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Abstract: In this paper a Generalized Predictive Control (GPC) scheme is proposed for the stabilization
of a fast mechatronic system. Namely the inertia wheel inverted pendulum, which has two degrees
of freedom and one actuator. The proposed control approach should be able to stabilize this system
around its unstable equilibrium point and maintain it in this state. The efficiency and performance of the
proposed control scheme are firstly illustrated through simulation results, then its robustness is shown
through real-time experiments on the prototype of the system in question.
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1. INTRODUCTION

Mechatronics is the synergistic combination of mechanical
engineering, electronics, control systems and computers. The
key element in mechatronics is the integration of these areas
through the design process as in robotics, digitally controlled
combustion engines, automated guided vehicles, etc. Mecha-
tronic systems are generally characterized by significant non-
linearities and input and state constraints. Predictive Control
can then be a systematic methodology to handle these chal-
lenging control problems (Keerthi and Gilbert 1988, Mayne and
Michalska 1990).
Predictive controllers are based on the receding horizon method-
ology that offers a powerful approach to design state feedback
controllers for constrained systems (Mayne, Rawlings, Rao,
and Scokaert, 2000). The receding horizon control is a form
of control in which the current control action is obtained by
solving online, at each sample time, a finite horizon open-
loop optimal control problem (Richalet et al., 1978), using the
current state of the plant as the initial state; the optimization
yields to an optimal control sequence and only the first sample
in this sequence is applied. The resolution of the optimization
problem, often subject to constraints, becomes difficult in the
case of nonlinear systems because of the long computational
time. Therefore, the optimization algorithm should have speed
and convergence properties (Cannon, 2004) through a set of
local and global methods (Horst and Pardalos 1995) to ensure
a good control performance. In the case of a linear process
model, an analytical solution of the optimization problem with-
out constraints is possible and easy to calculate ; furthermore
the control performance may be better since the global optimum
can be reached (Cutler, 1979; Clarke, 1987; Flaus, 1994). Con-
sequently, different model predictive control techniques based
on this principle can be applied, especially for fast dynamic
mechatronic systems.
Generalized predictive control (GPC) is one of these tech-
niques. It provides an analytical solution of the optimization

problem (in the absence of constraints). This control scheme
can deal with unstable as well as non-minimum phase systems.
It is one of the most popular approaches of Model Predictive
Control (MPC) both in industry and academia.
In this paper we discuss this control approach for the problem
of stabilization of a nonlinear fast mechatronic system, namely
the inertia wheel inverted pendulum [16].
The inverted pendulum system is a standard problem in the
area of control systems. It is often used to demonstrate con-
cepts in linear and nonlinear control such as stabilization or
swinging up of unstable systems. This system belongs to the
class of non-minimum systems because of its unstable internal
dynamics. One interesting example of inverted pendulum is the
inertia wheel inverted pendulum; it is underactuated system
since the number of its control inputs is less than the number
of its degrees of freedom, which makes it difficult to control.
In this paper, the aim of the proposed control scheme (GPC)
is to stabilize the inertia wheel inverted pendulum around its
unstable equilibrium point and to maintain it in this state, even
if it is subject to external disturbances, or in the presence of
parametric uncertainties. Numerical simulations as well as real-
time experiments are presented to show the effectiveness of the
proposed control scheme and its robustness towards external
disturbances and changes in system dynamics.
This paper is organized as follows. In section 2, the inertia
wheel inverted pendulum is described and its dynamic model
is given. The generalized predictive control law is presented in
section 3. Section 4 is dedicated to simulation results, while
experiments are presented and discussed in section 5. Finally,
concluding remarks are drawn in section 6.



2. DESCRIPTION AND DYNAMICS OF THE
MECHATRONIC SYSTEM

2.1 Description of the system

The inertia wheel inverted pendulum system (shown in Fig. 1)
consists of three main parts : the mechanical part, the computer
and the electronic part.

Power supply (12V)

Control PC

Variable
frequency
drive

Interface card

Inclinometer

Pendulum

Inertia wheel

Fig. 1. Inertia wheel inverted pendulum system

Description of the mechanical part of the system The
The underactuated mechanical system studied in this paper is
the inertia wheel inverted pendulum (cf. Fig. 2), which consists
of an inverted pendulum equipped with a rotating wheel. The
joint between the the pendulum body and the frame is unac-
tuated; whereas the joint between the beam and the wheel is
actuated by a Maxon EC-powermax 30 DC motor (cf. Fig. 3).
The schematic representation of the inertia wheel inverted pen-
dulum is depicted in Fig. 6. The motor torque produces an an-
gular acceleration of the rotating wheel which generates, thanks
to the dynamic coupling between coordinates, a torque acting
on the pendulum’s passive joint; therefore this last one can be
controlled through the acceleration of the inertia wheel.

inclinometer

pendulum body

inertia wheel

active joint

passive joint

frame

Fig. 2. Mechanical part of the system

Fig. 3. Maxon EC-powermax 30 DC motor

Description of the computer and electronic parts of the system
The actuator of the system is a Maxon EC-powermax 30 DC
motor, equipped with an incremental encoder as shown in Fig.

4 , allowing the measurement in real-time of the inertia wheel
angular position.
In order to measure the angular position of the pendulum

Fig. 4. The DC motor equipped with an incremental encoder

with respect to the vertical, the system is equipped with an
inclinometer FAS-G of Micro strain (cf. Fig. 5). The system
is controlled with a computer equipped with a 2.4 GHz Intel
processor. The control approach is implemented using C++
language, and the whole system is running under Ardence RTX
real-time OS.

Fig. 5. inclinometer FAS-G of Micro strain

2.2 Dynamic modeling of the system

The nonlinear dynamic model of the system (12) is obtained
using Lagrange formulation [8], and is given by:[

I + i2 i2
i2 i2

][
θ̈1
θ̈2

]
+
[
−mlgsinθ1

0

]
=
[

C1
C2

]
(1)

where:

• θ1 and θ2 are, respectively, the angular positions of the
pendulum body and the inertia wheel (cf. Fig. 6);

• θ̇i and θ̈i (i = 1,2), represent their corresponding velocities
and accelerations;

• C1 is the external disturbing torque applied on the pendu-
lum (in this study, it is supposed nul);

• C2 is the torque generated by the system’s actuator;
• i1, i2 are respectively the moments of inertia of the pendu-

lum body and the wheel;
• I = m1l12 +m2l22 + i1 with m1 and m2 being the masses of

the pendulum and the inertia wheel. l1 and l2 are the dis-
tances from the origin O (cf. Fig. 6) to the gravity centers
of the pendulum and the rotating mass (respectively);

• and ml = m1l1 +m2l2.

2.3 State space representation of the model

The state space representation of the inertia wheel inverted
pendulum is obtained through linearization of the nonlinear dy-
namic model presented above around the unstable equilibrium
point. Let the state vector xc be defined as: xc = [ θ1 θ̇1 θ̇2 ]T
and u = C2. The unstable equilibrium point (x∗c ,u

∗) is defined



Fig. 6. Schematic view of the inertia wheel inverted pendulum

as : (x∗c = [ 0 0 0 ]T ,u∗ = 0).
The linear state space representation of the inertia wheel in-
verted pendulum is given by the following equations :{

ẋc = Acxc +Bcu
yc = Ccxc +Dcu

(2)

where:

Ac =

 0 1 0
mlg/I 0 0
−mlg/I 0 0

 , Bc =

[ 0
−1/I

(i2 + I)/I/

]
,

Cc = [ 1 0 0 ]and Dc = [ 0 ]

3. PROPOSED APPROACH: GENERALIZED
PREDICTIVE CONTROL (GPC)

The goal of the proposed approach is to stabilize the inertia
wheel inverted pendulum around its unstable equilibrium point;
and to maintain it in this state even if it is subject to external
disturbances, or in the presence of parametric uncertainties.

3.1 Model representation for the GPC

The control design requires a discrete state space represen-
tation. Let’s consider the state vector xd defined by: xd =
[ θ1(k) θ̇1(k) θ̇2(k) ]T . The discretization of the state space dy-
namics (2) leads to following discrete time representation:{

xd(k +1) = Adxd(k)+Bdu(k)
yd(k) = Cdx(k)+Ddu(k)

(3)

where:

Ad = eAcT , Bd =
∫ T

0 eAc(T−τ)Bcτ, Cd = Cc and Dd = Dc.
where Ac, Bc, Cc and Dc are the matrices of the continuous state
space representation and T is the sampling period.

Let’s now consider the control input increment at instant k:
∆u(k) = u(k)− u(k− 1) and the extended space vector xe =[

xd(k +1)
u(k)

]
, the system dynamics can then be rewritten as

follows: {
xe(k +1) = Aexe(k)+Bd∆u(k)
ye(k) = Cexe(k)+De∆u(k)

(4)

where:

Ae =
[

Ad Bd
0 1

]
, Be =

[
Bd
1

]
, Ce = [Cd 0] and De = Dd .

For the rest of the paper, consider the following notation : x =
xe, A = Ae, B = Be, C = Ce and y = ye.

3.2 GPC basic principle

The Generalized Predictive Control (GPC) scheme was initially
proposed by Clarke et al [17] and has become one of the most
popular Model Predictive Control (MPC) schemas both in in-
dustry and academia. The basic idea of GPC is to compute a
future control sequence such it minimizes a multiobjective cost
function defined over a prediction horizon. The performance
index to be optimized is a quadratic function including a term
measuring the distance between the predicted system output
and the reference sequence over the horizon plus a term mea-
suring the control effort.
GPC has many ideas in common with the other model predic-
tive controllers since it is based upon the same concepts; nev-
ertheless, it has also some differences. It provides an analytical
solution (in the absence of constraints), it can deal with unstable
and non-minimum phase systems and incorporates the concept
of receding horizon as well as the consideration of weighting of
control increments in the cost function.
The proposed GPC formulation should involve all the states of
the system, and introduce a penalty condition on the final state.
Indeed, the classical formulation of the GPC with a transfer
function as input / output model of the system does not guar-
antee the control of all system states. This is because such a
model involves only the outputs of the system and not all the
states.
In the case of our system, the objective is to impose : θ1(t f ) =
θ̇1(t f ) = θ̈2(t f ) = 0 where t f characterizes the end of the pre-
diction horizon at each sampling instant.
For this formulation, the cost function J to be minimized is as
follows:

J =
Np

∑
j=N1

(y(k + j)−w(k + j))T (y(k + j)−w(k + j))

+(x(k +Np)−wx(k +Np))T Q(x(k +Np)−wx(k +Np))

+
Nu

∑
j=1

λ ( j)(∆u(k + j−1))T (∆u(k + j−1))

(5)

where: N1 and Np are the beginning and the end prediction
horizons, Nu is the length of the control horizon, Q and λ are
the weights on the states and the control respectively and wx is
the desired final state of the system.
The calculation of the cost function requires the prediction of
future outputs y(k + j) , j = 1 . . .Np at each sampling instant
k based on the information available on the system at previous
times. From the state space representation of the system, we
have:

x(k +1) = Ax(k)+B∆u(k)
x(k +2) = Ax(k +1)+B∆u(k +1) = A2x(k)+Bu(k +1)

...

x(k + j) = A jx(k)+
j−1

∑
i=0

A j−i−1B∆u(k + i) (6)

Therefore, the estimated output of the system at time k + j is
written as:

y(k + j) = CA jx(k)+
j−1

∑
i=0

CA j−i−1B∆u(k + i) (7)



Since the control horizon is shorter that the prediction horizon
Nu ≤ Np : ∀i≥ Nu , u(k + i) = 0, and if we consider:

y =



y(k +1)
y(k +2)

...
y(k +N1)

...
y(k +Np)


, ∆u =


∆u(k)

∆u(k +1)
∆u(k +2)

...
∆u(k +Nu)

 (8)

Then the predicted output can be rewritten in matrix form as
follows:

y = G∆u+ f (9)
where G and f are given by:

G =



CB 0 0 . . . 0
CAB CB 0 . . . 0

...
...

... . . .
...

CAN1−1B CAN1−2B CAN1−3B . . . 0
...

...
... . . .

...
CANp−1B CANp−2B CANp−3B . . . CANp−NuB



and f =



CA
CA2

...
CAN1

...
CANp


x(k).

The control sequence should be derived from the criterion (5).
Since we are interested on the stabilization problem, let’s con-
sider : wx = 0, w(k+ j) = 0 ∀ j, N1 = 1, Np = Nu = N , Q≥ 0
et λ ( j) = λ > 0.
The criterion (5) can then be rewritten as follows:

JN =
N

∑
j=1

y(k + j)T y(k + j)+λ∆u(k + j−1)T
∆u(k + j−1)

+xT (k +N)(Q+CTC)x(k +N)
(10)

The state of the system at time k +N is given by:

x(k +N) = ANx(k)+C̄∆u (11)
Where: C̄ = [AN−1B AN−2B . . . B].
The cost function can then be reformulated as follows:

JN =
1
2
[H +2C̄T QC̄]∆u+[b+2xT (k)(AN)T QC̄]∆u+ f0

+xT (k)(AN)T QANx(k)
(12)

Where:

• H = 2[GT G+λ I];
• b = 2 f T G;
• f0 = f T f .

The optimal control sequence that minimizes the performance
index (12) is obtained from the solution of the equation δJN

δ∆u = 0.
The obtained optimal solution ∆u∗ is then written as follows:

∆u∗ =−Kx(k) (13)
Where:

K = (GT G+λ I +C̄T QC̄)−1(GT L+C̄T QAN)

It is worth to note, according to the basic principle of predic-
tive control, that only the first sample of the optimal control
sequence is applied to the controlled system.

4. SIMULATION RESULTS

Simulation results, obtained using Matlab software, are pre-
sented and discussed in this section. As a first validation, they
show the feasibility of the proposed control scheme. One sim-
ulation scenario is considered to validate the robustness of the
proposed control scheme. The first scenario is to consider the
system in the nominal case without any external disturbances.
While the second one aims to show the robustness of the con-
troller against parameter’s uncertainties.

4.1 Scenario 1: Stabilization in the nominal case

Consider the dynamic model of system (1) with physical pa-
rameters summarized in Table 1. These parameters have been
identified on the real prototype of the system described in sec-
tion 2.

Table 1. Description of dynamic parameters of the
system

Parameter Description Value unit
m1 Body mass 3.30810 Kg
m2 Wheel mass 3.33081 Kg
l1 Body center of mass position 0.06 m
l2 Wheel center of mass position 0.044 m
i1 Body inertia 0.0314683 Kgm2

i2 Wheel inertia 0.0004176 Kgm2

The proposed simulation is started from the initial condition
x0 = [θ1 = 18◦ θ̇1 = 0 θ̇2 = 0]T . Table 2 describes the param-
eters of the proposed control scheme.

Table 2. Description of the control parameters

Parameter Description Value
N1 Minimum prediction horizon 40
Np Maximum prediction horizon 40
Nu Length of control horizon 40
λ Control weight 40
Q State weight Id(3,3)

Fig. 7 displays the obtained simulation results for the nominal
case. Fig. 7-(a) and 7-(b) show the evolution of the pendulum
body joint position and velocity. The inertia wheel velocity
versus time is displayed in Fig. 7-(c). Fig. 7-(d) represents the
control input that consists of the motor voltage (proportional to
the motor torque).
From the obtained results, it can be observed that the controller
is able to stabilize the system around its unstable equilibrium
point and keep it around this position.

4.2 Scenario 2: Robustness towards parameter’s uncertainties

The test of the proposed controller robustness allows us to
check whether the applied control is capable of compensating
the uncertainties on the system parameters. These uncertainties
were not considered in the modeling phase of the system.
Let’s now consider the case of an uncertainty on the parameter
inertia I that is:
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Fig. 7. Simulation result in the nominal case

I
′
= I +∆I× I (14)

Three cases are considered : the nominal case corresponding to
∆I = 0%, and two other cases corresponding to an uncertainty
of ∆I = 10% and 45%, respectively. The objective would then
be to see if the proposed controller is able to compensate
this uncertainty. Fig. 8 displays the evolution of the system
states in these three cases. We notice clearly the ability of
the GPC controller to ensure system stabilization despite the
misidentification introduced that can go up to 45% uncertainty
on the parameter I. Note also that the system is becoming
slightly slower when increasing the uncertainty amount.
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5. REAL-TIME EXPERIMENTAL RESULTS

In this section the obtained real-time experimental results are
presented and discussed. They are performed on the inverted
pendulum testbed presented in section 2. Two experimental sce-
narios are studied. In the first one the proposed control scheme
is implemented without considering any external disturbance,
whereas in the second one, to show its effectiveness, the system
is subject to external disturbances.

5.1 Scenario 1: Stabilization without external disturbances

The controller design parameters used for this experiment are
the same as those used in simulation. Fig. 9 shows the over-
all obtained results of this first scenario. The pendulum joint

position and velocity are displayed in Fig. 9-(a) and 9-(b),
respectively. Measurement noise can be observed on the pen-
dulum body velocity θ̇1 since this last one is computed using a
numerical derivation of the measured angular position θ1. Fig.
9-(c) displays the motor velocity versus time. The DC motor
input voltage can be observed in Fig. 9-(d). This experiment
shows that the controller is able to stabilize the system and keep
it around its unstable equilibrium point.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

Time[s]

θ 1[d
eg

]

(a) Angular position of the pendulum rod

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2

4

Time[s]

dθ
1[r

ad
/s

]

(b) Angular velocity of the pendulum rod

0 5 10 15 20 25 30
−500

0

500

1000

1500

Time[s]
dθ

2[r
ad

/s
]

(c) Inertia wheel rotation speed

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

Time[s]

U
[V

]

(d) Control input

Fig. 9. Experimental results (without external disturbances)

5.2 Scenario 2: Stabilization with external disturbances

In this scenario, two combined types of disturbances were
applied on the inverted pendulum. The first one illustrated in
Fig.10, consists in pushing the pendulum, which generates ex-
ternal punctual torques applied to the pendulum joint at ap-
proximately t = 8s, t = 12s, t = 17s and t = 26s. And the
second type of disturbances illustrated in Fig.11 is persistent
and applied constantly to the inverted pendulum as an addi-
tional mass attached to the pendulum body. The punctual and
persistent disturbances can be represented by external forces
F1ext and F2ext applied on the inverted pendulum. These forces
generate torques τ1ext and τ2ext around the pendulum pivot.
These torques, to be compensated, produce a change in the
angular velocity of the rotating wheel.

punctual
disturbance

F1ext

τ1ext

Fig. 10. Punctual disturbance applied on the pendulum

Fig. 12 displays the obtained experimental results for this sec-
ond scenario. In Fig. 12-(a), the pendulum joint position is
displayed. Fig. 12-(b) shows the pendulum joint velocity . Ex-
ternal disturbance compensation can be observed in Fig. 12-(c)
and 12-(d) where, respectively, the inertia wheel velocity and
motor input voltage are displayed. The effect of the punctual



persistent
disturbance

F2ext

τ2ext

Fig. 11. Persistent disturbance applied on the pendulum

disturbances can be observed as peaks on the curves that appear
at instants of application of the disturbing torques. The pro-
posed controller is capable of compensating these disturbances.
Besides it succeeds also to compensate the value of the per-
sistent disturbance and to keep the system around its unstable
equilibrium position. This fact results in the permanent rotation
of the inertia wheel.
Despite the combination of both types of disturbances, the con-
troller is still able to compensate them and maintain the system
around its equilibrium point.
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Fig. 12. Experiment results (with external disturbances)

6. CONCLUSION AND FUTURE WORK

In this paper, a Generalized Predictive Controller (GPC) is pro-
posed for stabilization of a fast underactuated mechatronic sys-
tem. Namely the inertia wheel inverted pendulum. Numerical
simulations as well as real-time experiments show the perfor-
mance and the effectiveness of the proposed control scheme and
its robustness towards uncertainties and external disturbances
(both punctual and persistent). Our future work will be focused
on the generation of stable limit cycles for the inertia wheel
inverted pendulum.
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