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Abstract—This paper deals with control of parallel manipula-
tors for very high acceleration tasks including two case studies.
The first one is the case of non-redundant parallel manipulators,
where we are interested in control of PAR2 robot for 2D pick-and-
place trajectories following. The proposed control scheme in this
case is a nonlinear dual mode adaptive controller complied with
a high gain state observer for the estimation of joint velocities.
The second case study concerns redundantly actuated parallel
manipulators, where we are interested in control of R4 robot
for tracking of 3D pick-and-place trajectories. The proposed
solution in this case is a dual-space adpative controller. The
proposed controllers have been implemented in real-time on the
two prototypes, and their effectiveness has been demonstrated
through the obtained experimental results.

I. INTRODUCTION

During the last few decades, parallel robots have attracted
a considerable attention from different research communities.
It must be mentioned, however, that the first design patent
of a parallel robot (a motion platform for the entertainment
industry) was applied by J. Gwinnett in 1928, being issued
in 1931 [2]. The first industrial parallel robot (for automated
spray painting) to be built was patented by W. Pollard in 1942.
A few years later (more precisely in 1947), the parallel robot
that became the most popular in the industry of that time (the
variable-length-strut octahedral hexapod for tire testing) was
invented by E. Gough. During the 60’s, it was K. Cappel who
independently designed the very same hexapod, had it patented
and licensed to the first flight simulator companies, making
it the first commercial octahedral hexapod motion simulator.
Yet, it was D. Stewart who, unintentionally, made Gough’s
concept popular and proposed, once again, this idea for flight
simulators, machine tools and universal milling machines [2].

In the early 80’s, a new type of parallel robots was invented
by R. Clavel, namely the Delta robot [1]. Its basic design idea
consists in the use of parallelograms, which allows an output
link to remain at a fixed orientation with respect to an input
link. Since then, several robots, based on the same concept,
have been designed, with several applications ranging from
packaging industrial tasks (pick-and-place/assembly tasks), to
the medical domain (i.e. carry a 20 kg microscope for surgery
purposes) and even to the entertainment domain (haptic game
controllers).

The known advantages of parallel robots, in comparison to
their serial counterparts, are their higher stiffness and lighter

structures, which allow them to reach very high velocities and
accelerations. In order to achieve such high accelerations while
perform an accurate movement, a good controller must also be
designed. By using classical linear single-axis controllers (such
as a Proportional Derivative (PD) controllers), the tracking
performance are usually limited, especially when the robot
behaves with high nonlinear dynamics and when the operating
parameters are time varying [7]. In these cases, a more
advanced (nonlinear/adaptive) controllers are necessary.

In the literature, different nonlinear/adaptive controllers
have already been proposed for the control of parallel robots.
For instance, in [7], a nonlinear adaptive feedforward con-
troller was proposed for the control of Hexaglide (a 6 do f
parallel robot), in addiction to a PD feedback term. The main
objective of this work was to show the convergence of the
adaptive parameters in simulation. In [6], a control scheme
similar to the so called computed torque controller [5] was
also proposed to control the Hexaglide robot, but with real-
time experimental results that show a good improvement in the
trajectory tracking w.r.t. a PD controller, although no control
signal has been presented.

In most control algorithms, proposed in the literature, it
is assumed that the joint velocities are available, that is,
they need to be either calculated or estimated. The easi-
est way to compute them consists in a straight numerical
derivative of the measured articular positions. However, if
the measurements are noisy, this technique will significantly
amplify the noise/quantization effects. In order to overcome
this problem, an estimation of the articular velocities by means
of a state observer is better to be considered. The choice of the
estimation mechanism is strongly influenced by the existence
of uncertainties in the system model. Whereas model-based
observers are usually restricted to cases where the model and
its parameters are well known, filters can provide a model-
independent means of estimating velocities [13].

In this paper, we are interested in control of parallel manip-
ulators, where two case studies are considered. The first case
concerns the control of the non-redundant parallel manipulator
PAR2 for 2D pick-and-place trajectory tracking. The proposed
control scheme in this case is a nonlinear dual mode adaptive
controller complied with a high gain state observer for the
estimation of the joint velocities. The second case study
deals with the control of the redundantly actuated parallel
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manipulator R4, where a dual-space adpative controller is
proposed for the tracking of 3D pick-and-place trajectories.

This paper is organized as follows. In next section the
experimental platforms of our demonstrators are described.
Section III concerns the description and dynamic modeling
of parallel manipulators PAR2 and R4. The proposed control
solutions for both cases are detailed in section IV. Section V is
devoted to the presentation and discussion of the experimental
results. The paper ends with some concluding remarks.

II. DESCRIPTION OF EXPERIMENTAL PLATFORMS

In this section the experimental platforms of both parallel
manipulators PAR2 and R4 are presented.

A. The non-redundant case: PAR2 robot

The real-time experimental testbed is displayed in Figure 1,
where:
• the computer 1© is used for the development of the control

algorithms,
• the power supply and drivers are embedded in box 2©,
• the item 3© represents the emergency stop,
• the item 4© represents Par2 parallel manipulator.
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Figure 1. View of the experimental setup of Par2 parallel manipulator

A more detailed description of the PAR2 robot manipulator
in terms of mechanical structure and dynamic modeling is
presented in section III-A.

B. The redundantly actuated case: R4 robot

The experimental setup of parallel manipulator R4 is dis-
played in Figure 2, where:
• the computer 1© is used for the development of the control

schemes in Matlab/Simulink environment,
• the dedicated target PC 2©, is used for the real-time

execution of control algorithm,
• the item 3© represents the emergency stop button,
• the R4 parallel manipulator is represented by item 4©.

The proposed control schemes have to be implemented in Mat-
lab/Simulink environment, being compiled using XPC Target
real-time toolbox, and uploaded to the target PC. This last one
manage the real-time task execution with a sampling frequency

of 10 KHz (sample time of 0.1 msec). The Cartesian position
of the platform is calculated based on the forward kinematics
of the robot, and the Cartesian velocity is obtained through
numerical derivation of the calculated Cartesian position. A
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Figure 2. View of the experimental setup of R4 parallel manipulator

more detailed description of the R4 robot manipulator in terms
of mechanical structure and dynamic modeling is presented in
section III-B.

III. DESCRIPTION AND MODELING OF OUR
DEMONSTRATORS

A. The non-redundant case: PAR2 robot

Par2 is a two-dof parallel manipulator, illustrated in Figure
3, with the following characteristics:
• the travelling plate 6© is a rigid body,
• only the two inner arms 3© are actuated,
• the two other inner arms 4© are linked to the frame 1©

through passive revolute joints,
• the four inner arms are connected to platform 6© with

pairs of rods 5© mounted on ball joints 7©,
• the passive inner arms 4© are coupled to guarantee planar

motions in the plane xoz.
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Figure 3. The two-dof parallel manipulator Par2: view of the robot (left),
schematic view of its mechanical structure (right)

The functioning of this two-dof parallel robot is ensured
by the coupling of the rotation of passive arms 4©. This is
capable of constraining the robot’s platform to evolve in one
plane. The coupling implies that the rotation of the first arm
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in the clockwise direction involves the rotation of second one
in the counterclockwise direction.
The Lagrangian nonlinear dynamic model [9], [12] of the
manipulator Par2 is given by:

Ieq

[
q̈1
q̈2

]
= τ− fd

[
sign(q̇1)
sign(q̇2)

]
− fv

[
q̇1
q̇2

]
−

g
2
(M1 +M2)

[
L1 cos(q1)
L2 cos(q2)

]
+ JT

(
MpJ̇(q, q̇)q̇−g

[
Mp
Mp

]) (1)

where Ieq = Idrv + I f + Ia + JT MpJ, Idrv is the motor driver
inertia, I f is the forearm inertia, Ia is the arm inertia, J is the
jacobian matrix, Mp is the mass of the platform of the robot,
g is the gravitational acceleration, fv is the viscous friction
coefficient, fd is the dry friction coefficient, M1 and M2 are
the masses of the arms, L1 and L2 are their lengths.
This dynamic model can be written in the following standard
matrix form:

D(q)q̈+C(q, q̇)q̇+G(q)+ f (q, q̇) = τ (2)

where:
D(q) ∈ R2×2 is the inertia matrix,
C(q, q̇) ∈ R2×2 is the Coriolis and centrifugal matrix,
G(q) ∈ R2 is the vector of gravitational forces,
f (q, q̇) ∈ R2 is the vector of friction forces,
τ ∈R2 is the vector of torques generated by the actuators,

q =
[

q1
q2

]
∈ R2 is the vector of articular positions,

q̇ =
[

q̇1
q̇2

]
∈ R2 is the vector of articular velocities,

q̈ =
[

q̈1
q̈2

]
∈ R2 is the vector of articular accelerations.

B. The redundantly actuated case: R4 robot

The R4 robot is a redundantly actuated parallel manipulator
(with three dof and four actuators) that was designed to have
the capability of reaching 100G of acceleration. This robot has
a workspace of at least a cylinder of 300mm radius and 100mm
height, and each of its four motors has a maximum torque of
127N.m. Its CAD schematic as well as its side view are shown
in Figure 4. Its dynamic parameters are summarized in table I.
In the dynamic modelling of R4 parallel manipulator, some

X
Y

Z

4 ACTUATORS

3-DOF

Figure 4. The R4 parallel manipulator: Schematic view of the CAD design
(left), side view of the robot prototype (right)

Table I
DYNAMICS PARAMETERS

Mt p [kg] M f orearm [kg] Iact [kg.m2] Iarm [kg.m2]
0.2 0.065 0.003 0.005

simplifications were made, they are based on the following
hypotheses:

H1 : the joint frictions were neglected, as the components
of the robot were designed such that they would have
very small frictions between them,

H2 : the inertia of the forearms was also neglected, and
their masses were split up into two parts each being
artificially considered to be located at both ends of
the forearms (half of the mass is transferred to the
end of the arm, whereas the other half is transferred
to the traveling plate),

H3 : gravity acceleration was not taken into account since
the case studies considered very high accelerations.

Taking into account these assumptions, the final expression
of robot’s simplified forward dynamics is derived from a
combination of the arms and the traveling plate equilibriums,
and is given by the following equation [4]:

ẍ = (MT + Jm
T IT Jm)−1JT

m(Γ− IT J̇mẋ) (3)

where ẋ ∈ Rm and ẍ ∈ Rm are the vectors of Cartesian
velocities and accelerations; MT = Diag{Mt p +n M f orearm

2 }m×m
= Mtot Im×m is a diagonal matrix with m diagonal terms, being
Mt p the mass of the traveling plate, M f orearm the mass of the
forearm, Mtot the scalar value of the diagonal of MT , m the
number of degrees-of-freedom (m = 3) and n the number of
motors (n = 4); IT = Diag{Iact + Iarm}n×n = Itot In×n is a diag-
onal matrix with n diagonal terms, where Iact and Iarm are the
inertia of the actuators and the inertia of the arms, respectively,
and Itot is the scalar value of the diagonal of IT ; Jm ∈ Rn×m

and J̇m ∈ Rn×m are the generalized inverse Jacobian matrix
and its first derivative, respectively; and Γ ∈Rn represents the
torques generated by the actuators.
By multiplying both sides of (3) by (MT +Jm

T IT Jm), one has:

(MT + Jm
T IT Jm)ẍ = Jm

T (Γ− IT J̇mẋ) (4)

which can be rewritten as follows:

Γ = HT MT ẍ+ IT (Jmẍ+ J̇mẋ) = HT MT ẍ+ IT q̈ (5)

IV. PROPOSED CONTROL SCHEMES

A. The non-redundant case: A dual mode adaptive controller

A Dual Mode adaptive controller consists basically in
using a high gain adaptation together with a projection of
the estimated parameters to bound their variation. Then, to
large tracking errors in the transitory, the controller behaves
approximately as a sliding mode controller, generating an
exponential convergence to a residual domain arbitrarily small,
and to smaller errors, it behaves as a parametric adaptation
law. The other advantages of the adaptation law in dual mode

3
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control with respect to other adaptation techniques or known
robust control algorithms are the following:
• the generated control signals are continuous,
• the robustness of the system is improved,
• the variation of the estimated parameters is bounded

thanks to the projection, which reduces the effective
gain of the controller. Consequently, the sensitivity to
measurement noise is reduced.

Consider now the following errors definition [10]:

s = ˙̃q+λ q̃ ; q̇r = q̇d−λ q̃ (6)

where s is an auxiliary error, λ is a positive constant, and q̇r
is the ’reference velocity’ [10],[11]. The control architecture
of the dual mode adaptive controller is illustrated in Figure 5.
The control input consists in the sum of three terms, namely

Adaptive

Term

Smooth VS

Term

K

qd

q

Robot

State

Observer

q̂

.

qd

.

λ
s

q
+

-

+

-

+

qd

..

q~

q~
.

τ

+

-

qr

.

...

...

...

..

.

.

.

.

.

+

Figure 5. Block diagram of the Dual Mode control scheme

an “adaptive term”, a “smooth variable structure term” and a
“stabilizing term”, it is given by:

τ = Y â+ d̄Sat(αs)+K.s (7)

where
Sat(αs) =

αs
||αs||+1

(8)

d̄, α and K are positive constants. The function Sat(.) is
continuous with respect to its argument, it is worth to note
that the higher the chosen α , the closer this function will be
to a sgn(.) function. The vector â represents the vector of the
estimated parameters of the system given by the vector a, and
Y is the regressor vector (computed from the dynamic model
of the system). The adaptation law is given by the following:

˙̂
θ =−σθ̂ − γsY (9)

where
θ̂ = â−anom (10)

is the difference between the currently estimated values â and
the nominal values anom of the parameters. σ is expressed by
the following:

σ =
{

0, if ||θ̂ ||< Mθ or σeq < 0
σeq, if ||θ̂ || ≥Mθ and σeq ≥ 0

(11)

σeq =− γsY θ̂

||θ̂ ||2
(12)

where Mθ is the maximum possible value (supposed known)
of the estimated deviation of the parameters in relation to their
nominal values. If we consider the dynamic model (2) with
the estimates parameters â:

D(q, â)q̈+C(q, q̇, â)q̇+G(q, â)+ f (q, q̇, â) = τ (13)

then the regressor Y = Y (q, q̇, q̇r, q̈r) can be computed as:

D(q, â)q̈r +C(q, q̇, â)q̇r +G(q, â)+ f (q, q̇, â) = Y â (14)

where q̇r and q̈r are used instead of q̇ and q̈. The key idea
relies in eliminating undesirable steady-state position errors
by restricting them to evolve on a sliding surface [10] like in
sliding mode control [3]. If we consider neglecting Mtot (to
avoid the computation of heavy multiplications between the
Jacobian and their derivative), these terms become D(q, â) =
Imotor + Iarm, f (q, q̇, â) = fv and:

G(q, â) =−g
2
(Marm +M f orearm)

[
l1cos(q1)
l2cos(q2)

]
(15)

where Imotor = Diag{Im, Im} and Iarm = Diag{Ia, Ia}. The
robot’s dynamics rewritten in the form of (14), where:

Y =
[

q̈1r 0 q̇1r −l1cos(q1)
0 q̈2r q̇2r −l2cos(q2)

]
(16)

and the estimated parameters are:

â =


â1
â2
â3
â4

=


Im + Ia
Im + Ia

fv
g
2 (Marm +M f orearm)

 (17)

The velocity measurements are not available, therefore a high
gain observer is proposed and implemented on the system to
estimate them.

B. The redundantly actuated case: A dual-space adaptive
controller

The proposed control scheme, for this case, is a dual-space
adaptive controller. This control scheme is an extended version
of the dual-space feedforward controller illustrated in Figure
6. The basic idea if the dual-space feedforward controller
consists in using a PID controller in Cartesian space, with the
utilization of the pseudo-inverse matrix to deal with the actua-
tion redundancy. Then two feedforwards in both spaces (joint
and Cartesian) are used to improve the tracking performance
of the controller. In order to enhance the robustness of the
control scheme an adaptation technique inspired from [8] is
proposed to extend the dual-space feedforward controller. The
obtained scheme is named ’dual-space adaptive controller’
and is detailled in the following.
Based on the dynamics (5), the following control input is
proposed:

Γ = HT M̂T ẍd + ÎT q̈d +Kpe+Kd ė (18)

4
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dt 

 
d²  
dt 

τ

Figure 6. The dual-space feedforward controller

this expression can be rewritten in the Cartesian space as:

F = Yrθ̂ +Kpec +Kd ėc (19)

Kp and Kd are positive feedback gains, ec = xd−x, ėc = ẋd− ẋ,
and:

Yr =
[

I3×3ẍd JT
mI4×4q̈d

]
; θ̂ =

[
M̂tot
Îtot

]
(20)

where Yr and θ̂ the regressor vector and the estimated pa-
rameters vector, respectively. The adaptation of the estimated
parameters is performed according to the following adaptation
rule (i = 1,2):

˙̂
θi =



γiiφi, if ai < θ̂i < bi or
θ̂i ≥ bi and φi ≤ 0 or
θ̂i ≤ ai and φi ≥ 0

γii(1+ bi−θ̂i
δ

), if θ̂i ≥ bi and φi ≥ 0.

γii(1+ θ̂i−ai
δ

), if θ̂i ≤ ai and φi ≤ 0.

(21)

with
• γii: the ith element of the diagonal adaptation gain matrix

γ ,
• θ̂i: the estimates of each unknown parameter,
• ai and bi: the lower and upper bounds of each estimative,

respectively,
• φii: the ith element of the column matrix φ = −Y T

r s; being
s = ėc + λec, where λ = λ0

1+||e|| , being λ0 and δ positive
constants.

H PID T
H

Δq

Δx

f τ
c 

dq

mq

dx
I.K. 

+ 

- 

 
d² 

 
MANIPULATOR 

+ + 

dq
.. 

dx
.. 

Adaptive 
 Scheme 

T
H

 
dt² 

 
d²  
dt² 

 
d  
dt 

λ + + 

s 

mq
MGD 

x 

Figure 7. The proposed dual-space adaptive controller (τ = Γ)

The adaptive gains are γ11 = 0.2 and γ22 = 1.5x10−4. The best
K f f c gains of the feedforward controller were 0.625 for the
case without a payload and 0.825 for the case with a payload of
200g, and bigger payloads may be used in future experiments,
the chosen range for the M̂tot parameter (in kg) was of
[0.525;1], which means a1 = 0.525 and b1 = 1. Concerning

the inertia Îtot parameter (in kg.m2), which is equivalent to the
K f f j feedforward gain, the range was chosen as [0.006;0.018],
which means a2 = 0.006 and b2 = 0.018. The parameters δ

and λ were equal to 0.0001 and 100, respectively. In this work,
more attention is given to the behaviour of the M̂tot parameter,
as this is the parameter that directly compensates for the load
changes.

V. REAL-TIME EXPERIMENTAL RESULTS

A. The non-redundant case: 2D pick-and-place task

The proposed dual mode adaptive controller is compared
with a PD controller. The trajectory tracking obtained by
both controllers for 20G of maximum acceleration is shown
in Figure 8. The corresponding tracking errors are displayed
in Figure 9, and the control inputs in Figure 10. The real-
time implementation of both controllers was considered with
a sample time of 0.5msec. The objective in this scenario was
to obtain the best possible tracking accuracy, especially on
stop points (final positions of the trajectory). These positions
occur for t ∈ [0.125,0.175]s (final desired position) and for
t ∈ [0.325,0.375]s (back to the initial desired position), being
repeated in the equivalent intervals of the subsequent cycles.
The used parameters of the proposed control approach are
summarized in table II. The evolution of the control inputs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

20

40

60

q 1
[d

eg
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

20

40

60

 

 

q 2
[d

eg
]

t [s]

PD
Dual Mode
Ref. Trajectory

Figure 8. A pick-and-place trajectory tracking for 20G with a PD controller
(dashed line) and the DM controller (dotted line)

Table II
SUMMARY OF THE PARAMETERS OF THE CONTROL APPROACH

Parameter Description
Kp = 94.5 Proportional gain
Kd = 2.1 Derivative gain
λ = 25 Positive constant
K = 2I Matrix gain
d̄ = 2.5 Smooth variable structure gain

α = 0.05 Smooth variable structure slope
ε = 0.002, αHGO1 = αHGO2 = 1 HGO gains

Mθ = 0.25 Maximum adaptative parameters’ error
γ = 0.3345 Adaptive gain
Ts = 0.0005 Sampling time (s)

n = 3 Number of cycles

(torques generated by controllers) is shown in Figure 10, where

5
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Figure 9. Tracking errors for 20G with a PD controller (dashed line) and
the DM controller (solid line)
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Figure 10. Control inputs versus time for the PD controller (dashed line)
and the DM controller (solid line)

it is worth to note that the PD controller is slightly delayed
w.r.t. the DM controller, and the amplitudes of both signals
are roughly similar. Besides, it is important to emphasize
that the generated torques are always within the admissible
limits of the actuators (a maximum torque of approximately
500N.m). The performance comparison of both controllers is
summarized in table III.

Table III
PERFORMANCE COMPARISON BETWEEN THE ADAPTIVE DUAL MODE AND

A CONVENTIONAL PD CONTROLLER

Performance PD DM
Error peaks [−4.15◦,3.3◦] [−2.8◦,1.9◦]

Stop point errors [−2.3◦,2.3◦] [−0.7◦,0.7◦]
PD controller delayed i.r.t. the DM controllerControl signals
Roughly similar amplitude values

B. The redundantly actuated case: 3D pick-and-place task

For this experiment, we consider the case of a 3D pick-and-
place trajectory tracking, where both dual-space controllers
(feedforward and adaptive) are compared. The trajectory to
be tracked is illustrated in Figure 11. In the following ex-
periments, a detailed comparison between the two controllers

1

2

3

4

PICK 1

PICK 2

PLACE 1

PLACE 2

Figure 11. View of the 3D pick-and-place trajectory

is discussed. Firstly, the performance of both controllers is
compared for the case with a payload of 200g at 20G, and
then they are compared for the case without a payload at 30 G.
For both scenarios, the robot has to perform two cycles of the
proposed 3D pick-and-place trajectory.

1) Scenario with a payload of 200g at 20G:
In this experiment, the adaptive controller is compared with
the feedforward controller (best configured for the case with
a payload of 200g, i.e K f f c = 0.825).
The obtained results are presented in Figures 12-17.
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Figure 12. Trajectory tracking with a payload of 200g, with 20G of maximum
acceleration

Figure 12 shows the pick-and-place trajectory tracking ob-
tained by both controllers and for the situation with a payload
of 200g, with a maximum acceleration of 20G. According to
Figure 13, it is worth to note that the adaptive controller is
able to provide a better overall tracking performance than the
feedforward controller even with its best value of feedforward
gains. For X, and Y axes, the adaptive controller is able to
keep the tracking errors within the interval [−1,1]mm, while
the feedforward controller keeps them within [−0.75,1.6]mm,
as shown in table IV. For the Z-axis, the difference between
the controllers is easily visible. Indeed, the adaptive controller
keeps the tracking errors within [−1.77,2]mm, while the feed-
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Figure 13. Tracking errors versus time with a payload of 200g, with 20G
of maximum acceleration
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Figure 14. Torques generated by the actuators in case of a payload of 200g,
with 20G of maximum acceleration

forward controller keeps them within [−2.6,2.7]mm. If we are
interested in the dynamic accuracy of the trajectory tracking,
the RMSE (Root Mean Square Error) can be considered as a
criterion of comparison. This error takes into consideration the
errors in all axes equally, it is equal to 1.33 mm for the adaptive
controller, versus 1.7 mm for the feedforward controller. These
results are summarized in table IV. The torques generated
by each actuator are shown in Figure 14, which shows that
the adaptive controller generates a signal with a slightly
bigger amplitude than the feedforward controller. It is worth
to emphasize that all torques remain far from the admissible
limits of the actuators (a maximum torque of 127N.m).

Table IV
TRACKING PERFORMANCE FOR A PICK-AND-PLACE TRAJECTORY WITH A

PAYLOAD OF 200g AND 20G OF MAXIMUM ACCELERATION

Performance Adaptive FF (K f f c = 0.825)
Error peaks (X-Y) [−1,1]mm [−0.75,1.6]mm

Error peaks (Z) [−1.77,2]mm [−2.6,2.7]mm
RMSE 1.33 mm 1.7 mm

Control Signals Smooth/far from limits
Adaptive controller: Slightly bigger amplitude
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Figure 15. Trajectory tracking without a payload, with 30G of maximum
acceleration
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Figure 16. Tracking errors without a payload, with 30G of maximum
acceleration

2) Scenario without a payload at 30G:
In this experiment, the superiority in terms of robustness
of the dual-space adaptive controller (w.r.t. the feedforward
controller) is confirmed. Figure 16 shows that the feedforward
controller, when not reconfigured to the new situation, has an
important loss of tracking performance (both with respect to
the previous scenario and also w.r.t. the adaptive controller).
For the X-Y axes, the adaptive controller keeps the errors
within [−1.51,1.6]mm, while the feedforward controller keeps
them within [−2.73,2.9]mm (peak-to-peak difference of more
than 80%). The robustness of the adaptive controller and the
lack of robustness of the feedforward controller are further
confirmed by the RMSE results. The adaptive controller has
almost the same RMSE as in the previous scenario (1.33 mm
versus 1.4 mm), whereas the feedforward controller has a loss
of almost 40% (i.e. 1.7 mm versus 2.4 mm). Figure 17 shows
the evolution of the control inputs versus time, generated by
both controllers. To sum up, these results are recapitulated in
Table V.

3) Extreme scenario: Up to 100G of maximum accelera-
tion:
In this experiment, the objective is validate one of the two
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Figure 17. Torques generated by the actuators without a payload, with 30G
of maximum acceleration

Table V
TRACKING PERFORMANCE FOR A PICK-AND-PLACE TRAJECTORY
WITHOUT A PAYLOAD, WITH 30G OF MAXIMUM ACCELERATION

Performance Adaptive FF (K f f c = 0.825)
Error peaks (X-Y) [−1.51,1.6]mm [−2.73,2.9]mm

Error peaks (Z) [−1.72,1.84]mm [−2.26,2.77]mm
RMSE 1.4 mm 2.4 mm

Control Signals Smooth/far from limits
Adaptive controller: Slightly bigger amplitude

proposed controllers for an extreme scenario in terms of
maximum acceleration. For that, the dual-space feedforward
controller is chosen for a trajectory tracking with a maximum
acceleration of 100G. This trajectory corresponds to a vertical
mouvement along the Z axis with an increasing amplitude until
reaching a maximum of 10cm peak-to-peak, then it decreases
until zero. The obtained result is displayed in Figure 18, where
it is easily to see the steering from the rest position to the
desired initial position, as well as the natural descent of the
end-effector after the motors are turned off at the end of the
experiment due to the gravity. The evolution of the Cartesian
acceleration versus time is depicted in Figure 19, where we can
clearly see the maximum acceleration of 100G (i.e. 1000m/s2)
of the traveling plate of the robot.
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Figure 18. Trajectory tracking obtained with the dual-space feedforward
controller for the 100G vertical trajectory
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Figure 19. Evolution of the Cartesian acceleration for the 100G trajectory

VI. CONCLUSION

In this work we are interested in control of control of paral-
lel manipulators to perform tasks with very high accelerations.
The proposed study includes two main parts, namely the non-
redundant and the redundantly actuated parallel manipulators.
To resolve the control problem of the first part, the case of
PAR2 parallel manipulator has been considered. The proposed
solution in this case was a dual-mode adaptive controller.
The control problem of the second part was resolved in the
case of R4 parallel manipulator, where a dual-space adaptive
controller was proposed. All the proposed control schemes
have been implemented in real-time for different scenarios
to show their effectiveness. The last experimental scenario
demonstrates the tracking of a reference trajectory with a
maximum extremely high acceleration of 100G.
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