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Abstract

The need for time-efficient simulation is increasing in all
engineering fields. Potential improvements in computing
speeds are provided by multi-core chips and parallelism.
However, the efficient numerical integration of systems de-
scribed by equation oriented languages requires the ability
to exploit parallelism. This paper investigates the problem
of the efficient parallelization of hybrid dynamical systems
both through the model and through the solver. It is first
argued that the parallelism is limited by dependency con-
straints between sub-systems, and that slackened synchro-
nization between parallel blocks may provide speed-ups at
the cost of induced numerical errors, which are theoret-
ically examined. Then two methods for automatic block
diagonalization are presented, using bipartite graphs and
hypergraphs. The application of the latter method to hy-
brid dynamical systems, both from the continuous state
variables and discontinuities point or view, is investigated.
Finally, the model of a mono-cylinder engine is analyzed
from equations point of view and a possible split using the
hypergraph method is presented and discussed.

Keywords Parallel computing, model decomposition, de-
lay error, dependencies constraints, multicore simulation

1. Introduction

The design and validation of complex systems, like cyber-
physical systems which include both physical and com-
putational devices, is costly, time consuming and needs
knowledge and cooperation of different disciplines [15].
For example, vehicle power-trains belong to such cate-
gory and require the coordinated design of both mechan-
ical, electrical, thermodynamic and chemical models (from
a physical point of view) and many-sided controllers (from
a computational point of view).
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A global simulation is needed at an early stage to speed-
up the design, development and validation phases. The
main purpose of the numerical simulation is, when an an-
alytic solution cannot be derived, to approximate as faith-
fully as possible the behavior of the complex dynamic sys-
tem. In other words, bounding and minimizing the simula-
tion errors is an important goal of numerical simulations so
that the designers can be confident with the prediction.

Simulating complex systems is time consuming in term
of calculations, and reaching real-time is often out of the
capabilities of single processors. Parallel computing can be
performed by splitting the models into several sub-models
that are concurrently simulated on several processors to
ensure the compliance with the real-time constraints.

The data dependencies due to the coupled variables be-
tween sub-models lead for waiting periods and idle proces-
sor time, decreasing the efficiency of threaded parallelism
on the multicore platform. Therefore these dependency
constraints should be relaxed as far as possible. However, to
avoid too large numerical errors in the simulation results,
a minimal synchronization between sub-models must be
achieved, and the parallelism between computations must
be carefully restricted.

The relaxation of the synchronization constraints, while
guaranteeing correct simulation results, needs to split the
model properly before distribution over several CPUs. An
efficient decomposition relies on knowing how and where
to cut in order to decouple subsystems as far as possi-
ble. Relaxed data dependencies may lead to slack synchro-
nization between sub-models, until reaching an acceptable
trade-off between the computation costs and the simulation
precision.

The aim of this paper is to propose approaches for the
time-efficient and real-time simulation of hybrid dynamical
systems, showing two techniques of parallelization which
can be combined to reach complementary objectives:

e Parallelization across the model where the delay error due
to the model decomposition is evaluated to determine the
involvement and the weighting of each of its elements,
and consequently to know how to act for the error reduc-
tion. The parallelization approach is based on a system



splitting using the block-diagonal forms of state and event
incidence matrices.

e Parallelization through the solver where a new method of
parallelization at the event detection and location level is
presented. The parallelization approach is situated on the
solver level using the block-diagonal form of the event
incidence matrices.

This paper is organized as follows. First, a formal model
of a hybrid dynamic system is established. After that, delay
errors due to parallelization across the model are evaluated
in the context of real-time simulation. Then a study of
system splitting using the block-diagonal form of incidence
matrices, related to states and events, is performed. Finally,
a case study concerning a mono-cylinder engine model
is presented and test results are performed by analyzing
the relationships between the states, the events and the
states/events together.

2. Related Work

In the context of the co-simulation or the parallelization
across the model, where the system is split into several
sub-systems and simulated in parallel on different pro-
cessors, several works already targeted the real-time dis-
tributed simulation of complex physical models. In [9],
the study focused on the case of fixed-step solvers. Then,
in [2], the study was extended to examine the case of
variable-step solvers. Besides, in [16] distributed simula-
tion was performed in Modelica [11], using a technology
based on bilateral delay lines called transmission line mod-
eling (TLM) combined with solver in-lining. The TLM
technique consider the decoupling point when the variables
change slowly and the time-step of the solver is relatively
small, so that the decoupled subsystems can be considered
as connected by constant variables.

Another kind of parallelization is called parallelization
through the solver. It concerns the execution of the model
on a single thread while its numerical resolution is paral-
lelized. It relies on using well know parallel approaches for
solving the required steps of the used solver. For example,
parallelizing matrix inversions, which are needed when us-
ing an implicit method (see [17] and [12]) and parallelizing
operations on vectors for ODEs resolution by separating
them into modules (see PVODE in [7] implemented using
MPI (Message-Passing Interface) technology).

3. Problem Formalization

In this kind of cyber-physical systems the physical part
is modeled in the continuous-time domain using hybrid
ODE:s. It belongs to the hybrid systems category because
of some discontinuous behaviors, that correspond to events
triggered off when a given threshold is crossed. Controllers,
which interact with physical parts, represent computational
models. They are modeled on the discrete-time domain
and sampling is a mixture of time-driven and events-driven
features.

Let us provide a formal model, considering a hybrid dy-
namic system X whose continuous state evolution is gov-

erned by

X ft,X,D,U) fort, <t<ty, (1a)
Y = gtX,D,U). (1b)

where X € R™ is the continuous state vector, D € R is
the discrete state vector, U € R" the input vector, ¥ € R™
is the output vector and ¢ € R* is the time.

(tn)n>0 1s a sequence of strictly increasing time instants
representing discontinuity points called ‘“state events”,
which are the roots of the equation

ht, X,D,U) =0. (2)

his usually called zero-crossing function or event indicator,
used for event detection and location [18].

At each time instant 7,, a new continuous state vector
may be computed as a result of the event handling

X(ty) = I(ty, X, D, U), 3

and a new discrete state vector may be computed as a result
of discrete state update

D(tn) = J(’n—l»X’ D7 U)’ (4)

If no discontinuity affects a component of X(z,), the right
limit of this component will be equal to its value at ¢,,.

This hybrid system model is adopted by several mod-
eling and simulation environments and is underlying the
functional mock-up interface (FMI) specification [6].

We assume that X is well posed in the sense that a unique
solution exists for each admissible initial conditions X(z)
and D(#y) and that consequently X, D, U, and Y are piece-
wise continuous functions in [z, t,41).

The system must be split for numerically integration on
a set of P cores. The objective is to speedup the simulation
through the exploitation of parallelism, while keeping the
following objectives in mind [2]:

¢ minimization of the delay errors, which are related both to
the dependency constraints and to the distribution of the
state variables;

¢ optimization of the computational resource usage through
load balancing and idle time avoidance: high CPU uti-
lization is influenced by the size and independence of the
computational tasks;

* minimization of the number of solvers interrupts due to
discontinuities unrelated with the local sub-system: dis-
continuities need that the corresponding numerical solver
must be stopped and restarted, therefore introducing com-
putation overheads;

e keeping an acceptable level of numerical stability and
accuracy.

4. Evaluation of Delay Errors due to
Decoupling
4.1 Context and Motivation

To begin with something simple, assume now that the sys-
tem can be split into two subsystems as in Figure 1.



Figure 1. System splitting for parallelization

For simplicity, the analysis is focused only on continuous
time-invariant models. In the following, we will denote by
x(n) = x(t,). Therefore, the system can be written as:

{Xi = filxi,x;, Up) and {X_/ fixj, %, Uj)

5
Y, = gi(xi,x;,Up) Y; gi(xj, x;, Uj) ©)

with X = [xi Xj]T

Here U; are the inputs needed for 3}; and U; are the
inputs needed for }; ;- In other words, U; U U; = U and
U;NU | can be an empty set or not according to the achieved
decoupling.

In the same way, Y; are the outputs produced by ),
and Y; are the outputs produced by 3’ ;. In other words,
Y,'UYjZYaIldY,‘an=®.

After parallelization, as shown in Figure 1, each sub-
system X; have a private subset U; as input vector and a
private subset Y; as output vector, and the direct interac-
tion between subsystems are only due to a subset made of
variables of the state vector. Hence the focus is now on the
internal data flow, i.e. the shared state variables to be iden-
tified, and whose number should be minimized to enhance
the independence of parallel branches.

In general, in order to compute the next state x;(n + 1),
numerical integrators use [1, 8]:

o Always, the current value of the state x;(n) and the deriva-

tive f;(X(n)).

e For multi-step methods, the m previous values of the
state x;(n — ) and/or the derivatives fi(X(n — @)) (with
a=1,.,m).

¢ For methods with order higher than one, higher derivative
such as £:(X(n) + B.f(X(n))) for a 2" order.

e For implicit methods, the future value of the derivative
fi(X(n + 1)) computed through iterations.

Consequently, in order to compute the next state value
x;(n+1), the numerical solver needs at least values for x;(n)
and X;(n) = fi(X(n) (see Figure 2).

X - Il 7> |Numerical

integration

521 g0 L\,
% L—]

Figure 2. System’s internal composition

However, when the computation of x;(n) = f;(X(n)) is
required, the value of x;(n) is already available, but this

assertion is invalid for x;(n) with j # i. In fact, x; is only
updated every synchronization interval P that is larger than
the integration step. In other words, x;(n) can be available
only if the time #, corresponds to the synchronization time,
otherwise its value will be the one of last updated. Thereby,
the focus will be then in %;(n) = fi(x;(n)) for j # i.

4.2 Evaluation of Delay Errors in a Basic Problem

In order to evaluate the influence of using a delayed value
of x; in f;(.) due to the lack of communication at processing
time, let us start by a simple case with a single state variable
x. The analysis and results carried out in this case will be
further applied to the large problem with N state variables
X = [x;...xy]". Therefore, a backup of x correspond to
a synchronization between dependent variables x; and x;
where j # i.

Assume that x is integrated every step h. As a first
case, we consider that the value of the state variable x is
saved every integration step in order to be available for the
next computation. As a second case, we just consider the
availability of an old saved (delayed) value at n — a.

Casel: x(n+1)=x(n—a)+ Z I (k) (©6)

k=n—a

Case2: i(n+1)=x(n—a)+ Z hitn—a)  (7)
k=n—-a
The error resulted from the difference between (6) and (7)
(see Figure 3) is represented by e:

en+1) =x(n+1)—-x(n+1)
= X (k) - 3(n— @) (8)

= oyt () — (- @)

— save/synchro at each step h

(1) only save/synchro at t=n-a

X(n+1)
X(n)

x(n).
X(n-1
x(n-1)

x(n-a+1)|

x(n-a)

hn-a hn-a+1 n-1
delay 7

Figure 3. Errors due to delays

To show up the delay 7 in the expression of e, (8) is re-
written in the temporal form

e(tm-l) = e(tn)+hn~(X(tn)_x(tn_7-)) where 7 = h—Ilh-a (9)

Let e.(t,+1) = h,.(x(t,) — x(t, — 7)). Here e.(t,11) is the
current error generated at 7,41. So, the final error e(?,.1) is
the result of the accumulation of a past error e(#,) and the
current error e.(t,.1). As a conclusion, two conditions must
be met to achieve a correct result:



® ¢.(t,41) < €oc: allowed local error
® e(tye1) < €g,: allowed global error

4.3 Evaluation of Delay Errors in a General Problem

The analysis and results made in the previous case (the ba-
sic problem) will be applied to the following larger problem
with N state variables X = [x; ... xy]7.

Assume that a given system X is split to two separated
subsystems X4 and X with state vectors X4 and X such as
X4 U Xp = Xand X4 N Xp = @. Then assume that they are
integrated with a variable time-step h; for X4 and Ay for
Xp. Besides, they are synchronized every period P, where
P >> Iy, in order to exchange some updated data.

The aim is to find an evaluation of the error, caused by
the lack of an updated data during a delay 7, at any given
time #; for X4 and # for Xp, which may be a synchro-
nization time or to an integration time between two check-
points.

Thereby, the delay 7 is represented by the difference be-
tween the current integration time #; and the last synchro-
nization time ¢, as follow

T=1t — I (10)

where ¢, is computed as follow

1,
ty=P. L—’;J (11)
in order to have
g, = { L.P when t,=1LP e N: (12)
(I-1).P when t<IP leN
which leads to
{750 o e a3)

Therefore, the resulted error at #,,..; in the subsystem X,
denoEed by E(t,+1) will be the difference between X4 (#,+1)
and X, (t,41) deduced from (14) and (15).

Xa(tes1) = Xa(@) + e fa(Xa(80), Xp(#)), k€1{0,...,n}  (14)

Xa(tir1)

Xaltier) = { Xa(t) + hefo (R (1), Kty — )

In other words,

Extn) = 5 Ea(t)

LKA (), Xn(00)) = fu(Ra(t), Kt — T)]
= EA,p(tn) + EA,(:(trH—l)

(16)
where
Epc(tus) = hu [ fiXa(t), X)) — frKa(t), Xty — )]
Eap(th) = 1;0 EA(t)
) (17)

Here E4 (t,+1) is the current error generated at #,,; what-
ever a synchronization or not. So, the global decoupling

error E4(t,+1) is the result of the accumulation of a past
errors E4 ,(t,) and the current error E4 ¢(#,+1).

As a conclusion, to achieve a correct result, two condi-
tions must be met for the current (local) error and the global
error:

b EA,c(thrl) < €loc

® EA(thrl) < Eclo

These conditions can be satisfied by acting on some pa-
rameters. In fact, in (17), the delay error depends on the in-
tegration steps /; and on the delay 7. The delay 7 depends
on the last synchronization time #,, which itself depends on
the synchronization period P, and on the current integra-
tion time #. In other word, the delay error depends on the
size and number of integration steps since the last synchro-
nization. Indeed, the step size gives an idea of the sharp-
ness of the state variations, and numerous small integration
steps denotes large variations between successive updates.
Fast variations of the state variables are not only related to
the system stiffness, but also especially to the presence of
discontinuities. Therefore delay errors are strongly related
with discontinuities, whose location and dependencies de-
serve to be carefully examined when splitting the system.

In addition, the delay error size increases with the num-
ber of dependencies between the subsystems. Obviously,
if X, is independent from Xg, no synchronization error can
be generated. If conversely X4 depends on all the state vari-
ables of Xp, the errors may increase considerably. Thus the
objective is to choose cuts in the system to minimize the
data exchanges and to control the growth of the integration
eITors.

4.4 Delay Errors in a Real-time Simulation

Up-to-now, the delay errors are evaluated in the case where
the integration of all subsystems was exactly finished at the
synchronization point. In fact we consider that the synchro-
nization points are deadlines, without worrying about what
happens inside at each integration step. The previous study
just treated the case of hard real-time constraints where all
the deadlines are met.

To speed-up the simulation, waiting periods should be
eliminated. These idle times occur at the synchronization
points when one or more sub-systems are waiting for the
end of integration of the other sub-systems. Therefore, this
time can be decreased by using slackened synchronization
[5]. It means that, at the synchronization points, a sub-
systems which needs variable does not wait for its inte-
gration to be completed, but uses the last available value.
Indeed this relaxation induces a cost in term of delay error,
which must be re-evaluated to check the trade-off between
simulation speed and accuracy.

Assuming that only the last integration step before the
synchronization can be missed, the value and production
time of the last completed integration step before the syn-
chronization, (denoted ¢, for X4 and 7, for Xp) must be
known: 1, = t; — h,,.

Assume that the synchronization deadlines are always
missed, so that the error E4 is always computed from the



last completed integration step. Thereby, the delay T com-
puted beforehand in (10) is no longer valid but is as follow:

T=t—1t) (18)

In other words, instead of Xp(#, — 1) = Xp(t,), now
XB(tl’c -7) = XB(I;,) leading to

EA,(,'(tn+l) = hn~[fA(XA(tn)a XB(tn)) - fA()?A(tn)’ XBU;;))]
Eap(ty) = 1;1 Ea(t)

(19)
Here the two equations (17) and (19) are equivalent, the
only difference lies in the expression of 7.

5. System Splitting Using Block-diagonal
Forms

As mentioned before, the purpose is to optimize the ex-
ploitation of the parallelism of the sub-systems while keep-
ing the previously evaluated delay error due the decoupling
under control. Two methods have been analyzed for this
aim, the first is related to the states to reduce the data-flow
due to coupling variables between sub-systems. The sec-
ond one is related to the events, to reduce integration inter-
rupts, and also to minimize event detection and location via
a complementary kind of parallelization through the solver.

5.1 Accounting for the State Variables

To reduce the data exchange between two sub-models and
to prioritize these swaps inside one sub-model, the depen-
dencies between the state variables must be evaluated. It
can be done either by a direct access to the incidence ma-
trix that describes the coupling between the state variables
and their derivatives, or by computing the Jacobian matrix.

A Jacobian matrix is a matrix of all first-order partial
derivatives of a vector function f = [fi f>... fv]” regarding
another vector X = [x;x2...xy]7. An N x N Jacobian
matrix denoted by J has the form:

U A Oh
dx| Ix Ut Oxy
J — 5X1 sz e 3XN
Oy O v
8)(1 (7)62 e (,)JCN

If there is a zero element in the Jacobian, i.e. g—{: =0, it

. . . J
means that f; is not influenced by x;. However, f; is actually
%;. In other words, x; does not depend on x;. In the same

way if % # 0, it means that x; depends on x;. Moreover,

the numerical value of % gives a measure of the sensitivity
of x; w.r.t. Xj. ’

This leads to conclude that the Jacobian matrix can be
seen as an incidence matrix which provides useful infor-
mation about data dependencies between state variables.
This could be used for an effective system splitting. So that,
when transforming the matrix into a block-diagonal form
by permuting rows and columns, the blocks represents the
independent subsystems. It may happen that a total block-
diagonalization is not possible so that the final transformed

matrix presents some coupling rows and/or column, this
denotes the presence of irreducible dependencies between
subsystems.

5.2 Accounting for the Discontinuities

To minimize the delay error while optimizing the exploita-
tion of the parallelism across the model, it is also crucial
to reduce the number of discontinuities inside each sub-
model, so that stiff variations of the state variables are lim-
ited. This procedure induces another benefit, as reducing
the number of interrupts for each solver reduces re-starting
overheads and improves the integration speed.

The events incidence matrix describes the relationships
between events. Block-diagonalizing this matrix allows for
separating the discontinuities and scatter them in the differ-
ent sub-models.

Furthermore, the events incidence matrix block-diagonalization

also leads to a kind of parallelization across the solver. In
fact, the system resolution, including events handling, con-
sists of 4 steps as mentioned in Figure 4.

no

o : Event yes Event Event
Initialization Integration detection location handling

Figure 4. Events handling operations flow

Event detection and location can be an expensive stage
for hybrid systems (and for the addressed combustion mod-
els in particular). Especially, the event location (i.e. solving
the zero-crossing equation (2)) can take a long time through
an iterative process, and it is difficult to bound this step.
By using the event incidence matrix, solving for a particu-
lar event can be localized in a subset of the global system
through parallelization, thus shortening the zero-crossing
function solving.

5.3 Permuting Sparse Rectangular Matrices for
Block-diagonal Forms

Two methods and associated software tools have been eval-
uated to perform the system diagonalization. Note that the
original state variables of the system are preserved and that
diagonal forms are produced only through permutations.

5.3.1 Bipartite Graph Model

A matrix A is transformed to a bipartite graph model. This
graph is used by a specific tool to partition it, then to get a
doubly bordered block-diagonal matrix Apg, i.e. the matrix
has a block-diagonal form with non-zero elements on its
last rows and columns as in Figure 5.

MeTiS [13] is a software aimed to partition large graphs.
The used algorithms are based on multilevel graph par-
titioning, which means reducing the size of the graph by
collapsing vertices and edges, then partitioning the smaller
graph, and finally uncoarsening it to construct a partition
for the original graph.

The block-diagonal form is performed by permuting
rows and columns of a sparse matrix A to transform it into
a K-way doubly bordered block-diagonal (DB) form Apg.
It has a coupling row and a coupling column.
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Figure 5. Doubly bordered block-diagonal matrix

The representation of the nonzero structure of a ma-
trix by a bipartite graph model reduces the permutation
problem to those of graph partitioning by vertex separator
(GPVS).

For example, let A the following matrix:

1 00 1 00
01 00 1 1
1 01 1 0 1

A=l 001 0 0 (20)
01 00 1 1
1 0 00 0 1

An undirected graph G = (V,E) is defined as a set of
vertices V and a set of edges E. The corresponding bipartite
graph for MeTiS is built by replacing the rows and the
columns by vertices and the non-zeros are represented by
edges. After transformation, MeTiS partitions the graph as
shown in Figure 6.

13425
1/[T 010 o0fo
311 10 of1

_ 4llo o 1o ofo

ADB‘20001
5100 0/[1 1)1
67T 00/0 0

Figure 6. (a) Bipartite graph representation of the matrix
A and 2-way partitioning of it by vertex separator Vs; (b)
2-way DB form of A induced by (a)

The objective of MeTiS when partitioning is to:

* Minimize the size of the separator because it implies the
minimization of the border size.

* Balance among sub-bipartite graphs because it implies a
balance among diagonal sub-matrices.

5.3.2 Hypergraph Model

A matrix A is transformed to a hypergraph model. An hy-
pergraph H = (U, N) is defined as a set of nodes (vertices)
U and a set of nets (hyper-edges) N among those vertices.

This hypergraph is used by a specific tool to partition it,
then to get a singly bordered block-diagonal matrix Agp as
in Figure 7, where the matrix has a block-diagonal form
with non-zero elements only on its last rows.

Block 1

Block K

( Border 1 )

Figure 7. Singly bordered block-diagonal matrix

PaToH (Partitioning Tools for Hypergraphs) [19] is a
multilevel hypergraph partitioning tool that consist of 3
phases as for MeTiS: coarsening, initial partitioning, and
uncoarsening. In the first phase, a multilevel clustering,
that correspond to coalescing highly interacting vertices to
super-nodes, is applied on the original hypergraph by using
different matching heuristics until the number of vertices
drops below a predetermined threshold value. Then, the
second phase corresponds to partition the coarsest hyper-
graph using diverse heuristics. Finally, in the third phase,
the obtained partition is projected back to the original hy-
pergraph by refining the projected partitions using different
heuristics.

The block-diagonal form is performed by permuting
rows and columns of a sparse matrix A in order to transform
it into a K-way singly bordered block-diagonal (SB) form
Agp. It has only a coupling row. For this reason, this method
of block-diagonalization will be selected for the later study.

The representation of the nonzero structure of a matrix
by an hypergraph model reduces the permutation problem
to those of hypergraph partitioning (HP).

The corresponding hypergraph graph of the matrix A
(20) for PaToH is build by replacing the rows and the
columns of the matrix by nets and nodes respectively. The
number of pins is equal to the number of non-zeros in
the matrix. After the transformation, PaToH partitions the
hypergraph as as it is shown in Figure 8.

The objective of PaToH when partitioning is to:

e Minimize the cut size because it implies the minimization
of the number of coupling rows.

¢ Balance among sub-hypergraphs because it implies a bal-
ance among diagonal sub-matrices.

In conclusion, the method using the bipartite graph
model as MeTiS generates a doubly bordered block-diagonal
matrix. To further reduce the coupling row and the cou-
pling column to a single coupling row, the Ferris-Horn
(FH) algorithm [10] uses a column splitting method. Un-
fortunately, the number of rows and columns of the matrix
must be increased. In contrast, the method using the hyper-
graph model as PaToH directly generates a singly bordered
block-diagonal matrix which means only a coupling row
without adding an intermediate method. Therefore PaToH
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Figure 8. (a) Row-net hypergraph representation of the
matrix A and 2-way partitioning of it; (b) 2-way SB form
of A induced by (a)

will be used for the block-diagonalization of matrices in
the following case study.

6. Analysis of System Splitting using an
Hypergraph Model through a Case-study

In this study, a Spark Ignition (SI) mono-cylinder engine
has been modeled (see Figure 9) with 3 gases (air, fuel
and burned gas). It was developed using the ModEngine
library [3]. ModEngine is a Modelica [11] library that al-
lows for the modeling of a complete engine with diesel
and gasoline combustion models. It contains more than 250
sub-models. A variety of elements are available to build
representative models for engine components. ModEngine
is currently functional in the Dymola tool '.

6.1 Engine Modeling

Figure 9. Mono-cylinder engine modeled in Dymola

In the following tests, relationships between state vari-
ables and events as well as their behaviors are essential to
study how to split the system at wisely chosen joints.

For this aim, the mono-cylinder model, written in Mod-
elica language, was translated to a simpler language called

1 http://www.3ds.com/products/catia/portfolio/dymola

Micro-Modelica (u-Modelica) [4], which is understand-
able by the stand-alone Quantized State Systems (QSS)
tool [14] as shown in Figure 10. The QSS solver is not used
here, only a related tool is used to generate a so-called sim-
ulation file which contains important information about the
system and relationships between states and events. These
data are extracted thereafter by a custom dedicated tool,
and translated both to a matrix form for visualization and
to an hypergraph file for the PaToH tool. Finally PaToH
generates a partitioned hypergraph file that describes how
the graph is decomposed and transformed subsequently to
a matrix form for visualization.
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Figure 10. Software tool-chain

The considered mono-cylinder model is characterized
by a number of:

e State variables: ny = 15
e Events: ny = 111
e Discrete variables: np = 93

The state variables x; (i = 1,..,nx) are defined as fol-
lows:

l ID ‘ Name Details

Xo CrankAngle Crank Shaft angle

Gas mass evaporated due to in-
jection in global Mass balance
equation

X3 mEvapol[3]

Current released heat generated

X vAlfa .
4 4 by the combustion process
Burned mass fraction durin,
X5 mrefAlfa . J
combustion process
Output current combustion heat
Xo combuHeatRelease P

released

Gas mass derivatives due to
combustion in global Mass bal-
ance equation

X759 mCombu(3]

X012 | M[3] Mass of gas
Energy contained in the cylin-
X3 Energy dor gy y
. in the cvlin-
X, cylinderTemp dO;tpm temperature in the cylin




The events z; (i = 1,..,nz) and discrete variables d;
(i = 1,..,np) are defined by the “when” blocks as follows:

when (z_i) then
di=...;
elsewhen !(z_i) then
di=...;

end when;

The statements that are between the “then” and the
“elsewhen” or the “end when” are called the event han-
dler, it represents the consequence of the event.

6.2 State and Derivatives Incidence Matrices

At first glance, the number of coupled state variables is
6 among 15. In fact, X;3 is only influenced by the state
variables Xy, X0, X11, X12, X14 as shown in Figure 11.

0 .
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4
6
x
8
10 .
.
12 .
14 .

Figure 11. Incidence state matrix: derivatives of state vari-
ables X depending on state variables X

Thus far, considering only the incidence state matrix,
only 40% of the state variables are directly computed from
the other states, while the others depend on external inputs
(or even remain constant on some particular trajectories of
the state space, e.g. when imposing a constant velocity of
the crank).

The same result is found for events. In fact, the number
of active events is 39 among 111, as the previous cited
involved state variables directly affect values of 39 events
as shown in Figure 12.

o . . oo
60 80 100 110

Figure 12. Incidence matrix: events Z depending on the
state variables X

This number represents only 35% of the total number of
events, while the rest is only used to activate other events.
In fact these 72 events are defined in the ModEngine library
to be used in more general systems, not for the particular
mono-cylinder use case. In consequence only the subset of
active events must be detected.

However, if the state variables X can affect the events
Z, the events can also change the state variables values.
In order to construct its corresponding matrix, both the in-
cidence matrix that defines the discrete variables D influ-
enced by the events Z: Z — D (see Figure 13) and the in-
cidence matrix that defines the derivatives of the state vari-
ables X influenced by the discrete variables D: D — X (see
Figure 14) are carried out.
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110 L L . . . . L ! E
0O 10 20 30 40 50 60 70 80 93
D

Figure 13. Incidence matrix: discrete variables D influ-
enced by the events Z
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Figure 14. Incidence matrix: derivatives of state variables
X influenced by discrete variables D

Thus the incidence matrix Z — X is deduced by transi-
tivity in Figure 15.
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Figure 15. Incidence matrix: derivatives of state variables
X influenced by the events Z

Figure 15 shows that the previous identification of some
state variables as not coupled (based on incidence state
matrix Figure 11) and events influenced by state variables
(Figure 12), is no longer true. In fact, now 13 state variables
among 15 appear in this incidence matrix. Note that now
only the state variables corresponding to X; and X3 do
not appear in this incidence matrix, this is due to the fact
that these variables are inhibited momentarily to test a
particular scenario.

By combining the two matrices in Figures 12 and 15, an
incidence matrix between events and state variables can be
achieved as in Figure 16.

Once unnecessary states and events are eliminated and
only involved ones are kept, the intrication between state
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Figure 16. Incidence matrix: data exchange between
events Z and state variables X

variables and events in both directions shows that it is
difficult to separate or split the system.

Besides, from Figure 12 (X — Z) and Figure 15 (Z —
X), the state incidence matrix can be built differently than
in Figure 11, by passing through the events as it is shown
in Figure 17.
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Figure 17. Incidence state matrix: derivatives of state vari-
ables X influenced by state variables X

Using this construction through the events Z, it appears
that the state derivative X4 is also depending on Xjo, X1}
and Xj,. Therefore, in order to determine correctly the
relationships between the variables, it is important to use
all the available system data, directly and by transitivity.

6.3 Incidence Event Matrix

The incidence event matrix can be built by transitivity. In
fact, using the incidence matrix that define Z — D (see
Figure 13) and conversely the matrix that define D — Z,
the incidence event matrix Z — Z can be deduced as it is
shown in Figure 18.

As shown previously, it is hard to split the system based
on the relationship between events Z and discrete variables
D. However, with the incidence event matrix, it is possible
to transform it into a block-diagonal form with three blocks
using PaToH and to consider each block as a subsystems
where all the related discontinuities belong to the same
entity (see Figurel9).

These blocks can be parallelized and we can hope the
execution time to be reduced. In fact, the event detection,
the event location and the restart of the solver increase
the integration time as shown in Figure 20. In short, for
the mono-cylinder integrated by the variable-step solver
LSODAR, the average execution speed drops down to 4
times in case of events handling, and sometimes even up
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Figure 18. Incidence event matrix: events Z in columns
influenced by events Z in rows

Figure 19. Block-diagonalized incidence event matrix:
events Z in columns influenced by events Z in rows

to 60 times. This confirms the interest on both limiting the
number of interrupts inside each block of the model due to
the events and parallelizing the event location through the
solver.
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Figure 20. Effect of events handling on execution time



7. Summary and Future Directions

The various methods studied in the paper aim to contribute
to speed-up the numerical integration of hybrid dynami-
cal systems, eventually until reaching a real-time execu-
tion, while keeping the integration errors inside controlled
bounds. Speed-ups can be achieved through an adequate
partition of the original system where the interactions be-
tween the resulting sub-systems are minimized, so that they
can be efficiently integrated in parallel.

Slackened synchronization, as analyzed theoretically in
Section 4, allows for minimizing the number of integration
interrupts and for using optimized integration parameters
on each node (as illustrated experimentally in [2]) . How-
ever the corresponding induced delays between the sub-
systems must be limited to keep the integration errors under
control.

The particular case study shows that it is not easy nor
intuitive to know how to split a system, neither from a
physical point of view nor from the relationship between
the states and the events. In fact, the matrix between the
coupled states and events is not sparse, so it is not possible
to transform it into a block-diagonal form.

However, the incidence events matrix more likely seems
to be sparse and its transformation to a block-diagonal form
is feasible. Thus a relevant way to parallelize this particular
system seems to perform it through the solver, leading
to parallelize the steps corresponding to events handling
which are costly for the numerical resolution (as already
observed and plot in Figure 20).

Future works intend to practically evaluate the achiev-
able speedups. This requires to extend the tool-chain of
Figure 10, by developing a multi-thread runtime system
able to take into account the parallelization choices pre-
sented in this paper. Then an engine with 4 cylinders will
be studied to compare the split performed from a physical
point of view in [2] to the combined use of the analytic
approaches described in sections 4 and 5.
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