiplication was a dummy one, so the first bit of the exponent was 0. The other
exponent bits can be discovered by repeating this scheme for all the multiplication
steps. There are many ways to create an error during a computation. A simple way
is to increase clock frequency above the maximum allowed by the attacked device.
Uncommon temperature, voltage supply or clock glitch can also cause computa-
tion errors. With laser or focus ion beams, errors can be created in specific areas in
the circuit. This type of fault injection requires specific expensive equipment but can
provide better results. In the previous example, attackers do better by introducing er-
rors only in the multiplier area, consequently other operations will not be affected.
Other types of fault analysis exist, [16] deals with such attacks on smart card imple-
mentation of AES symmetric cipher. Of course this attack can target ASIC as well as
FPGA platforms. However, in the future it will be interesting to see if FPGA struc-
ture could provide specific countermeasures. This point was judiciously exploited

2 Security FPGA Analysis 27

by [39] to explore the advantages and limits of pipelining techniques from a secu-
rity point of view. This architectural aspect (along with scheduling and resources
allocation) is indeed a new dimension when refining a software code into an RTL
description. FPGAs are appropriate tools for the rapid comparison of different ar-
chitectures. At the architectural level, one basic block to consider is the processor.
In the following section an example is given based on 32-bit processor and results
obtained with SCA.

2.5.3.1 Processor Level

The MicroBlaze and the Nios II are 32-bit soft-core processors designed and sup-
ported by Xilinx and Altera respectively, for their FPGAs. Because of the growing
number of embedded systems involving applications with security services, it is
necessary to analyze potential weaknesses of these architectures used in most of the
modern FPGAs.

The MicroBlaze and Nios II implement both a classic RISC Harvard architec-
ture exploiting the Instruction Level Parallelism (ILP) with a 5-stage pipeline: In-
struction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access (MA),
Write Back (WB). All pipe stages are hooked together with a set of registers, com-
monly named pipeline registers. They play the main role of carrying data and control
signals for a given instruction from one stage to another.

As a case study, an evaluation was conducted on the MicroBlaze with the Data
Encryption Standard. The processor was programmed in ANSI C code on a Xilinx
Spartan-3 Starter Kit board (XC3S1000 FPGA). Without loss of generality, the at-
tacks were performed at the end of the first encryption round, when the left part of
the plaintext message and the result of the Feistel function are XORed. The result
of this operation contains a partial information about the cipher key, and thus, is a
potential point of attack.

Critical instructions are detailed in the following list:

o LWI R4, R19, 44; the result of the Feistel function is loaded from data memory
into register R4

o LWI R3, R19, 40; the left part of the message is loaded from data memory into
register R3

e XOR R3, R4, R3; the result of the XOR operation between R3 and R4 is stored
into register R3

e SWI R3, R19, 32; the content of R3 is stored into data memory

According to these instructions and to the chosen model of attacks, the sensitive
data are handled during the XOR and the SWI instructions. During the execution
of these instructions (in Fig. 2.7), we observe that the sensitive data are unprotected
during the EX, MA, and WB stages.

A Differential ElectroMagnetic Analysis (DEMA) was conducted on the pro-
posed DES software implementation [6]. The secret key was discovered with less
than 500 electromagnetic traces. Besides, the most interesting result is the effect

28

E. Wanderley et al.

LWI R4,R19,44 IF B ID B EX B MA B wB

LWI R3,R19,40 IF B ID B EX B MA B wB

XOR R3,R4,R3 IF B ID B ST*B EX B MA B WB

SWI R3,R19,32 IF B ST*B ID B EX B MAB wB
Time -

*: ST stands for STALL (data hazard).

Fig. 2.7 The 5-stage pipeline during the execution of critical instructions

of the pipelining technique. Figure 2.8 illustrates the DEMA obtained for the first
sub-key (50,000 electromagnetic traces were collected to emphasize the impact of
this hardware feature). In the picture, the black curve refers to the correct sub-key,
while the others correspond to the wrong sub-key hypotheses (the guessed sub-key
is characterized by the highest amplitude).

Clock number n n+1 n+2 n+3 n+4 n+5
Pipeline XOR ID XOR EX XOR MA XORWB SWIWB
State SWIIF SWIID SWIEX SWIMA
|
ne
i \
3r '
|
2
N

1r | |
M 15
: J
= [e ¥
s A |

-1r { ‘f" | 'J \“

| \
2 | |
I
g |
-4+
Time

Fig. 2.8 DEMA traces obtained for the first sub-key of the DES software implementation with the

MicroBlaze

2 Security FPGA Analysis 29

The margin is basically defined as the minimal relative difference between the
amplitude of the differential trace obtained for the guessed sub-key (black curve)
and the amplitude of the differential traces obtained for the other sub-keys (other
curves). This one reaches more than 50% for the correct sub-key during several time
periods, which underlines the considerable vulnerability of a pipelined architecture.

The conclusion to be drawn from the above investigation seems fairly straightfor-
ward: the pipelined datapath of embedded microprocessors for FPGAs is a critical
security issue.

2.5.4 System Level

At this level, we consider the system as a set of communicating blocks. Some are se-
cure, and the main focus is communication between the modules. One of the threats
at the system level is the “man in the middle” attack, in which an adversary eaves-
drops on the communication channel. The security of the blocks depends on the
cryptographic algorithm used to cipher the information. The problem is ensuring
that the communication is secure in an unsecured channel. In addition, guaranteeing
security has a cost and the cost of communication may be increased by the use of se-
curity dedicated modules integrated in the original design. The solutions described
below are some of the recent techniques described to address this problem. Some of
them are orthogonal in relation to others, meaning that we simultaneously can use a
set of techniques. As mentioned in previous sections, in an FPGA context, the con-
figuration bitstream is one potential weakness in secure applications. This bitstream
can be used to perform various types of attacks and needs to be considered at the
system level in order to define a global solution.

e Bitstream retrieval—The first step is to retrieve the entire bitstream from the sys-
tem. The easiest way is to use the read-back capabilities of most FPGAs. This
function, which is used for debugging, allows a bitstream to be extracted from an
FPGA device during run time. Of course, in a secure context, this feature has to be
disabled, but this is not sufficient, since in low cost SRAM FPGAs, bitstream re-
trieval is very simple, even without a read back mechanism. Indeed the bitstream
is stored in an external EEPROM, so the attacker can probe the data line between
the FPGA and EEPROM to obtain it. This threat does not exist for non-volatile
FPGAs because configuration data are stored inside the device, so only intrusive
attacks are possible. Bitstream encryption mechanisms are available for most ad-
vanced FPGA . A secret encryption key is stored inside the programmable device,
while for volatile FPGAs an external battery is used to maintain key value. Thus
the device accepts an encrypted bitstream and uses its dedicated decryption en-
gine to obtain unciphered data. Attackers cannot decrypt the bitstream without
the secret key. With this feature, attackers have to discover the secret key they
need to recover bitstream data through (for example) an intrusive attack.

30 E. Wanderley et al.

e Attackers’ objectives concerning bitstreams—When an attacker discovers the
FPGA configuration, a lot of information, some of which may be critical, be-
comes accessible. The first threat is bitstream reverse engineering; some compa-
nies are specialized in FPGA reverse engineering [14]. In this way, attackers could
potentially access all information stored in the FPGA architecture, possibly secret
cipher keys or maybe the structure of cryptographic algorithms not available to
the public. Attackers can also inject their own bitstream into the programmable
device, in this way reverse engineering becomes unnecessary, since the attacker
could simply create a dummy system. For example, if the FPGA is used to en-
crypt written data to a hard disk drive, the attacker could build a system that does
not cipher data. Another threat is fault injection into the bitstream [11]. Even
without knowledge of the architecture, small modifications can seriously modify
the system. Fault attacks are also suitable in this context. The final drawback of
FPGA is cloning. An attacker in possession of the configuration data can clone
the device ignoring possible intellectual property rights. This is not a real security
weakness, rather an industrial threat that is specific to programmable devices. In
conclusion, the bitstream is the image of the underlying FPGA architecture, it is
similar to ASIC layout, therefore configuration data have to be protected.

e Remote configuration—Remote configuration is an interesting FPGA feature that
allows systems to be upgraded by removing a potential security breach, or by
upgrading algorithms. But this feature must be extremely well secured since it
gives many possibilities to attackers. The first related threat is undesired recon-
figuration, i.e., the design could be changed remotely by the attacker without user
permission. A simple switch button could avoid this threat. The second is “man
in the middle” attacks. The user wants to upgrade his/her programmable security
device, but an attacker intercepts the request and replies with a fake configuration.
For that reason, the connection must be secured by an authentication and integrity
checking engine. Such secured mechanisms are already suitable for most FPGAs,
Actel or Xilinx FPGAs, and application notes [2] describe secured remote con-
figuration schemes.

Key management is also a major concern for embedded systems. This threat is not
specific to FPGAs, ASICs are also vulnerable. Cryptographic devices need to store
some symmetric and asymmetric keys to perform encryption or decryption. During
system use, these cryptographic keys need to be changed or generated randomly. So
these types of devices require secure key management.

2.6 Countermeasures

In the previous section we described some vulnerabilities of FPGAs from the tech-
nological level up to the system level. Fortunately it is possible to deal with these
vulnerabilities to take advantages of the flexibility and the performances offered by
FPGA:. In this section, we first review technological issues and then present logical
solutions, such as dual-rail or asynchronous techniques. At the architecture level,

2 Security FPGA Analysis 31

we highlight the fact that the parallelism and flexibility provided by FPGAs can be
very efficient aids in building a secure primitive. Finally at the system level, the
main issue is related to communication security and monitoring of the behavior of
the system. We describe several techniques to address these problems.

2.6.1 Technological Level

At the technological level, the main countermeasures are related to physical pro-
cesses, circuits, and packaging [49, 50]. Some sensors can be used to detect any
attacks against the device. With standard FPGAs, the user is blocked by chip ca-
pabilities as most FPGAs do not have analog parts that can monitor environmental
parameters. In the latest Actel FPGA, called Fusion, various analog functions are
available like temperature sensors, clock frequency or voltage monitoring. These
functionalities can be used to detect possible fault injection. To prevent physical
attacks, it is also necessary to make sure that the retention effects of the cells are
as small as possible, so that an attacker cannot detect the status of the cells. The
solution would be to invert the data stored periodically or to move the data around
in memory. Cryptographic applications cause long-term retention effects in SRAM
memory cells by repeatedly feeding data through the same circuit. One example is
specialized hardware that always uses the same circuits to feed the secret key to the
arithmetic unit. This effect can be neutralized by applying an opposite current or by
inserting dummy cycles in the circuit. In terms of FPGA application, this is very
costly and it may even be impractical to provide solutions like inverting the bits or
changing the location of the whole configuration file. One possible alternative would
be to change only the crucial part of the design, like the secret keys, through dynamic
partial reconfiguration. Counter techniques such as dummy cycles and opposite cur-
rent approach can also be used for FPGA applications. Technological issues depend
on the FPGA vendor but solutions like dynamic reconfiguration can provide some
opportunities to strengthen the security of the device against certain tampering tech-
niques that benefit from the retention effect of cells. Using sensors inside FPGAs
will certainly become more common in the future to monitor the internal activity of
FPGAs.

2.6.2 Logical Level

So far, the published countermeasures against attacks on FPGAs have mainly been
inspired by techniques used to protect ASICs. The “Masking” and “Hiding” meth-
ods are among the most efficient ways of protecting FPGAs. Hiding consists in mak-
ing the power consumption as constant as possible by using dual rail with precharge
logic (DPL) and a four-phase protocol inspired by Asynchronous Logic. This en-
sures that:

32 E. Wanderley et al.

e Transitions are independent of the target values (logical O or 1), because the in-
formation is encoded on two indiscernible wires;

e No leaks are caused by consecutive data correlation because of the intermediate
precharge phase.

The most straightforward countermeasure built on the DPL is referred to as
“wave dynamic differential logic” WDDL [43, 44]. The four-phase cadence is en-
forced by appropriate registers. In the meantime, the differential logic uses positive
dual functions. The WDDL logic could be more secure in FPGAs than in ASICs,
because the two dual gates are implemented in LUTs, which ideally are much alike.
However some flaws have been underlined. Vulnerabilities are caused by the imbal-
ance between the two networks and above all by the “early evaluation” (EE) effect.
The latter is due to the differences in delay between two gate inputs. The effect is
particularly marked in FPGAs where there is a wide range of routing. Associated
with the need for speed and a low complexity design, new DPLs have been devised
to enhance WDDL in FPGAs, among which: MDPL [35], STTL [36], BCDL [32].

The masking countermeasure allows the mean of the power consumption to be
balanced by masking the sensitive data with a random variable [18, 45, 46]. Hence
the observation is theoretically not exploitable by an adversary. In FPGA technol-
ogy, the masked data are computed at the same time as the mask itself. This im-
plementation, called “zero-offset” [47], allows the designer to keep a high level
of ciphering throughput. However, whatever the implementation (hardware or soft-
ware), the masking protection could give rise to higher order attacks [30]. Hence
enhanced masking structures should be designed and used in FPGAs. One example
is provided in the chapter on countermeasures.

Other countermeasures are possible at the logical level:

e Random underlying operations—FPGAs enable many more attacks to be de-
feated than the fixed architectures implemented in ASIC devices. A promising
solution is to frequently modify the operation used in any particular cipher. For
example, S-Box transformation used in the most recent symmetric bloc cipher
(AES) could be computed in different ways, e.g. using Galois field G F (2") op-
erations, using a big lookup table or using the internal RAM memory embedded
in most FPGAs. In this way, the power consumption would differ for each type
of S-Box implementation.

e Random noise addition—A lot of countermeasures have been proposed, from
clock randomization, power consumption randomization, or compensation [11]
to tamper detection. However, longer differential power analysis generally leads
to recovery of the secret key. With enough samples, the statistical analysis used by
DPA can remove any random noise on power consumption. To understand why,
we need to understand that DPA attacks succeed because a calculus always leaves
the same power consumption trace. Adding random noise to power lines is not
enough, because it could be removed by a number of different signal processing
techniques. This can be represented by:

TotalPower(t) = RealPower(t) + RandomPower(t),

2 Security FPGA Analysis 33

where TotalPower is the power trace that an attacker can easily measure,
RealPower is the power consumed by the cryptographic algorithm that the at-
tacker wishes to obtain, and RandomPower is the random noise added to de-
feat DPA. To extract the RealPower, the attacker could collect a large number
of TotalPower traces and then average the collection. With enough TotalPower
traces, the average will be very close to RealPower. According to this analysis,
adding random noise is not a perfect solution, it could make DPA longer but
would not make it impossible. A better way is to act directly on the RealPower
factor.

In the FPGA context, other types of methods can be applied using runtime recon-
figuration. For example, in the case of the AES algorithm, differential power analy-
sis targets sub-byte operations. Power consumption is generally correlated with data
involved in the sub-byte function because this operation is always done with the
same logic gates. With partial reconfiguration, the sub-byte function could be done
differently at every computation, so power consumption would be different. This
method is similar to masking mechanisms, the input data and the final result may
be the same but the underlying operations are not identical, so that power consump-
tion is no longer correlated with the data. These different points will be analyzed in
detail in the following chapters of this book.

2.6.3 Architecture Level

At the architectural level, some solutions use a method called LRA (leak resistant
arithmetic) based on a random number representation [4, 7]. In these works, input
data are represented according to a residue number system base which can be se-
lected randomly before or during the encryption process. After computation, the re-
sult is converted into a classical binary representation. To help the reader understand
this approach, we will explain some mathematical concepts. Leak Resistant Arith-
metic (LRA) is based on the Residue Number System and on Montgomery’s mod-
ular multiplication algorithm proposed in [4]. The Residue Number System (RNS)
relies on the Chinese Remainder Theorem (CRT). This theorem states that it is pos-
sible to represent a large integer using a set of smaller integers. A residue number
system is defined by a set of k integer constants, m1, my, ms, ..., mg, called moduli.
The moduli must all be co-prime; no modulus can be a factor of any other. Let M be
the product of all the m;. Any arbitrary integer X smaller than M can be represented
in the residue number system as a set of k smaller integers xp, x2, X3, ..., Xx wWith

x; = X mod m;.

With this representation, simple arithmetic operations, like additions, subtractions
and multiplications, can be performed absolutely in parallel. Once represented in
RNS, the operations do not generate any carry. For example, adding A and B in
RNS is just:

Sum; = (a; + b;) mod m;.

34 E. Wanderley et al.

This sum involves k modular additions that can be performed in parallel. However,
the conversion from RNS to decimals is not so simple. Fortunately, this conver-
sion is only needed after all modular multiplications, so its cost is amortized. For
cryptographic applications, modular reduction (x mod M), modular multiplication
(x * y mod M) and modular exponentiation (x> mod M) are some of the most im-
portant operations. They can be calculated using Montgomery’s algorithm, modified
for RNS representation. In addition to possible parallelism, LRA could also provide
an algorithmic countermeasure against side channel attacks. With LRA, it is pos-
sible to compute the same calculus (RSA or ECC algorithms) in different bases.
The goal of this approach is to randomize intermediate results. The same modular
multiplication leads to different basic RNS operations, so power consumption will
differ if the RNS base differs. RNS bases have to be chosen randomly so the attacker
cannot obtain the base value, and by extension, the underlying RNS operations.

Another issue is related to fault injection at the architectural level with the aim of
recovering sensitive data. A common way to avoid fault injection attacks is to use
redundancy [2]. Critical parts in the design are replicated, and then outputs are com-
pared, which generally allows errors to be detected. Mathematical error detection
can also be used, [7] shows how to use redundant information to detect potential
errors during calculus. This mechanism also relies on RNS, but an extra modulus
is used to check the correctness of the result. Verification is possible at the end of
each modular multiplication, so this type of attack can be detected. Moreover the
physical location of each operator can be changed dynamically during the lifetime
of the FPGA. Therefore, accurate fault injection using laser or focused ion beams is
no longer possible, as attackers cannot identify the exact operator position.

Agility is another important metric for cryptographic applications since, as men-
tioned previously, providing a moving target increases the complexity of setting up
an attack. To illustrate this point, the following case study deals with an AES secu-
rity primitive. All selected implementations were performed on Xilinx Virtex FPGA,
which is a fine grain configurable architecture. For this architecture, the configura-
tion memory relies on a 1D configuration array. This is a column based configuration
array and so partial configuration can be performed only column by column. For se-
curity issues, this type of configuration memory does not provide full flexibility but
still enables partial dynamic configuration to perform security scenarios. Figure 2.9
summarizes all the different implementations in four charts; each chart corresponds
to specific parameters. Figure 2.9.a corresponds to the AES cryptographic core se-
curity primitive with BRAMs (i.e. embedded RAM) on non-feedback mode [15, 20,
28, 37, 41]. Thus key setup management is not used for these studies. Concerning
agility, all the solutions are based on static and full configuration. The configura-
tion is defined through predefined configuration data and performed remotely. The
configuration time is on average tens of ms, since full configuration is performed.
The security module controller is not addressed in these studies since the imple-
mentations are static. Figure 2.9.a shows that various area/throughput trade-offs are
possible depending on the implementation. It is important to dynamically adapt the
performance and to ensure the security of the module. From the security point of
view, it enables the global system to behave as a moving target, while from the

2 Security FPGA Analysis 35

of slices

of slices
12600 X
15112 X
80 BRAMs 12450 %
10992 X
10750 X
non-feedback mode
5810 X
5177 100 BRAMs % 56731 x
2784 o 84 BRAMs 3528 - x feedback mode
2222 X 2507 X
T] + +—1 > —H } — } >
. LR ® o i
& A & 3 Throughput (Gbits/s) ,‘g?,g: ¥ Ki N & Throughput (Gbits/s)
© Aol v INENEN 2 &
a) AES cryptographic core security primitive with b) AES cryptographic core security primitive without
BRAM s on non-feedback mode BRAMs on feedback and non-feedback modes
of slices # of slices
5486 X<—Operation level &9
4312
1806 Alglg\r/\g‘\m‘ " no partial configuration
4724 X<+—Round level
Concurrent Error
3973 Detection X
no Concurrent Error
Detection partial configuration
258 B oo ot
250 argaé;;ﬁ’a\ent %
| It | > ; ; ; >
I t =, t T t + t »> "
0,;;? §".»§‘?‘ é’-’Throughput (Mbits/s) & S & Throughput (Mbits/s)
<
c) AES cryptographic core security primitive with d) AES cryptographic core and key setup
and without concurrent error detection security primitive using or not partial
mechanisms on feedback mode configuration

Fig. 2.9 Agility design space for the AES security primitive: throughput/area/reliability trade-offs

performance point of view, it allows different throughputs to be used dynamically
depending on the actual requirements of the application. Figure 2.9.b corresponds
to the AES cryptographic core security primitive without BRAMs on feedback [10,
13, 15] and non-feedback modes [13, 20, 22, 40]. Like in the previously example,
key setup management is not used. Solutions [10, 13, 15] correspond to feedback
mode while the others correspond to non-feedback mode. Feedback solutions en-
able throughput of on average hundreds of Mbits/s whereas non-feedback solutions
enable around tens of Gbits/s. The same remarks as previously apply to agility char-
acteristics; static, full and predefined configuration is used. In these studies the goal
is to promote high throughput while reducing area and dealing with a specific ex-
ecution mode. However as explained in this section, dynamism and reliability also
have to be considered.

Figure 2.9.c shows different ways to manage fault detection that ensure relia-
bility, an essential feature for security. Faults can be detected at different levels
of granularity from algorithm to operation level [23]. The performance/reliability
trade-off is interesting since a finer level of granularity enables reduced fault detec-
tion latency and facilitates a rapid reaction against an attack. But the price of this
efficiency is area overhead. No type of error detection can improve performance, it
is thus important to dynamically adapt the level of protection depending on the envi-
ronment and on the state of the system. Concerning agility, static, full and predefined
configuration is used. Finally, Fig. 2.9.d provides some interesting values since so-
lutions using dynamic configuration are proposed. In [10], full configuration with
predefined configuration data is implemented, whereas in [29] partial configuration

36 E. Wanderley et al.

with dynamic configuration data is performed. In both cases, remote configuration
is performed since the Configurable Security Module is considered be an agile hard-
ware accelerator. Both solutions also deal with key setup management, in [10] this
is performed inside the module so that the architecture is generic and in [29] it is
performed by the remote processor, which means key specific architecture can be
provided. In [29] the remote processor implements the security module controller
that computes the new configuration when new keys have to be taken into account
by the cryptography core. This type of execution enables considerable flexibility
since the configuration data can be defined at run time. However in that case, the
computation time to define the new configuration data is in the range of 63—153 ms,
which may be prohibitive for some applications. The reconfiguration time for new
configuration data is not critical (around tens of ps) since only partial configuration
is performed. As can be seen in Fig. 2.9.d, partial configuration enables significant
area savings compared to a generic implementation since in the latter, the archi-
tecture is specialized for each key. The security policy supported by the security
module controllers are not explicitly presented in these works. Figure 2.9 shows
that different solutions can be implemented for the same security primitive and so
different area/throughput/reliability trade-offs can be considered. Agility enables
these trade-offs and consequently both performance and security to be dynamically
adapted to the actual execution context. The last important point is related to power
consumption which has not been tackled in previous studies, even though for em-
bedded systems, it may be an essential feature. In [38], energy efficient solutions
are proposed for the AES security primitive. In this case, the important metric is
Gbits/joule, which is very relevant since ambient systems are mobile.

It is important for designers who have to build modules to be aware of all these
trade-offs in order to promote agility and to meet performance requirements. Fur-
ther detailed studies on configuration power consumption, secure communication
links and security module controller policy are required in order to propose secure
modules and by extension, secure systems. However agility provides many keys to
building high-security/high-performance systems.

2.6.4 System Level

Generating a perfectly secured system is an illusion; so the best way to prevent
unanswerable threats is to detect them and to respond appropriately. Attacks against
secured devices vary and many parameters have to be monitored to detect them. The
SAFES (Security Architecture for Embedded Systems) approach focuses on pro-
tecting embedded systems by providing an architectural support for the prevention,
detection and remediation of attacks [17]. Most embedded systems are implemented
as System on a Chip devices, where all important system components (processor,
memory, I/O) are implemented on a single chip. This solution extends the func-
tionality of such systems to include both reconfigurable hardware and a continuous
monitoring system that guarantees secure operations. Through monitoring, abnor-
mal behavior of the system can be detected and hardware defense mechanisms can

2 Security FPGA Analysis 37

Battery

Secure Embedded System

. Processor Memory

|
|

|
|
| |
| Power I
| monitor I

|
|

|
|
| |
I Bus |
I monitor |
‘ t

|
|

|
|

|
|
‘ t i
|
| Security FPGA |
| Executive ‘
| Processor |
I >0

T2 ck |

‘ 3E monitor |
| Q=
‘ H i
I F ! , Channel
| monitor |
|

|
|

|
|

|

Fig. 2.10 The Security Architecture for Embedded Systems. The reconfigurable architecture con-
tains the security primitives and the monitors protect the system

be used to fend off attacks. Such an approach has several advantages since appli-
cation verification and protection is provided by dedicated hardware and not inside
the application. The security mechanisms can be updated dynamically depending
on the application running on the system, which guarantees the durability of the
architecture. The SAFES approach focuses on embedded security and exploits the
characteristics of embedded computations.

Figure 2.10 provides an overview of the architecture. As we can see, several
monitors are used to track system-specific data. The number and complexity of the
monitors are important parameters as they are directly related to the overhead cost
of the security architecture. The role of these monitors is to detect attacks against
the system. To provide such a solution, the normal activity (i.e. correct or expected)
behavior of the modules is characterized in such a way that irregular behavior is
detected. Autonomy and adaptability have been stressed to build an efficient security
network of monitors. The monitors are autonomous in order to build fault tolerant
systems; if one monitor is attacked, the others continue to manage the security of the

38 E. Wanderley et al.

system. The monitors are distributed so as to be able to analyze the different parts
of the system (e.g. battery, buses, security primitives, communication channels).

Different levels of reaction, reflex or global, are used depending on the type of
attack. A reflex reaction is performed by a single monitor, in this case the response
time is very short since no communication is required between the different moni-
tors. A global reaction is performed when an attack involves a major modification
of the system. In this case, the monitors need to define a new global configuration
of the system, which requires a longer response time. The monitors are linked by
an on-chip intelligence network. This network is controlled by the Security Exec-
utive Processor (SEP) that acts as a secure gateway to the outside world. The SEP
provides a software layer to map new monitoring and verification algorithms to
monitors. This point is important to meet FIPS 140-2 requirements, which require
that data I/Os and security I/Os are implemented through separate links. In response
to abnormal behavior, the SEP can issue commands to control the operation of the
system. For example, it can override the power management or disable I/O opera-
tions.

Detecting an attack is a good thing, but a good response to a threat is of course
needed. In order to qualify for FIPS 140-2 security level 2, the secret information
has to be deleted in a short time. In an FPGA context this could be a problem if
cipher keys are stored in the bitstream, because deleting bitstream memory could
take too long for FIPS recommendations. For FIPS 140-2 levels 3 and 4, the task is
even harder, as the entire secured device has to be destroyed. Such devices are rare
and are reserved for government use, for example for nuclear weapons. A common
reaction is to trigger explosives if an attack is detected, but chemical products can
be used instead. These mechanisms could be used in the FPGA context, but another
solution is possible. If the configuration memory and the FPGA content are erased,
we can consider that the secured device is destroyed. Thus the job is dual-purpose,
the FPGA content has to be destroyed, and the configuration memory has to be
erased because it is the image of the underlying FPGA content. For SRAM FPGA
devices, the first problem could be resolved by removing the FPGA power supply,
which would result in the removal of the volatile configuration. In secured volatile
FPGAs, erasing the bitstream memory can be avoided. In fact these devices embed
a secret key used to decrypt the bitstream, and configuring data decryption is no
longer possible when this key is erased. The need to erase configuration memory
could be replaced by removing the bitstream secret key. As volatile FPGAs require
a battery to maintain the configuration of the secret key, secured volatile FPGA
devices could be considered destroyed if all power sources are removed (secure
configuration battery and FPGA power supply). For non-volatile technologies, such
a simple mechanism cannot be used because the secret key and bitstream data are
not erased when the power is off. Of course configuration memory is not a problem
for non-volatile FPGAs.

To perform a non-invasive attack such as DPA or DEMA, attackers need to col-
lect a lot of leakage information computed with the same cipher key. The system
could detect an abnormal use of a device by fixing a maximum number of operations
allowed with the same key, for example. As previously mentioned, fault injection

2 Security FPGA Analysis 39

could be detected at lower levels. But redundancy in attack detection is not a bad
thing as it allows different types of attacks to be countered. With standard FPGAs,
the user is limited by chip capabilities, most FPGAs do not have analog parts that
can monitor environmental parameters. With the latest Actel FPGA, Fusion, vari-
ous analog functions are available including temperature sensors, clock frequency
or voltage monitoring. These functionalities can be used to detect possible fault in-
jection.

In order to overcome standard FPGA deficiencies (no analog parts for example),
one solution is to use tamper proof sealing, like IBM PCI Cryptographic Coproces-
sor product [21]. Invasive attacks are no longer possible, and the metal shield also
protects against electromagnetic analysis attacks. With such a mechanism, many
parts like analog sensors could be placed in a trusted environment near the FPGA,
thereby extending the capabilities of the programmable device. This is not possible
without tamper proof sealing because an attacker could freely act on analog sensors
or even remove them.

One major concern with FPGAs at the system level concerns communications
between the different resources within the system. Depending on the trusted area
coverage within the system, it is essential to protect the communications and to min-
imize the overhead due to cryptography primitives. Some solutions are presented
below. Their goal is to lessen the cost of confidentiality and integrity.

PE-ICE is a dedicated solution providing strong encryption and integrity check-
ing to data transferred on the processor-memory bus of an embedded computing
system [12]. It was designed to optimize latencies introduced by the hardware se-
curity mechanisms on read and write operations. To achieve this goal, PE-ICE uses
a single block encryption algorithm. Data confidentiality is thus guaranteed by en-
cryption while integrity checking relies on the spreading feature of block encryption
algorithms and on resources available on chip.

Data privacy is provided by AES (Advanced Encryption Standard) encryption.
AES is a block cipher algorithm that processes 128-bit blocks with a 128-bit key.

The spreading feature of block encryption algorithms implies that once a block
encryption is performed, the position and the value of all bits in a ciphertext block
C are influenced by each bit of the corresponding plaintext block P. Consequently
if P is composed of two distinct data (P L and T'), after ciphering, it is impossible
to distinguish the P L ciphered part from the 7 part in C. Moreover if one bit is
modified in C, after decryption all bits of the corresponding plaintext block will be
affected.

PE-ICE integrity checking process: The previous property is used to add the in-
tegrity checking capability to block encryption. In a write operation (Fig. 2.11), a tag
value is inserted in each plaintext block P before encryption. As a result, P is com-
posed of a payload P L (data to protect) and a tag (7). Such a tag must be a nonce,
a Number used ONCE, for a given encryption key and does not need to be calcu-
lated over the data with a specific algorithm; for example, it can be generated by a
counter. After encryption, an indistinguishable and unique P L/T pair is created and
the resulting ciphered block C is written in the external memory. In a read operation
(Fig. 2.11) C is loaded and decrypted. The tag T derived from the resulting plain-
text block is compared to an on chip regenerated tag called the reference tag 7. If

40 E. Wanderley et al.

Trusted area: SoC External Memory
Address Bus

Plaintext Block

AES |
Encryption) _‘

32-bit write data bus

(a) Write operation: tag insertion and encryption

Trusted area: SoC External Memory

Address Bus | i

>

Integrity T * i
check<—-

4—‘ | i

':f i i

| |

i |

- __PAYLOAD AES | |

Decryption '

i

Plaintext Block

CPU

(b) Read operation: Decryption and integrity checking process (tag matching)

Fig. 2.11 PE-ICE principle: the protection is based on the spreading feature on block encryption
algorithms

T does not match 7', it means that at least one bit of C has been modified (spoofing
attack), PE-ICE raises an integrity checking flag to prevent further processing.

The tag generation: In the context of processor—memory communication, the
hardware engine executes both encryption and decryption. Therefore, the engine
has to hold the tag value T of each ciphered block between encryption and the de-
cryption or alternatively, must be able to regenerate it in read operations to perform
the integrity checking process. The challenge is to reach this objective by storing
as little tag information as possible on the engine to optimize on chip memory us-
age. Moreover T may be public knowledge because an adversary needs the secret
encryption key to create an accepted PL/T pair. CPUs process two kinds of data,
Read Only (RO) data and Read/Write data (RW). The composition of the tag differs
for each kind of data and depends on their respective properties. RO data are only
written once in external memory and are not modified during program execution.
In addition, the secret encryption key is changed for each application downloaded
in the external memory. Therefore, the tag can be fixed for each plaintext block of
RO data. PE-ICE uses the most significant bits of the ciphered block address as tags
(Fig. 2.11.a). If an attacker launches a splicing attack, the address used by the pro-
cessor to fetch a block and by PE-ICE to generate the tag reference (7') will not
match the one loaded as the tag (7). RW data are modified during software execu-
tion and are consequently sensitive to replay attacks. Using only the address as the
tag is not enough to prevent such attacks because the processor cannot check if the
data stored at a given address is the most recent data (temporal permutation). For
that reason, the tag is composed of the most significant bits of the address of each
ciphered block, concatenated with a random value (Fig. 2.11.b). The random value

2 Security FPGA Analysis 41

‘ information (512bits) ‘

- -—

Fixed Vector
Address
TimeStamp @ > \ / Encryption Time
4 <
Fixed Vector
Address A .
TimeStamp | 2 =
3 e Y
3 . . -
& ciphered information

Fixed Vector E
Address e

2] 2
TimeStamp) [}

<
2
Fixed Vector 4
A.ddress 2 > \ / Decryptio Time
TlmeStamp 2

Y

Pad Gonoration Time ‘ information (512bits) ‘

Fig. 2.12 One Time Pad model: ciphering and deciphering are performed through a XOR opera-
tion

of each plaintext block is changed for each write operation and is stored on chip to
be able to regenerate the tag reference during read operations.

The OTP (One Time Pad) approach is an alternative solution to PE-ICE that
tries to further parallelize the decryption time and the fetch latency. If we consider a
block of 512 bits, i.e. the same size as the cache line that corresponds to a keystream
and that is created using an AES algorithm, this block is created with the address
of the data, a timestamp and a fixed vector (these data are required to protect the
memory against classical attacks, spoofing, relocation, and timing). Except for the
timestamp, all the information is known by the processor before memory access.
Considering the possibility of using a special (fast) cache for timestamp storage,
while the processor is fetching the data, a hardware engine computes the keystream
(required for OTP). When the data are ready, the computation to decipher the in-
formation is only a bit-a-bit XOR gate (principle of OTP). Figure 2.12 shows the
general model and the benefit of using OTP compared to classical ciphering tech-
niques. If the memory access time is longer than the AES computation time, the
deciphering latency is completed hidden by the model, as can be seen in Fig. 2.13.

Code compression techniques can also be used to reduce the cost of cryptography
[48]. This solution aims to overcome the main problem of memory encryption i.e.
the encryption delay. In general the decryption unit is defined in the secure area of
the system, between the processor cache and the main memory, so that, by observing
the bus activity, an attacker will be able to find encrypted information. This approach
will impose an overhead in the processing time due to the deciphering unit.

42 E. Wanderley et al.

Fig. 2.13 OTP access time: T T
keystream generation time is
hidden by the memory access ° AES time
time. Ciphering is performed Memory £ Memory
through a XOR operation Access E Access

N Time = Time

£

3| YV

= vV XOR

AES time

Using code compression, the number of transfers between the cache and the main
memory will be reduced, which means that the global decryption overhead will
be minimized, and if a scheme that naturally improves performance is used, the
overhead can be completely avoided.

The general idea is presented in Fig. 2.14. After the compression phase, the AES
algorithm is used to encrypt the blocks of 4 x 32 bits (the same size as a cache line).
The compressed and encrypted code is then loaded into the main memory. When the
processor asks for an instruction, the decompressor asks the cache if it is available.
In this case, no deciphering is necessary. If the instruction in the cache is a codeword,
the decompressor acts by delivering the corresponding instructions. If the instruction

~
re SOFTWARE
I A |
| |
| CODE |
| 4 |
| OMPRESSED CIPHERTEXT |
| CODE |
| COMPRESSOR ~ [—» - CIPHERING — |
| |
| |
| |
!
\
N] ___//
e HARDWARE "~
/ \

CIPHERTEXT

DECOMPRESSOR

CACHE
MEMORY

MAIN
\ MEMORY /

/
|
|
|
|
|
|
|
|
: }—> DECIPHERING | —» Micro processor|
|
|
|
|
|
|
|
|
|
|
\

Fig. 2.14 Code compression techniques to mitigate the cost of cryptography

2 Security FPGA Analysis 43

is not present in the cache, the deciphering unit is used, retrieving the block from
the main memory and converting it into a compressed code that is delivered to the
cache. This method relies on the efficiency of the compression to avoid some cache
misses and, consequently accesses to the main memory. Moreover, the density of the
code that is transferred through the bus is higher, so that less deciphering is required
for the whole execution of the code.

All the solutions presented above allow for a more efficient and secure design at
the system level. These solutions could also be considered for ASICs and are not
fully dedicated to FPGAs. However, the advantages of FPGAs should not be con-
sidered as dealing only with a single level but with the whole security pyramid. In
such a case, the different contributions e.g. dynamic reconfiguration at all the levels
(i.e. technological, logic, architecture and system) and logic security improvements
provide some very interesting features and should encourage the use of FPGAs for
secure embedded systems.

2.7 Conclusions

Embedded systems are currently facing an increasing number of attacks since the
amount of digital private information embedded in these systems is getting bigger
every day. The rate of digital data exchanged is also increasing exponentially and
transferred information must be kept secure since confidentiality and integrity are
mandatory. Embedded systems are playing an essential role in our society and are
already included in many electronic devices from low end to high end systems. Se-
curity is a serious problem and attacks against these systems are becoming more
critical and sophisticated. New solutions are needed to allow the definition of secure
embedded systems since current technologies are facing several challenges and can-
not cope with security requirements and performance constraints. Architectures will
have to meet high performance requirements, be energy efficient, flexible, tamper
resistant and reliable to enable their wide adoption. FPGAs can address these re-
quirements and provide efficient security primitives. Their characteristics enable the
system to prevent attacks or to react when attacks are detected while guaranteeing
the required energy and computation efficiency.

In this chapter we have analyzed current threats against embedded systems and
especially FPGAs. We have described the standard FIPS requirements to build a
secure system. This point is of paramount importance as it guarantees the level of
security of a system. We have also highlighted current vulnerabilities of FPGAs at
all the levels of the security pyramid. From a design point of view, it is essential
to be aware of all these levels in order to provide a comprehensive solution. As
mentioned earlier in this chapter, the strength of a system is defined by its weakest
point; there is no reason to enhance other means of protection, if the weakest point
is not tackled. Many serious attacks target this weakness in order to avoid facing
the complexity of brute force attacks. Several solutions have been outlined in this
chapter especially at the logical, architectural, and system levels to find a global
solution.

E. Wanderley et al.

References

10.

11.

16.
17.

18.

19.

20.

21.

22.

. Abraham, D.G., Dolan, G.M., Double, G.P., Stevens, J.V.: Transaction security system. IBM

Syst. J. (1991)

ACTEL: Proasic3/e security. In: Application Note. ACTEL Corporation (2005)

Agrawal, D., Rohatgi, P., Rao, J.R.: Multi-channel Attacks. Lecture Notes in Computer Sci-
ence (2003)

Bajard, J.-C., Imbert, L.: Leak resistant arithmetic. In: Cryptographic Hardware and Embed-
ded Systems, Proceedings of CHES (2004)

Barker, E., Roginsky, A.: NIST special publication 800-131a—transitions: recommendation
for transitioning the use of cryptographic algorithms and key lengths. In: Computer Security
Division—Information Technology Laboratory (January 2011)

Barthe, L., Benoit, P., Torres, L.: Investigation of a masking countermeasure against side-
channel attacks for RISC-based processor architectures. In: FPL, pp. 139-144 (2010)

Ciet, M., Nevel, M., Peeters, E., Quisquater, J.-J.: Parallel FPGA implementation of RSA with
residue number systems—can side-channel threats be avoided. In: UCL Crypto Group (2004)
Coburn, J., Ravi, S., Raghunathan, A., Chakradhar, S.: SECA security-enhanced communica-
tion architecture. In: Proceedings of the 2005 International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems (2005)

Dagon, D., Martin, T., Starner, T.: Mobile phones as computing devices: the viruses are com-
ing! IEEE Pervasive Comput. 3(4) 11-15 (2004)

Dandalis, A., Prasanna, V.K.: An adaptive cryptographic engine for Internet protocol security
architectures. ACM Trans. Des. Autom. Electron. Syst. 9, 333-353 (2004)

Daniel, M., Techer, J.-D., Torres, L., Robert, M., Cathebras, G., Sassatelli, G., Moraes, F.:
Current mask generation: an analogical circuit to thwart DPA attacks. In: IFIP International
Federation for Information Processing (2006)

Elbaz, R., Champagne, D., Gebotys, C., Lee, R., Potlapally, N., Torres, L.: Hardware mech-
anisms for memory authentication: a survey of existing techniques and engines. In: Transac-
tions on Computational Science IV. Lecture Notes in Computer Science, vol. 5430. Springer,
Berlin (2009)

. Elbirt, A.J., Yip, W., Chetwynd, B., Paar, C.: An FPGA-based performance evaluation of the

AES block cipher candidate algorithm finalists. IEEE Trans. Very Large Scale Integr. 9, 545—
557 (2001)

FPGA: Reverse engineering services. http://www.bltinc.com/services.fpga-reverse-engineering.
htm

. Gaj, K., Chodowiec, P.: Fast implementation and fair comparison of the final candidates for

advanced encryption standard using field programmable gate arrays. In: Proc. RSA Security
Conf. (2001)

Giraud, C.: DFA on AES. Technical report, Oberthur Card Systems (2004)

Gogniat, G., Wolf, T., Burleson, W., Diguet, J.-P., Bossuet, L., Vaslin, R.: Reconfigurable
hardware for high-security/high-performance embedded systems: the safes perspective. IEEE
Trans. Very Large Scale Integr. 16(2) 144—155 (2008)

Gueron, Sh., Parzanchevsky, O., Zuk, O.: Masked inversion in GF(2n) using mixed field rep-
resentations and its efficient implementation for AES. In: Smart Card System Engineering,
System LSI Division, Device Solutions Network. Samsung Electronics Co. Ltd (2006)
Guilley, S., Pacalet, R.: SoC security: a war against side-channels. Annals of the Telecommu-
nications. Systéme sur puce Electronique pour les Télécommunications (2004)

Hodjat, A., Verbauwhede, I.: A 21.54 Gbits/s fully pipelined AES processor on FPGA. In:
Proceedings of the Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (2004)

IBM: IBM PCI cryptographic coprocessor. In: General Information Manual. IBM Corporation
(2002)

Jarvinen, K.U., Tommiska, M.T., Skyttd, J.O.: A fully pipelined memoryless 17.8 Gbps AES-
128 encryptor. In: Proceedings of the ACM/SIGDA Eleventh International Symposium on
Field Programmable Gate Arrays (2003)

http://www.bltinc.com/services.fpga-reverse-engineering.htm
http://www.bltinc.com/services.fpga-reverse-engineering.htm

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for fault-based side-
channel cryptanalysis of symmetric block ciphers. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. (2002)

Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems. Lecture Notes in Computer Science (1996)

Kocher, P, Jafte, J., Jun, B.: Differential Power Analysis. Lecture Notes in Computer Science
(1999)

Liardet, P.-Y., Teglia, Y.: Fault resistance: from reliability to safety. In: Proceedings of the
International Conference on Dependable Systems and Networks (2004)

Martin, T., Hsiao, M., Ha, D., Krishnaswami, J.: Denial-of-service attacks on battery-powered
mobile computers. In: Proceedings of the Second IEEE Annual Conference on Pervasive Com-
puting and Communications (2004)

Mcloone, M., Mccanny, J.V.: High performance single-chip FPGA Rijndael algorithm imple-
mentations. In: Proceedings of the Third International Workshop on Cryptographic Hardware
and Embedded Systems (2001)

Mcmillan, S., Cameron, C.: JBITS implementation of the advanced encryption standard (Ri-
jndael). In: Proceedings of the International Conference on Field-Programmable Logic and Its
Applications (2001)

Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In:
CHES, Worcester, MA, USA, August 17-18. LNCS, vol. 1965, pp. 71-77. Springer, Berlin
(2000)

Nash, D., Martin, T., Ha, D., Hsiao, M.: Towards an intrusion detection system for battery
exhaustion attacks on mobile computing devices. In: Proceedings of the Third IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops (2005)

Nassar, M., Bhasin, S., Danger, J.-L., Duc, G., Guilley, S.: BCDL: a high performance bal-
anced DPL with global precharge and without early-evaluation. In: DATE’ 10, Dresden, Ger-
many, March 8-12, 2010, pp. 849-854. IEEE Comput. Soc., Los Alamitos (2010)

National Institute of Standards Technology: Security requirements for cryptographic modules
(FIPS pub 140-2). In: Federal Information Processing Standards Publication. National Insti-
tute of Standards and Technology (NIST) (2001)

Ors, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA—first experimental
results. In: Proceedings of the CHES 2003 (2003)

Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without routing
constraints. In: Proceedings of CHES’05, Edinburgh, Scotland, UK, September 2005. Lecture
Notes in Computer Science, vol. 3659, pp. 172-186. Springer, Berlin (2005)

Razafindraibe, A., Robert, M., Maurine, P.: Analysis and improvement of dual rail logic as a
countermeasure against DPA. In: PATMOS, Goéteborg, Sweden, pp. 340-351 (2007)

Saggese, G.P., Mazzeo, A., Mazzocca, N., Strollo, A.G.M.: An FPGA-based performance
analysis of the unrolling, tiling, and pipelining of the AES algorithm. In: Proceedings of the In-
ternational Conference on Field-Programmable Logic and Its Applications (FPL 2003) (2003)
Schaumont, P., Verbauwhede, I.: Domain specific tools and methods for application in security
processor design. Des. Autom. Embed. Syst. 7, 365-383 (2002)

Standaert, F.-X., Ors, S.B., Preneel, B.: Power analysis of an FPGA: implementation of Rijn-
dael: is pipelining a DPA countermeasure. In: Proceedings of the CHES 2004 (2004)
Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient implementation of Rijn-
dael encryption in reconfigurable hardware: improvements and design tradeoffs. In: Proceed-
ings of Cryptographic Hardware and Embedded Systems (2003)

Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: A methodology to implement
block ciphers in reconfigurable hardware and its application to fast and compact AES Rijn-
dael. In: Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field
Programmable Gate Arrays (FPGA 2003) (2003)

Standaert, E-X., Ors, S.B., Quisquater, J.-J., Preneel, B.: Power analysis attacks against FPGA
implementations of the DES In: Proceedings of the FPL 2004 (2004)

Tiri, K., Verbauwhede, I.: Synthesis of secure FPGA implementations. In: Proceedings of
International Workshop on Logic and Synthesis (IWLS 2004) (2004)

44,

45.

46.

47.

48.

49.

50.

E. Wanderley et al.

Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC
or FPGA implementation. In: Design Automation and Test in Europe Conference (DATE
2004) (2004)

Trichina, E.: Combinational logic design for AES subbyte transformation on masked data. In:
Smart Card System Engineering, System LSI Division, Device Solutions Network. Samsung
Electronics Co. Ltd (2006)

Trichina, E., Korkishko, T.: Secure AES hardware module for resource constrained devices. In:
Smart Card System Engineering, System LSI Division, Device Solutions Network. Samsung
Electronics Co. Ltd (2006)

Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: CHES. Lecture
Notes in Computer Science, vol. 3156, pp. 1-15. Springer, Berlin (2004)

Wanderley, E., Vaslin, R., Gogniat, G., Diguet, J.-P.: A code compression method to cope with
security hardware overheads. In: 19th IEEE International Symposium on Computer Architec-
ture and High Performance Computing (2007)

Wollinger, T., Paar, C.: How secure are FPGAs in cryptographic applications. In: Proceedings
of the 13th International Conference on Field-Programmable Logic and Applications (2003)
Wollinger, T., Paar, C.: Security aspects of FPGAs in cryptographic applications. In: Lysaght,
P., Rosenstiel, W. (eds.) New Algorithms, Architectures and Applications for Reconfigurable
Computing, pp. 265-278. Springer, Dordrecht (2005)

	Chapter 2: Security FPGA Analysis
	2.1 Introduction
	2.2 Security Principles and Attacks Against FPGAs
	2.2.1 Hardware Attacks
	2.2.2 Software Attacks

	2.3 Objective of an Attacker
	2.3.1 Security System Using FPGAs
	2.3.1.1 FPGA Based Security Models
	2.3.1.2 Threats Against FPGAs

	2.4 Security Requirements for Modules
	2.4.1 Security Objectives
	2.4.2 Security Levels
	2.4.3 Security Requirements
	2.4.4 Security Policy

	2.5 Vulnerabilities of FPGAs
	2.5.1 Technological Level
	2.5.2 Logical Level
	2.5.3 Architecture Level
	2.5.3.1 Processor Level

	2.5.4 System Level

	2.6 Countermeasures
	2.6.1 Technological Level
	2.6.2 Logical Level
	2.6.3 Architecture Level
	2.6.4 System Level

	2.7 Conclusions
	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

