
HAL Id: lirmm-00809330
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00809330v1

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Countermeasures Against Physical Attacks in FPGAs
Benoit Badrignans, Florian Devic, Lionel Torres, Gilles Sassatelli, Pascal

Benoit

To cite this version:
Benoit Badrignans, Florian Devic, Lionel Torres, Gilles Sassatelli, Pascal Benoit. Countermeasures
Against Physical Attacks in FPGAs. Security Trends for FPGAS From Secured to Secure Re-
configurable Systems, Springer, pp.73-100, 2011, 978-94-007-1337-6. �10.1007/978-94-007-1338-3_4�.
�lirmm-00809330�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00809330v1
https://hal.archives-ouvertes.fr

Chapter 4
Countermeasures Against Physical Attacks
in FPGAs

J.-L. Danger, S. Guilley, L. Barthe, and P. Benoit

Abstract This chapter presents a set of countermeasures against physical attacks
specifically dedicated to FPGA. Countermeasures as masking, hiding, are first dis-
cussed. Then we give a set of information and an overview on different logic style
designed to be robust against SCA. The main objective herein is to compare these
techniques and show that they can be suitable and implementable for FPGA com-
ponents. A comparison of different logic style will conclude this chapter.

4.1 Introduction

Off the shelf FPGAs are often used for high-end applications that require embed-
ded cryptography. State of the art commercial FPGA technologies do not have any
specific feature to withstand side channel attacks that target the user application.
For this reason, methods to protect them have to be designed at the logic and back-
end levels of the design stages. Many countermeasures have been developed for
ASICs and this can be used as a basis to develop specific protections for FPGAs.
However the regular FPGA tiling structure and the huge space of interconnect and
programmable switches may limit or reduce the robustness of countermeasures orig-
inally designed for ASICs. In this chapter we provide some answers to attacks and
countermeasures embeddable in off the shelf FPGAs, with a special focus on side-
channel attacks in symmetrical cryptography.

The protection of cryptographic IPs against side channel attacks at logical level
is currently not so advanced in FPGAS as it is in ASICs, even though at first sight,
FPGAs appear to have an intrinsic structure which makes them much more vulner-
able:

• ASIC protections at back-end level (such as the fat wires [59] or back-end dupli-
cation [20] methods) are hardly feasible in FPGAs because of constrained and a
priori unknown or limited routing resources.

• The interconnection makes up the largest part of the FPGA [26]. It includes
lines, pass transistors, transmission gates, bidirectional buffers, switch matrices

J.-L. Danger (�)
Telecom Paris-Tech, Paris, France
e-mail: danger@enst.fr

mailto:danger@enst.fr

J.-L. Danger et al.

and connection boxes. These components increase the capacitive load of the in-
terconnection and thus overall power consumption. This particularity facilitates
passive attacks.

• D Flip-Flop (DFF) are numerous and fast. There are two reasons for their ra-
pidity: they speed up processing and fight metastability. However they greatly
increase power consumption increase. Moreover attacks on register nodes can
lead to knowledge of the activity of combinatorial nodes that contain the secret
information.

• The use of switches like pass transistors makes the power consumption model
quite specific to FPGAs in which the current can vary according to a higher order
equation in Vdd [13, 14].

With regards to ASICs, a study by Kuon and Rose [26] shows that FPGAs are
on average 35 times bigger and consume 12 times more than ASICs. To withstand
attacks on programmable devices that are not specifically designed for security, it
could be worthwhile designing dedicated logic styles and implementation methods.
In this chapter we provide an overview of current techniques and focus on differ-
ent countermeasures (masking, hiding), and logic styles (WDDL, STTL, BCDL)
specifically designed to fight Side Channel Attacks (SCA). Our aim is to show the
potentials and limitations of countermeasures in FPGAs that could obstruct or pre-
vent attacks.

4.2 Countermeasures Against Side Channel Attacks in FPGAs

The types of countermeasures that are used to protect hardware devices against
SCAs can be considered at levels Protocol, Architecture and Netlist.

Protection of protocol and of architecture is independent of the technology (either
software or hardware). However the implementation in FPGAs can take advantage
of hardware properties like concurrent computation, reprogrammability and high
levels of algorithmic noise.

The Protocol level can merely consist in regular key changes as described in [25,
32] in order to prevent the adversary from accumulating enough traces to be able
to attack. One advantage of this level of protection is that it is provable. As an
illustration of this technique, Fig. 4.1 shows that at every 100th ciphering operations
the key is changed, thus limiting the scope of the attack if more than 100 traces are
needed.

However this type of protection can be time consuming and costly as it requires
a specific key exchange or synchronization mechanism to ensure Alice and Bob
always use the same key. Rather than changing the key, the FPGA offers the possi-
bility to reprogram the implementation. As mentioned by F.-X. Standaert [51], this
feature certainly merits further research as only a few studies have been conducted
so far. Among them Chaudhuri et al. [9] details a dedicated FPGA architecture us-
ing agility to thwart SCAs, whereas Mentens [33] explains how security can be
enhanced with dynamic reconfiguration.

4 Countermeasures Against Physical Attacks in FPGAs 75

Fig. 4.1 Dynamic key
change by hashing every
100th encryptions

Strengthening security at architectural level is certainly the least constraining
method as it can be applied in all technologies that have logical model. For hard-
ware implementations, this corresponds to the Register Transfer Level (RTL). One
of the major countermeasures in this category is “masking” which consists in pro-
cessing masked data rather than the data itself. The goal of the protection by mask-
ing is to randomize the power consumption and thus decorrelate as far as possible
the computation activity from the secret information, which is generally the key for
cryptographic algorithms. For this reason, masking provides a constant power con-
sumption mean. As explained in detail in the next section, the mask has to be saved
or processed.

Another means of providing protection consists in obfuscating the computation
by generating noise which decreases the Signal to Noise Ratio “SNR” or more pre-
cisely the “leakage” to noise ratio. This makes the secret signal indiscernible. For
instance, extra glitches in combinational gates can be added or extra jitter noise in-
serted at the clock stage. In software this can lead to the insertion of dummy instruc-
tions. Theoretically, this type of countermeasure is not very robust as the adversary
can increase SNR by using more traces. For instance, the extra noise generated by
the increase in pipelining reported in [53] or by unrolling the implementation as
reported in [5] do not provide efficient protection against SCA.

At both architecture and netlist levels, one of the most efficient protection tech-
nique relies on the use of a differential logic. The efficiency of this type of coun-
termeasure, often called “hiding”, is based on attempting to make the power con-
sumption constant by using dual-rail logic split in True and False networks. The
rationale is to have one network consume power, while the other does not. One ad-
vantage of the hiding technique is to provide natural protection against fault attacks
as explained in Sect. 4.4.

In this chapter we focus on two major countermeasures, masking and hiding. In
particular, we discuss various differential logic styles that are well suited for FPGAs.

76 J.-L. Danger et al.

4.3 Countermeasures Based on Masking

4.3.1 Masking Principle

The masking countermeasure is certainly less complex to implement in FPGAs than
elsewhere as it is applied at the architectural level only. Masking is performed on
internal variables that are transformed into shares of masked variables and the mask
itself. Software and hardware implementations both take advantage of this counter-
measure, which has been the subject of many studies [2, 8, 19, 34]. The masking
technique relies on concealing internal sensitive variables x by a mask m which
takes random values. The internal variable x does not exist as a net in the cryptosys-
tem but can be reconstructed by a pair of signals (m, xm = x θ m), where xm is the
masked variable and θ is an operation which can be Boolean or arithmetic. Boolean
masking uses the bit wise exclusive-or (xor) operation:

xm = x ⊕ m,

whereas arithmetic masking typically uses a modulus operation on a finite field:

xm = x + m (mod n) or

xm = x ∗ m (mod n),

where n = 2|x| = 2|m| is equal to the number of values of the sensitive value or of
the mask.

Indeed, for a correct masking scheme, the mask (and therefore the masked data)
must be uniformly distributed throughout the secure data flow.

Another way to use the mask is the “random pre-charging” method [7]. This con-
sists in temporal stages alternating between the mask m and the internal variable x.
As a result, power consumption, which is mainly caused by the Hamming distance
of two consecutive values, is not directly correlated with x. The drawback in hard-
ware implementation is a decrease in throughput which is approximately a factor of
2 compared to “spatial” masking.

The implementation of masking is simple when the function f has the following
linearity property:

f (xθm) = f (x)θf (m),

where θ is still a group operation.
The value of f (x) can be reconstructed from the application of f (xθm) and

f (m)−1, hence the computation of f (x) can be extracted at the very end of the
algorithm. This avoids direct leakage of information as xθm and m are independent
from x (as in Shannon’s notion of “one-time pad” [50]).

If f is non-linear, the masking structure becomes more complex as f (x) cannot
be reconstructed mathematically from f (xθm) and f (m).1 In symmetrical cipher-
ing algorithms, the non-linear part corresponds to the S-boxes S. A common tech-
nique applied in software is to use a specific memory acting as a LUT Sm such that

1At least, not in a straightforward manner, i.e. without inverting f if it is invertible.

4 Countermeasures Against Physical Attacks in FPGAs 77

Fig. 4.2 S-box for masking

Sm(x ⊕ m) = S(x) ⊕ m. Consequently the size of this memory to implement the
new table increases from 2n to 22n, n being the number of bits of the mask.

Figure 4.2 illustrates the complexity change when this masking scheme is used.
It should be noted that it is not secure in hardware, because the register trans-

fers unmask the data. The leakage, in the Hamming distance [53] model (which is
implicit in FPGAs), is expressed as:

x ⊕ m
︸ ︷︷ ︸

initial value

⊕S(x) ⊕ m
︸ ︷︷ ︸

final value

= x ⊕ S(m).

For AES, masking can take advantage of the fact that the S-box is a combination of
the inverse function in GF(28) and an affine function as proposed in [2] and [61].
However this implementation is very sensitive to zero-value attack [18]. This attack
can be prevented by using the implementation proposed by Oswald in [39], which
takes advantage of the multiplicative masking in GF(4) with only a slight increase
in complexity.

4.3.2 Masking Implementations and Vulnerabilities

The robustness of masking countermeasures based on Boolean operators are prov-
able against first order attacks [6], a first order attack being an attack where only
the variable x is considered. However masking logic is sensitive to Higher-Order
Attacks (HO-DPA) [35], where the attacker uses multiple observations of the same
sensitive variable or multiple correlated variables. HO-DPA efficiency is directly
related to the knowledge of the leakage, the way to observe the correlated vari-
ables [55] and the complexity of the masking implementation [2, 39, 40]. A pitfall
introduced by the masked logics is the leakage of sensitive information through
glitches. Unless special care is taken, the glitches can indeed depend on unmasked
sensitive information, since some gates are likely to combine the masked data with
the mask, thereby generating temporarily unprotected transitions [30]. Some special
gates [12, 17] or synthesis techniques [37, 38] have been proposed to counter this
effect.

In this chapter we will explain the HO-DPA on the classical hardware masking
implementation referred to as “zero-offset” [62] and is illustrated in Fig. 4.3.

In the “zero-offset” circuit the second-order DPA can be performed by using ob-
servations of both the masked data xm = x ⊕ m and the mask m that are computed
concurrently. In order to understand the second-order DPA principle, let us con-
sider the PMF (Probability Mass Function) of the activity corresponding to those of

78 J.-L. Danger et al.

Fig. 4.3 “Zero-offset”
masked DES, implemented
with ROMs

the combined X and M registers in Fig. 4.3. The activity of these two registers is
expressed by:

A = HW [�(x, k) ⊕ �(m)] + HW [�(m)]. (4.1)

Where � expresses the distance of a register output, i.e.

�(x, k)
.= x ⊕ S(x ⊕ k),

�(m)
.= m ⊕ m′.

If the registers have four bits (as for DES implementation), there are five possible
PMFs depending on the HW(�(x, k)) values, when the key is correct, as shown at
the top of Fig. 4.4.

When the key is incorrect, the leakage corresponds to that of function A de-
scribed in Equation 4.1 where:

• x is uniformly distributed in [0x0,0xf], because the guessed key is wrong,
• m is uniformly distributed in [0x0,0xf], because the mask is random and un-

known to the attacker.

An HO-DPA attack of special interest is the mutual information analysis (MIA)
introduced by Gierlichs [15].

It uses the Mutual Information MI(O;�(x, k) ⊕ �(m) + �(m)) as a distin-
guisher to build the attack, where optimized attacks close to MIA for example, vari-
ance based power attacks (VPA) [29] or entropy based power attacks (EPA) [28] can
be devised.

4.3.3 Example of Protection for DES

Let us consider the “zero-offset” implementation of DES studied at UCL [54]. Its
iterative architecture is illustrated in Fig. 4.5. This algorithmic masking associates a
mask (ML,MR) with the plaintext (L,R).

At each round i ∈ [0,16[, one intermediate mask (MLi,MRi) is calculated in
parallel with the intermediate cipher word (Li,Ri). If we leave aside the expansion

4 Countermeasures Against Physical Attacks in FPGAs 79

Fig. 4.4 PMFs corresponding to the five possible values of HW(�(x, k))

E and the permutation P , the DES [1] round function f is implemented in a masked
way by using a set of functions S and a set of functions S′:

S(xm ⊕ k) = S(x ⊕ m ⊕ k) = S(x ⊕ k) ⊕ m′,

m′ = S′(xm ⊕ k,m) = S′(x ⊕ m ⊕ k,m).
(4.2)

The variable m′ is a new mask that can be used again in the next round.
The set of functions S contains the traditional S-boxes applied on masked inter-

mediate words. The size of each S is 64 words of 4 bits when implemented with a
ROM. The function S′ is a new table which has a much greater ROM size of 4 K
words of 4 bits, as there are two input words of 6 bits.

To mitigate the attacks on “zero-offset” implementations one possible solution
is to balance the distribution. Authors in [27] propose to “squeeze” the leakage by
inserting specific bijections before and after storing the mask. These bijections can
be part of the “masked” ROM, see Fig. 4.6. The intermediate data (e.g. Sboxes out-
put) have been protected by the same strategy, so as to ensure seamless “squeezing”
throughout the combinational logic.

For AES, the implementation of the masked SubBytes structure S′ would lead
to ROM memory blocks with size 216 words of 8 bits, which represents a huge
increase in complexity. It is thus preferable to use substitution boxes with operators
computing in smaller fields than GF(28) as in [39].

80 J.-L. Danger et al.

Fig. 4.5 Masked DES datapath

Another possible solution is reduce the implementation cost by regenerating m′
from Eq. (4.2):

m′ = S(x ⊕ k ⊕ m) ⊕ S(x ⊕ k). (4.3)

This implementation called “universal S-Box masking” (USM) is illustrated in
Fig. 4.7. It is such that some non-masked values (namely the S-box input and out-
put) appear clearly in the implementation. This undoubtedly represents a potential
threat. The size is merely increased by a factor of 2 due to the fact the S-box are du-
plicated. This is much less than the increase proposed in [54] where look up tables
are 4 K × 4 memories.

In order to protect the USM implementation, the above mentioned squeezing
leakage principle can be applied. The protected USM is shown in Fig. 4.8. It is
composed of layers of the encoded table including input and output bijections. The
bijections have to be chosen to ensure the maximum possible balance between the
distribution of activity for the right key. For instance a robustness evaluation facil-
itates this choice. The bijections for the expansion and the permutation of DES are
linear (“XOR with constant” operation) as these functions split the 32-bit words.
However it is important to use non-linear bijections (at least 3 bits) for the S-Box ta-

4 Countermeasures Against Physical Attacks in FPGAs 81

Fig. 4.6 Leakage squeezing
of DES with a masked ROM
implementation

Fig. 4.7 Universal masked f

function (of DES), with
transiently unmasked values
highlighted in green (color
online)

ble as the Hamming distance reveals the unmasked value if linear bijection are used.
The tables are implemented either in LUT networks or FPGA embedded RAMs.

These implementations were tested in a STRATIX II FPGA which is based on
an adaptive LUT Module (ALM) cell. They were compared with unprotected DES,
masked ROM and masked USM implementations without any leakage squeezing.

Table 4.1 summarizes the memories needed for each implementation and the
estimated throughput.

These results show that in hardware implementations, the leakage squeezing
method has little impact on complexity and speed. Moreover the USM implemen-
tation is particularly efficient as it avoids the use of large ROMs while maintaining
high throughput.

82 J.-L. Danger et al.

Fig. 4.8 Leakage squeezing
of DES with a masked USM
implementation

Robustness can be evaluated by using the theoretical framework introduced by
Standaert et al. in [52]. The authors suggest analyzing side channel attacks with
a combination of information theoretic and security metrics. These metrics aim at
evaluating the amount of information provided by a leaking implementation and the
possibility to turn this information into a successful key recovery.

Figure 4.9(a) shows the mutual information values obtained for each kind of
implementation on simulated traces with respect to an increasing noise standard
deviation over [0.1,10] (i.e. an increasing SNR over [−20,20]).

Table 4.1 Complexity and speed results. “l. s.” denotes the “leakage squeezing” countermeasure

Implementation ALMs Block memory
[bit]

M4Ks Throughput
[Mbit/s]

Unprotected DES (reference) 276 0 0 929.4

DES masked USM 447 0 0 689.1

DES masked ROM 366 131072 32 398.4

DES masked ROM with l. s. 408 131072 32 320.8

DES masked USM with l. s. 488 0 0 582.8

4 Countermeasures Against Physical Attacks in FPGAs 83

Fig. 4.9 Mutual information metric computed on several DES implementations

These results demonstrate the reduction in information leakage implied by the
use of the leakage squeezing technique. As expected, the two implementations based
on leakage squeezing leak less information than the zero offset implementation and
the unprotected DES for all SNRs. Figure 4.9(b) is a zoom on the evolution of
the mutual information in the case of the implementations based on the leakage
squeezing technique in order to compare them.

Next real attacks were carried out on real power consumption traces in both the
“zero offset” and “USM with squeezed leakage” implementations. For each sce-
nario, a set of 25,000 power consumption traces was acquired using random masks
and plaintexts. The first order success rate as described in [52] was calculated for
different attack distinguishers; VPA [29], EPA [28] and MMIA [16]. The result is
given in Fig. 4.10.

We can see that the attacks based on various distinguishers perform well in the
“zero offset” implementation but not in the leakage squeezing implementation.

Fig. 4.10 First order success
rate of 3 distinguishers,
FPGA implementation

84 J.-L. Danger et al.

4.3.4 Example of Masked Processor for a Software
Implementation

As explained in Chap. 2, experimental results suggest that pipelined processors in-
crease the risk of SCAs, and have to be considered with care. A typical masking
implementation for embedded processors in FPGAs requires some considerations.

One solution consists in implementing a dual pipelined datapath. Basically, the
idea is to introduce a special datapath for the mask itself, which can be coupled to the
classic RISC pipeline. Hence, instead of directly handling raw data, the processor
operates on a dual datapath with masked data. The main role of the new datapath is
to keep the corresponding mask for each masked data along the pipeline.

By far, the main difficulty is encountered during the EX stage, where all mathe-
matical operations are implemented. As a first hypothesis, the ALU operations are
not customized for any mask in order to compute the correct value. Also even if
SCAs are still effective on combinational logic, one may consider that the leakage
at the register stages is predominant. Indeed, to tackle clock skew issues, buffers
are used to drive long lines, involving thus increased power consumption at the reg-
ister level. This is especially the case for FPGAs. Hence, the ALU operations are
performed with unmasked data, whereas the EX pipeline registers are masked.

Moreover, RISC-based architectures are structured around load-store instruc-
tions. All potential critical data coming from the data memory use load instructions
and could take advantage of a masking scheme when going to the register banks.
This approach not only offers the advantage to handle any instruction using a mask-
ing scheme but also provides a full compatibility with the processor’s instruction
set.

A MicroBlaze instruction set compliant processor, the SecretBlaze [3], has been
developed for Xilinx FPGA. It implements the ideas of the RISC-based masked dat-
apath. Among different types of masking, the boolean masking was chosen because
of its low overhead cost and its good integration into the pipeline. Hence, the masked
data result from XOR operations between the raw data and the mask values.

The SecretBlaze provides a dual datapath, two register files, a MAsked Memory
Unit (MAMU), and a pseudo random generator (PRNG). The PRNG generates a 32-
bit mask value at each clock cycle. The goal of the MAMU is to manage memory
accesses with a static mask. Figure 4.11 illustrates the core block diagram of the
SecretBlaze. The main differences from the original MicroBlaze are highlighted in
gray.

The masking strategy is performed whenever a new value is loaded from the data
memory. The loaded data is immediately XORed with the mask generated from the
PRNG. The effect of the static mask is afterward removed. Both, the masked data
and the mask itself, are stored respectively into the register file and the mask register
file during the next clock cycle. As a consequence, no unprotected data is stored into
register files of the processor. By analogy, store instructions follow the same scheme
in reverse.

4 Countermeasures Against Physical Attacks in FPGAs 85

Fig. 4.11 SecretBlaze Block Diagram

For all instructions, the data have to be unmasked for the inputs of the ALU.
Although another PRNG would have been the most secured solution, the mask of
the first operand is XORed with the value of the PRNG in order to reduce the gate
cost of the datapath (the XOR operation between two random numbers is a random
number). The same remark can be made for the MA stage. Finally, instructions
involving address computations such as loads, stores, as well as branches, have to
be unmasked for the address assignments. This poses no significant threat because
the addresses do not contain any sensitive information.

The performance and the resource impact of the proposed countermeasure were
evaluated with an overhead of 80% of extra flip-flops, owing to the introduction of
the PRNG and mask pipeline registers. Then, we observe a slight increase in the
usage of slices and LUTs (+30%), related to extra-logic for the datapath of the
mask. In terms of performance, the operating frequency is only reduced by 11.2%.

In order to evaluate the robustness of the masking technique, attacks were con-
ducted on the processor running a software DES program, with and without the
countermeasure at the hardware level. Results obtained show that the masked Se-
cretBlaze offers a better resistance against DEMA of approximately a factor 2 during
the execution of the critical instructions.

Figure 4.12 illustrates the DEMA obtained with 50,000 electromagnetic traces.
Unlike the results observed in Chap. 2, this picture shows the efficiency of the pro-
tection, since the correlation at the different stages of the pipeline is no more rel-
evant. However, the EX stage of the XOR instruction is still a weak point of the
architecture. The conclusion to be drawn from these considerations is that the ALU,
more generally combinational logic, is still a critical security issue in FPGAs, even
registers are more numerous and more energy-consuming. Further investigations
should be conducted to identify alternatives for securing the ALU of the processor,
like hiding techniques detailed in the next section.

86 J.-L. Danger et al.

Fig. 4.12 DEMA traces obtained for the first sub-key of the DES software implementation with
the SecretBlaze (blue = wrong key hypothesis, black = good key hypothesis) (color online)

4.4 Countermeasures Based on Hiding

4.4.1 Hiding Technique

The Hiding technique consists in achieving constant power consumption whereas
Masking aims at averaging it. One way to obtain constant activity is to use differen-
tial logic characterized by the fact each variable is made up of two complementary
signals. This logic is such that when one signal switches, the other does not and
vice versa. This allows the design to be balanced in terms of activity since in CMOS
technology the main power consumer is the switching rate. To make sure the number
of transitions (0 → 1 or 1 → 0) remains constant, the computation has two distinct
stages:

1. A Precharge stage to reset all the signals in a known state, and
2. An Evaluation stage where the computation is performed with a fixed number

of transitions.

4 Countermeasures Against Physical Attacks in FPGAs 87

The differential logic is also called “Dual Rail with Precharge Logic (DPL)” be-
cause the two signals from the same variable need twice as many routing resources.
Therefore the complexity is at least twice that of an unprotected implementation.

The DPL signalization of the variable a is conveyed by two wires (at , af) for
each Boolean variable, at is the TRUE signal and af is the FALSE. The state of the
variable is either:

• NULL= (0,0) or (1,1) while in Precharge.
• VALID ∈ {(0,1), (1,0)} while in Evaluation.

Therefore, every evaluation consists in the transition of exactly one wire
((0,0) → (0,1) or (0,0) → (1,0)). If the design is properly balanced, which tran-
sition actually occurred is indiscernible by an attacker. The computation with DPL
logics is a structure of a TRUE and FALSE networks with possible crossing wires
interpreted as inversions. Although perfectly sound at logical level, in practice, DPL
ends up being implemented in physical devices where the timing parameters impact
the balance between the TRUE and FALSE networks. This unbalanced behaviors
can damage the level of protection provided by DPL logics. Between the precharge
to evaluation, and vice-versa, there may be:

1. Spurious transitions, referred to as glitches, that negate the hypothesis of activity
invariability.

2. Early Evaluation (EE) effects. This takes place if the gate switching depends on
the difference between the arrival time of the inputs.

3. Technological Bias (TB). This flaw results from the imbalance between the dual
signals. It can be caused by manufacturing dispersion, by the place-and-route
stage or merely by the types of gate driving the true and false networks. This
could be exploited by an attacker who measures the signal from one wire of a
pair.

In this section, we focus on the different styles that map very well in FPGAs:
WDDL [58], STTL [43], BCDL [11, 36].

4.4.2 WDDL and Its Variants

The Wave Dynamic Differential Logic (WDDL) proposed by Tiri [58] is one of the
simplest DPL logic styles.

The NULL state (0,0) is propagated by a wave of (0,0) pairs through the netlist
thanks to the use of positive gates. A Boolean function f is said to be positive if for
two Boolean variables x and y:

x · y = x ⇒ f (y) ≥ f (x).

This type of function corresponds to an assembly of AND and OR gates. Fig-
ure 4.13 illustrates a two-input “AND2” gate, the logic network TRUE T receives
the two TRUE inputs at and bt . The dual “OR” function is implemented by the

88 J.-L. Danger et al.

Fig. 4.13 “AND” WDDL
gate

F network which receives the FALSE inputs af et bf . Thus T (x)
.= H(x) and

F(x)
.= H(x), F(x) can be obtained by using the De Morgan’s law.

Non-positive logic like inverters or NAND gates are implemented by crossing the
two networks. The number of Flip-Flops is necessarily multiplied by four. These are
duplicated for the two TRUE and FALSE networks and also for the precharge and
evaluation stage as shown in Fig. 4.14.

The timings in Fig. 4.15 show that the number of transitions is the same (two)
during the Precharge ⇒ Evaluation stage and vice-versa. As in CMOS technologies,
power consumption is directly correlated with this number, the logic is reputed to
be balanced.

The positivity of WDDL ensures the absence of glitches in the complete netlist.
However, as shown in [56, 57], WDDL is prone to early evaluation (EE). The early
evaluation effect is due to the difference in timing between two variables of one gate.
This timing difference is transferred to the WDDL gate output during the transitions
Precharge ⇔ Evaluation. Figure 4.16(b) illustrates the principle of early evaluation
for a 2-input AND gate and its dual 2-input OR gate, as represented in Fig. 4.13.
Output switching �t1 is different from �t2 and therefore can reveal information
about the state of the inputs.

In addition, WDDL still has technological bias (TB) i.e. imbalance between the
dual TRUE and FALSE networks at both structure and routing levels. Constraining

Fig. 4.14 A digital circuit
and its WDDL equivalent

Fig. 4.15 Simulation
showing the WDDL timings

4 Countermeasures Against Physical Attacks in FPGAs 89

Fig. 4.16 Early evaluation

routing is not so easy in FPGAs because the interconnect structure is confiden-
tial. The two causes of imbalance plus the EE effect have enabled some attacks on
WDDL circuits, as described by the authors of WDDL themselves in an ASIC [60]
or independently in an FPGA [44].

The impact of the place and route (P/R) steps on the timings of dual rail designs
is of major importance to obtain dual rail balance and thus reduce the correlation
between the processed data and power consumption. Without any P/R constraints
it was shown in [44] that WDDL is attackable. Novel P/R strategies that take ad-
vantage of FPGAs with cells composed of two-output LUTs have appeared. For
instance in [45] the balancing strategy is to place and route the gate in the same
STRATIX II ALM.

Some variants of WDDL have been devised to facilitate the balance of the WDDL
networks. For instance Double WDDL (DWDDL) was introduced in [63] to coun-
terbalance one unbalanced network with a dummy dual one. The main drawback of
DWDDL is its complexity which is double that of WDDL.

Isolated WDDL (IWDDL) [31] is a different strategy to separate a WDDL netlist
into two unconnected halves. Here, inverters are kept but a potential glitch is stopped
by systematically inserting one register after it. This strategy is expensive in terms
of gate complexity and requires a redesign of the controller. Additionally, the de-
sign becomes much more pipelined, which requires much higher clock frequencies
to maintain an acceptable throughput. However, the advantage of this approach is
stopping the propagation of the EE wave.

As DWDDL and IWDDL are complex but theoretically robust, one point is ques-
tionable: won’t completely separating the netlist open the door to well located EMA
attacks that can selectively record the activity of one specific part of the circuit, thus
defeating the activity invariability property.

4.4.3 Synchronized Logics: STTL, BCDL

Another strategy to get rid of the early evaluation effect is to synchronize the vari-
ables before starting the gate evaluation and precharge stages. However, to make
sure no glitches occur, the following conditions have to be met:

90 J.-L. Danger et al.

Fig. 4.17 Two-input AND
gate implementations:
(a) basic dual rail AND
(b) SecLib dual rail AND,
(c) STTL AND (d) compact
STTL AND

1. Evaluation starts after all the input signals are valid.
2. Precharge starts by following one of these two rules:

• Rule sync-1: Precharge starts after all the inputs becomes NULL.2

• Rule sync-2: Precharge starts before the first input becomes NULL.

If the precharge is always late (rule sync-1), the gate outputs need to be mem-
orized. While for rule sync-2 no memorization is necessary but there is a specific
precharge signal.

STTL In [43], the authors suggest using an additional third wire to synchronize
the input arrivals by using C-elements to create the Secure Triple Track Logic
(STTL), like in Asynchronous logic. In this case, rule sync-1 applies. This third
wire should indicate whether the output data is stable (and thus valid) or not. Fig-
ure 4.17 displays different implementations of a dual rail two-input AND gate.

Figure 4.17(a) represents the basic dual rail AND in asynchronous logic. Fig-
ure 4.17(b) is a more secure dual rail AND gate, also called SecLib [22] where
the two dual outputs are balanced. Figures 4.17(c) and 4.17(d) represent the STTL
AND gate, with a more compact triple rail AND in (d). Operator C stand for a C-
element [49], (Z = (a +b) ·c+Z · (a +b+c)), and C’ for a generalized C-element.
Implementations (b), (c) and (d) are power balanced. However, the third rail in (c)
and (d) must fulfill a timing constraint to effectively obtain a quasi data independent
timing behavior at block level.

The validity output pin ZV of triple rail gates is controlled by buffers, three in
the case of Fig. 4.17(d). These buffers ensure that the delay �v in propagation from
the validity inputs (av, bv) to the output ZV remains greater than the delays �d

from (a1, a0, b1, b0) inputs to the data outputs (Z0,Z1). Note that the number of

2NULL is the value in precharge phase.

4 Countermeasures Against Physical Attacks in FPGAs 91

Fig. 4.18 The basic
operation of secure triple
track logic

buffers must be defined by the designers to guarantee that this timing characteris-
tic is satisfied even in the presence of output load mismatches introduced by the
place and route step as described in [43]. With such design guidelines of triple rail
gates, we can confidently guarantee that the time at which a triple rail gate fires is
independent of the specific data processed by its containing block.

Figure 4.18 illustrates this key characteristic of secure triple rail logic. After the
firings of av, bv, cv and dv (assumed to occur at the same time without loss of gen-
erality), e0, e1, f 0 and f 1 fire first. Then, the firing of ev and f v occur, which in
turn triggers g0 or g1, followed by gv, since validity rails have a longer propagation
delay. Thus the firing of triple rail gates is triggered by the validity rails character-
ized by a switching speed lower than that of data rails. In other words, the validity
rail array (arrows in Fig. 4.18) operates as a backbone of the logical block, sequenc-
ing the events independently of data processing (dashed arrows in Fig. 4.18).

During the firing sequence, the time at which e0 (f 0, g0), e1 (f 1, g1) settle
may diff, due to possible output load mismatches. This is represented by the gray
rectangles on Fig. 4.18. However, these arrival time mismatches do not affect the
firing of the following gates, which are triggered by the validity rails. This charac-
teristic avoids the effect of load mismatches piling up on timing along data paths.
This guarantees quasi data independent power consumption and computation time
at the block level.

BCDL Balanced Cell-based Differential Logic (BCDL) [11, 36] is a synchronized
logic which takes advantage of a global signal that allows the designer to both reduce
the complexity of the design and speed up the calculation. This global precharge sig-
nal called PRE allows rule sync-2 to be fulfilled, and as a result, no memorization
function, such as C-elements, is needed.

92 J.-L. Danger et al.

Fig. 4.19 The basic BCDL
cell

Fig. 4.20 Timing
optimization in the DPL
protocol when the precharge
time is reduced

The basic BCDL gate is presented in Fig. 4.19. Synchronization is performed by
a “unanimity to 1” operator on the left side of the figure and can operate on a bundle
of data.

The global PRE signal is constrained to be faster than any inputs. Consequently
when the U/PRE of Fig. 4.19 falls to 0 ⇒ the precharge is forced, and when U/PRE
rises to 1 ⇒ the evaluation begins after “unanimity to 1”.

As the calculation in Tables T and F can be completely separated, the complexity
of the tables is reduced as they receive 2n+2 inputs rather than 22n in others DPL,
n being the number of gate inputs. Therefore the implementation with embedded
RAM in FPGAs is appropriate. Another complexity gain is the ease of implemen-
tation of 2-input gates as they are not limited by the positiveness constraint. For
instance, a XOR BCDL gate including synchronization can be done in one ALM of
STRATIX II or one LUT6 (dual LUT5) in VIRTEX 5 families.

As the BCDL design allows squeezing of the precharge step, it can compute
about 75% faster than WDDL because the precharge is global. This possibility is
depicted in Fig. 4.20.

Table 4.2 gives the complexity and speed of an AES implementation in a
STRATIX FPGA for WDDL and BCDL.

4 Countermeasures Against Physical Attacks in FPGAs 93

Table 4.2 Complexity and speed of an AES implementation in WDDL and BCDL

ALM Reg RAM Max. freq. Max. throughput

No protection 1078 256 40 Kb 71.88 MHz 287.52 Mbps

WDDL 4885 1024 – 37.07 MHz 74.14 Mbps

BCDL 1841 1024 160 Kb 50.64 MHz 151.92 Mbps

Fig. 4.21 MDPL AND gate

4.4.4 DPL with Masking: MDPL

Masked Dual-rail with Precharge Logic (MDPL [41]) is an attempt to fix the oth-
erwise imbalance of WDDL. The assumption is that, in some conditions, it may be
difficult to constrain a router to balance the differential interconnect. Indeed, the two
solutions available in the literature, namely the fat wire [59] and the backend dupli-
cation [20] methods, apply primarily to ASICs. Transposition to FPGA is possible,
although with less fine grained control over the result [21]. For this reason, MDPL
swaps the true and the false routes with a random mask, so as to protect from fatal
routing unbalance. By the same token, it makes up for the structural unbalance of
the dual pair of gates. The only gates involved in the logic are majority functions,
both for the true and the false networks. Figure 4.21 represents the MDPL AND
gate. When the random mask m is 0 the TRUE network performs the AND, whereas
the FALSE network performs the OR, which is the dual gate of AND, it is the other
way round when m is 1.

Although MDPL fails to provide a solution to the early evaluation and precharge
of WDDL as presented in [42], it could be efficient against the TB effect. It has
been shown that the mask itself could be attacked [46]. Consequently MDPL was
enhanced and became the improved MDPL (iMDPL) by adding a synchronization

94 J.-L. Danger et al.

stage [24]. The Dual Rail switching Logic (DRSL) [10] is very similar to iMDPL
and more dedicated to ASIC. However it has been shown in [11] that without P/R
care the DRSL can generate glitches when returning to the precharge phase. Syn-
chronized logic like BCDL can take advantage of the random masking to mitigate
the TB if few constraints apply during the P/R phase. For instance, BCDL with a
mask (MBCDL) would need an extra mask input to the evaluation tables for random
swapping of the TRUE and FALSE networks.

4.4.5 Intrinsic Fault Resilience of Dual-Rail With Precharge
Logics

Single bit faults are inefficient against DPL because they turn a VALID data into
a NULL token, that propagates and results in a non-exploitable error since it hides
the faulted value. This is the typical scenario described in the seminal paper [48],
introducing the intrinsic immunity of DPL against some classes of DFA.

Highly multiple faults ((1,0) ↔ (0,1)) randomly generate a large quantity of
NULL values along with some more unlikely but devastating bit-flips. However,
as NULL values are systematically propagated, they proliferate very quickly after
some combinatorial logic layers traversal. And as they have the nice property of
being able to contaminate VALID values, the risky coherent bit-flips (simultaneous

0
∗→ 1 and 1

∗→ 0 in one dual-rail couple) is very likely to be jammed through the
propagation towards the algorithm output. This absorption property is all the more
efficient as the number of NULL generated by the multiple faults is high. There-
fore, the only way to inject a ‘poisonous’ fault is to stress the circuit sufficiently to
generate multiple faults, without nonetheless creating too many faults so as to leave
a chance for them not to be absorbed during their percolation towards the outputs
[4, 23].

4.4.6 Comparison of DPL Families

Table 4.3 compares robustness, speed and complexity of a few DPLs. In fact, it is
difficult to evaluate robustness fairly, as the DPL countermeasure depends on the tar-
get technology and the quality of the P/R stages. However most non-synchronized
DPL, such as WDDL and MDPL have been attacked without any particular P/R ef-
fort [42, 44, 57]. The analysis of DPL robustness is still an ongoing research project.
Some ideas come from the information theory with mutual information analysis [15]
and the stochastic approach [47]. In Table 4.3, robustness against SCA is indicated
by the logic capacity to be insensitive to early evaluation and technological bias.
The fault column indicates if the logic able to cope with symmetric fault (faults be-
ing ‘1’ or ‘0’), which is preferable, rather than asymmetric. Fault detection can be
combinatorial or sequential. If it is sequential the cost is higher.

4 Countermeasures Against Physical Attacks in FPGAs 95

Table 4.3 Comparison of robustness, complexity and speed of a few DPLs

Logic Compl. Speed Robust. SCA Robust. FA Design Constr.

EE T. B. Fault Det.

WDDL * < 1/2 asym comb Positive gates

MDPL * < 1/2 ✓ asym comb MAJ gate + RNG

STTL * < 1/4 ✓ sym seq 50% more wiring

DRSL * < 1/2 partly ✓ sym comb + RNG

IWDDL < 1/2 · n ✓ asym comb superpipeline

BCDL ** > 1/2 ✓ sym comb

MBCDL * > 1/2 ✓ ✓ sym comb + RNG

Table 4.4 Hardware countermeasures overhead

Countermeasure None: reference Masking Hiding: WDDL Hiding: BCDL

Period 1 ≈ 1× ≈ 2× ∈ [1,2]×
Area: gates 1 ≈ 2× ≈ 2× ≈ 2×
Area: memory 2n × m 22n × m 22n × 2m 2n+1 × 2m

Two stars in the complexity column means that the DPL needs less gates/
memories to be implemented. The ratio with an unprotected implementation is given
in the speed column. If the ratio is greater than 1/2, this means the DPL has an ac-
celerated precharge stage, like for BCDL. Finally the design constraints are listed,
for instance the needs of an RNG.

4.5 Comparison of FPGA, ASIC and Software Countermeasures

As shown in 4.3 and 4.4, FPGAs and ASICs allow for the implementation of mask-
ing and hiding techniques that do not affect the processing speed too much. Those
targets are indeed much easier to protect than software targets, since the designer has
full control over implementation. Instead, on a processor, only some instructions are
available, which makes the implementation of countermeasures very awkward.

The overhead of hardware implementations is given in Table 4.4. Regarding hard-
ware countermeasures, it is remarkable that the throughput is almost unchanged. In-
deed, the mask can be processed in parallel, the only interaction between the several
shares occurring during recombination, merely consists in xor operations. In dual-
rail logics, the precharge inevitably causes a dead cycle for each evaluation cycle.
And since, in addition, some gates cannot be used for all logics (for instance, posi-
tive gates are required in WDDL), the complexity and speed results are worse than
without protection. Thus, the throughput is about halved in WDDL. BCDL has the
special feature that the precharge cycle can be shrunk, which results in an overhead
in terms of throughput that is less than a factor of two. Regarding the number of

96 J.-L. Danger et al.

resources required to implement the countermeasures, they are about doubled, since
two paths are created both for masking and hiding strategies. The biggest difference
comes from the RAMs. In masking, unless special structures can be used (such as
the factorizing of the S-Box in AES), the number of address bits for the masking is
doubled. The same goes for the hiding style, where the number of output bits is also
doubled. BCDL is an exception, as the precharge is global. Thus only one additional
input bit is required (for the precharge global line) to zero the dual-rail output.

The difference between FPGAs and ASICs is due to the fact that RAMs are avail-
able in larger quantities in FPGAs. Thus makes all the countermeasures presented
in this section especially attractive. In addition, the FPGAs can take advantage of
their reconfigurability capability to mutate their implementation, thereby preventing
some attacks that rely on the hypothesis of constant architecture.

Comparing the overhead of Hardware versus Software implementations is more
difficult. First of all, no software “hiding” countermeasure has been proposed so far.
Regarding masking, it is usually accepted that an overhead of 100 for the throughput
is a reasonable approximation. The advantage of hardware is thus clear.

4.6 Conclusions

Cryptographic algorithms can be mapped without difficulty in FPGAs. Although
these targets are a priori leaking more than ASICs, thanks to their genericity, they
also welcome traditional countermeasures, typically those based on masking and
hiding. Programming these countermeasures was shown to be feasible, and a num-
ber of case-studies have been cited. We conclude that the remarkable property of
countermeasures in hardware is that they have almost no affect on the throughput of
the algorithm. This contrasts greatly with software countermeasures, which are con-
siderably slowed down when a rigorous masking is enforced. Also, the reconfigura-
bility of FPGAs enables algorithmic countermeasures, such as period implementa-
tion update, which impedes attacks that rely on a stable side-channel measurement.
This potentiality is rarely addressed in the literature; it is clear that such high-level
countermeasures can be further enhanced for greater system-level security.

References

1. NIST/ITL/CSD. Data Encryption Standard. Fips Pub 46-3. http://csrc.nist.gov/publications/
fips/fips46-3/fips46-3.pdf (1999)

2. Akkar, M.-L., Giraud, C.: An implementation of DES and AES secure against some attacks.
In: Proceedings of CHES’01, Paris, France, May. LNCS, vol. 2162, pp. 309–318. Springer,
Berlin (2001)

3. Barthe, L., Benoit, P., Torres, L.: Investigation of a masking countermeasure against side-
channel attacks for RISC-based processor architectures. In: FPL, pp. 139–144 (2010)

4. Bhasin, S., Danger, J.-L., Flament, F., Graba, T., Guilley, S., Mathieu, Y., Nassar, M.,
Sauvage, L., Selmane, N.: Combined SCA and DFA countermeasures integrable in a
FPGA design flow. In: ReConFig, Cancún, Quintana Roo, México, December 9–11,

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

pp. 213–218. IEEE Comput. Soc., Los Alamitos (2009). doi:10.1109/ReConFig.2009.50.
http://hal.archives-ouvertes.fr/hal-00411843/en/

5. Bhasin, S., Guilley, S., Sauvage, L., Danger, J.-L.: Unrolling cryptographic circuits: a simple
countermeasure against side-channel attacks. In: RSA Cryptographers’ Track, CT-RSA, San
Francisco, CA, USA, March 1–5. LNCS, vol. 5985, pp. 195–207. Springer, Berlin (2010).
doi:10.1007/978-3-642-11925-5_14

6. Blomer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Proceedings of
SAC’04, Waterloo, Canada, August. LNCS, vol. 3357, pp. 69–83. Springer, Berlin (2004)

7. Bucci, M., Guglielmo, M., Luzzi, R., Trifiletti, A.: A power consumption randomization
countermeasure for DPA-resistant cryptographic processors. In: PATMOS. LNCS, vol. 3254,
pp. 480–490. Springer, Berlin (2004)

8. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counteract power-
analysis attacks. In: CRYPTO, August. LNCS, vol. 1666 (1999). ISBN 3-540-66347-9

9. Chaudhuri, S., Danger, J.-L., Guilley, S., Hoogvorst, P.: FASE: an open run-time reconfig-
urable FPGA architecture for tamper-resistant and secure embedded systems. In: IEEE 3rd
International Conference on Reconfigurable Computing and FPGAs (ReConFig 2006), San
Luis Potosi, Mexico, September, pp. 1–9 (2006)

10. Chen, Z., Zhou, Y.: Dual-rail random switching logic: a countermeasure to reduce side channel
leakage. In: CHES, Yokohama, Japan. LNCS, vol. 4249, pp. 242–254. Springer, Berlin (2006)

11. Danger, J.-L., Guilley, S., Bhasin, S., Nassar, M.: Overview of dual rail with precharge logic
styles to thwart implementation-level attacks on hardware cryptoprocessors.—New attacks
and improved counter-measures—. In: SCS, IEEE, Jerba, Tunisia, November 6–8, pp. 1–
8 (2009). doi:10.1109/ICSCS.2009.5412599. Complete version online: http://hal.archives-
ouvertes.fr/hal-00431261/en/

12. Fischer, W., Gammel, B.M.: Masking at gate level in the presence of glitches. In: CHES,
Edinburgh, UK, August 29–September 1. LNCS, vol. 3659, pp. 187–200. Springer, Berlin
(2005)

13. Garcia, A.: Power consumption and optimization in field programmable gate arrays. PhD the-
sis (in French). Ecole Nationale Supérieure des Télécommunications (August 2000)

14. García, A.D., Burleson, W.P., Danger, J.-L.: Power modelling in field programmable gate
arrays (FPGA). In: FPL, Glasgow, UK, August 30–September 1. LNCS, vol. 1673, pp. 396–
404. Springer, Berlin (1999)

15. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: CHES, 10th
International Workshop, Washington, D.C., USA, August 10–13. LNCS, vol. 5154, pp. 426–
442. Springer, Berlin (2008)

16. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order DPA attacks:
multivariate mutual information analysis. In: CT-RSA, San Francisco, CA, USA, March 1–5.
LNCS, vol. 5985, pp. 221–234. Springer, Berlin (2010)

17. Golic, J.D., Menicocci, R.: Universal masking on logic gate level. Electron. Lett. 40(9), 526–
528 (2004). doi:10.1049/el:20040385

18. Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: CHES, San Fran-
cisco, USA, vol. 2523, pp. 198–212. Springer, Berlin (2003)

19. Goubin, L., Patarin, J.: DES and differential power analysis. In: CHES, August. LNCS,
pp. 158–172. Springer, Berlin (1999)

20. Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.P.: The “backend duplication” method. In:
CHES, Edinburgh, Scotland, UK, August 29th–September 1st. LNCS, vol. 3659, pp. 383–397.
Springer, Berlin (2005)

21. Guilley, S., Chaudhuri, S., Sauvage, L., Graba, T., Danger, J.-L., Hoogvorst, P., Vong, V.-N.,
Nassar, M.: Place-and-route impact on the security of DPL designs in FPGAs. In: HOST
(Hardware Oriented Security and Trust), IEEE, Anaheim, CA, USA, June, pp. 29–35 (2008)

22. Guilley, S., Chaudhuri, S., Sauvage, L., Hoogvorst, P., Pacalet, R., Bertoni, G.M.: Security
evaluation of WDDL and SecLib countermeasures against power attacks. IEEE Trans. Com-
put. 57(11), 1482–1497 (2008)

http://dx.doi.org/10.1109/ReConFig.2009.50
http://hal.archives-ouvertes.fr/hal-00411843/en/
http://dx.doi.org/10.1007/978-3-642-11925-5_14
http://dx.doi.org/10.1109/ICSCS.2009.5412599
http://hal.archives-ouvertes.fr/hal-00431261/en/
http://hal.archives-ouvertes.fr/hal-00431261/en/
http://dx.doi.org/10.1049/el:20040385

23. Guilley, S., Sauvage, L., Danger, J.-L., Selmane, N.: Fault injection resilience. In: FDTC,
Santa Barbara, CA, USA, August 21. IEEE Comput. Soc., Los Alamitos (2010). Complete
version: http://hal.archives-ouvertes.fr/hal-00482194/en/

24. Kirschbaum, M., Popp, T.: Evaluation of a DPA-resistant prototype chip. In: ACSAC, Hon-
olulu, Hawaii, July, pp. 43–50. IEEE Comput. Soc., Los Alamitos (2009)

25. Kocher, P.C.: Leak-resistant cryptographic indexed key update, March 25, 2003. United States
Patent 6,539,092 filed on July 2nd, 1999 at San Francisco, CA, USA

26. Kuon, I., Rose, J.: Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 26(2), 203–215 (2007)

27. Maghrebi, H., Guilley, S., Danger, J.-L.: Leakage squeezing countermeasure against high-
order attacks. In: WISTP, Heraklion, June (2011)

28. Maghrebi, H., Guilley, S., Danger, J.-L., Flament, F.: Entropy-based power attack. In: HOST,
Anaheim Convention Center, Anaheim, CA, USA, pp. 1–6. IEEE Comput. Soc., Los Alamitos
(2010). doi:10.1109/HST.2010.5513124

29. Maghrebi, H., Danger, J.-L., Flament, F., Guilley, S.: Evaluation of countermeasures imple-
mentation based on boolean masking to thwart first and second order side-channel attacks.
In: SCS, IEEE, Jerba, Tunisia, pp. 1–6 (2009). doi:10.1109/ICSCS.2009.5412597. Complete
version online: http://hal.archives-ouvertes.fr/hal-00425523/en/

30. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In:
CT-RSA, San Francisco, CA, USA. LNCS, vol. 3376, pp. 351–365. Springer, Berlin (2005)

31. McEvoy, R.P., Murphy, C.C., Marnane, W.P., Tunstall, M.: Isolated WDDL: a hiding coun-
termeasure for differential power analysis on FPGAs. ACM Trans. Reconfigurable Technol.
Syst. 2(1), 1–23 (2009). doi:10.1145/1502781.1502784

32. Medwed, M., Standaert, F.-X., Groéschédl, J., Regazzoni, F.: Fresh re-keying: security
against side-channel and fault attacks for low-cost devices. In: AFRICACRYPT, Stellen-
bosch, South Africa, May 03–06. LNCS, vol. 6055, pp. 279–296. Springer, Berlin (2010).
doi:10.1007/978-3-642-12678-9_17

33. Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and fault analysis resistance in hardware
through dynamic reconfiguration. In: CHES, Washington, D.C., USA, August 10–13. LNCS,
vol. 5154, pp. 346–362. Springer, Berlin (2008)

34. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Fast Software
Encryption’00, New York, April 2000 (2000)

35. Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In:
CHES, Worcester, MA, USA, August 17–18. LNCS, vol. 1965, pp. 71–77. Springer, Berlin
(2000)

36. Nassar, M., Bhasin, S., Danger, J.-L., Duc, G., Guilley, S.: BCDL: A high performance bal-
anced DPL with global precharge and without early-evaluation. In: DATE’10, Dresden, Ger-
many, March 8–12, pp. 849–854. IEEE Comput. Soc., Los Alamitos (2010)

37. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel at-
tacks and glitches. In: ICICS, Raleigh, NC, USA, December 4–7. LNCS, vol. 4307, pp. 529–
545. Springer, Berlin (2006)

38. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-linear functions
in the presence of glitches. In: ICISC, Seoul, Korea. LNCS, vol. 5461, pp. 218–234. Springer,
Berlin (2008)

39. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant de-
scription of the AES S-box. In: Proceedings of FSE’05, Paris, France, February. LNCS,
vol. 3557, pp. 413–423. Springer, Berlin (2005)

40. Peeters, E., Standaert, F.X., Donckers, N., Quisquater, J.J.: Improved higher-order side-
channel attacks with FPGA experiments. In: CHES. LNCS, vol. 3659, pp. 309–323. Springer,
Berlin (2005)

41. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without rout-
ing constraints. In: Proceedings of CHES’05, Edinburgh, Scotland, UK, September. LNCS,
vol. 3659, pp. 172–186. Springer, Berlin (2005)

http://hal.archives-ouvertes.fr/hal-00482194/en/
http://dx.doi.org/10.1109/HST.2010.5513124
http://dx.doi.org/10.1109/ICSCS.2009.5412597
http://hal.archives-ouvertes.fr/hal-00425523/en/
http://dx.doi.org/10.1145/1502781.1502784
http://dx.doi.org/10.1007/978-3-642-12678-9_17

42. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the masked logic style
MDPL on a prototype chip. In: CHES, Vienna, Austria, September. LNCS, vol. 4727, pp. 81–
94. Springer, Berlin (2007)

43. Razafindraibe, A., Robert, M., Maurine, P.: Analysis and improvement of dual rail logic as a
countermeasure against DPA. In: PATMOS, Göteborg, Sweden, pp. 340–351 (2007)

44. Sauvage, L., Guilley, S., Danger, J.-L., Mathieu, Y., Nassar, M.: Successful attack on an
FPGA-based WDDL DES cryptoprocessor without place and route constraints. In: DATE,
Nice, France, April, pp. 640–645. IEEE Comput. Soc., Los Alamitos (2009)

45. Sauvage, L., Nassar, M., Guilley, S., Flament, F., Danger, J.-L., Mathieu, Y.: Exploiting dual-
output programmable blocks to balance secure dual-rail logics. Int. J. Reconfigurable Comput.
2010, 375245 (2010). 12 pages. doi:10.1155/2010/375245

46. Schaumont, P., Tiri, K.: Masking and dual rail logic don’t add up. In: CHES, Vienna, Austria,
September 10–13. LNCS, vol. 4727, pp. 95–106. Springer, Berlin (2007)

47. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanal-
ysis. In: CHES, Edinburgh, Scotland, UK, September. LNCS, vol. 3659, pp. 30–46. Springer,
Berlin (2005)

48. Selmane, N., Bhasin, S., Guilley, S., Graba, T., Danger, J.-L.: WDDL is protected against
setup time violation attacks. In: FDTC, Lausanne, Switzerland, September 6th, pp. 73–83.
IEEE Comput. Soc., Los Alamitos (2009). doi:10.1109/FDTC.2009.40. In conjunction with
CHES’09. Online version: http://hal.archives-ouvertes.fr/hal-00410135/en/

49. Shams, M., Ebergen, J.C., Elmasry, M.I.: Modeling and comparing CMOS implementations
of the C-element. IEEE Trans. VLSI Syst. 6(4), 563–567 (1998)

50. Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715
(1949)

51. Standaert, F.-X.: Secure and efficient implementation of symmetric encryption schemes using
FPGAs, pp. 295–320 (2009)

52. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of side-channel
key recovery attacks. In: EUROCRYPT, Cologne, Germany, April 26–30. LNCS, vol. 5479,
pp. 443–461. Springer, Berlin (2009)

53. Standaert, F.-X., Örs, S.B., Preneel, B.: Power analysis of an FPGA: implementation of Rijn-
dael: is pipelining a DPA countermeasure? In: CHES, Cambridge (Boston), MA, USA, August
11–13. LNCS, vol. 3156, pp. 30–44. Springer, Berlin (2004)

54. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J.: FPGA implementations of the DES and triple-
DES masked against power analysis attacks. In: Proceedings of FPL 2006, Madrid, Spain,
August (2006)

55. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M.,
Mangard, S.: The world is not enough: another look on second-order DPA. Cryptology ePrint
Archive, Report 2010/180. http://eprint.iacr.org/ (2010)

56. Suzuki, D., Saeki, M.: Security evaluation of DPA countermeasures using dual-rail pre-charge
logic style. In: CHES. LNCS, vol. 4249, pp. 255–269. Springer, Berlin (2006)

57. Suzuki, D., Saeki, M.: An analysis of leakage factors for dual-rail pre-charge logic
style. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E91-A(1), 184–192 (2008).
doi:10.1093/ietfec/e91-a.1.184

58. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC
or FPGA implementation. In: DATE’04, Paris, France, February, pp. 246–251 (2004)

59. Tiri, K., Verbauwhede, I.: Place and route for secure standard cell design. In: Proceedings of
WCC/CARDIS, Toulouse, France, August, pp. 143–158 (2004)

60. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede, I.: Proto-
type IC with WDDL and differential routing—DPA resistance assessment. In: Proceedings of
CHES’05, Edinburgh, Scotland, UK, August 29–September 1. LNCS, vol. 3659, pp. 354–365.
Springer, Berlin (2005)

61. Trichina, E., Seta, D.D., Germani, L.: Simplified adaptive multiplicative masking for AES. In:
CHES, pp. 187–197 (2002)

http://dx.doi.org/10.1155/2010/375245
http://dx.doi.org/10.1109/FDTC.2009.40
http://hal.archives-ouvertes.fr/hal-00410135/en/
http://eprint.iacr.org/
http://dx.doi.org/10.1093/ietfec/e91-a.1.184

62. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: CHES. LNCS,
vol. 3156, pp. 1–15. Springer, Berlin (2004)

63. Yu, P., Schaumont, P.: Secure FPGA circuits using controlled placement and routing.
In: CODES+ISSS’07: Proceedings of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis, pp. 45–50. ACM, New York (2007).
doi:10.1145/1289816.1289831

http://dx.doi.org/10.1145/1289816.1289831

	Chapter 4: Countermeasures Against Physical Attacks in FPGAs
	4.1 Introduction
	4.2 Countermeasures Against Side Channel Attacks in FPGAs
	4.3 Countermeasures Based on Masking
	4.3.1 Masking Principle
	4.3.2 Masking Implementations and Vulnerabilities
	4.3.3 Example of Protection for DES
	4.3.4 Example of Masked Processor for a Software Implementation

	4.4 Countermeasures Based on Hiding
	4.4.1 Hiding Technique
	4.4.2 WDDL and Its Variants
	4.4.3 Synchronized Logics: STTL, BCDL
	STTL
	BCDL

	4.4.4 DPL with Masking: MDPL
	4.4.5 Intrinsic Fault Resilience of Dual-Rail With Precharge Logics
	4.4.6 Comparison of DPL Families

	4.5 Comparison of FPGA, ASIC and Software Countermeasures
	4.6 Conclusions
	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

