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Introduction

Total Coloring

Definition (k-total coloring) A k-total coloring of G = (V , E ) is c : V ∪ E → {1, . . . , k} such that: -uv ∈ E implies c(u) = c(v ) -uv ∈ E and uw ∈ E , with v = w implies c(uv ) = c(uw ) -uv ∈ E implies c(uv ) = c(u) b c f a e d Total Coloring Definition (k-total coloring) A k-total coloring of G = (V , E ) is c : V ∪ E → {1, . . . , k} such that: -uv ∈ E implies c(u) = c(v ) -uv ∈ E and uw ∈ E , with v = w implies c(uv ) = c(uw ) -uv ∈ E implies c(uv ) = c(u) b c f a e d Total Coloring Definition (k-total coloring) A k-total coloring of G = (V , E ) is c : V ∪ E → {1, . . . , k} such that: -uv ∈ E implies c(u) = c(v ) -uv ∈ E and uw ∈ E , with v = w implies c(uv ) = c(uw ) -uv ∈ E implies c(uv ) = c(u) b c f a e d
Definition (total chromatic number)

χ T (G ) is the minimum k such that G admits a k-total coloring.

Famous bounds

Let ∆(G ) denotes the maximum degree of G .

Brook 's Theorem (1941):

χ(G ) ≤ ∆(G ) if G is not a complete graph or an odd cycle.

Famous bounds

Let ∆(G ) denotes the maximum degree of G .

Brook 's Theorem (1941):

χ(G ) ≤ ∆(G ) if G is not a complete graph or an odd cycle.
Vizing 's Theorem (1964):

∆(G ) ≤ χ ′ (G ) ≤ ∆(G ) + 1
Total coloring conjecture (Behzad, Vizing, ∼1964): 1981).

∆(G ) + 1 ≤ χ T (G ) ≤ ∆(G ) + 2
k-total coloring is NP-complete for every fixed k ≥ 4 (A. Sánchez-Arroyo, 1989).

Enum-k-vertex/edge/total coloring: -Input: a graph G = (V , E ) -Output: Enumerate all the k-vertex/edge/total coloring of G .

Algorithmic problems

k-vertex/edge/total coloring: Garey and D.S. Johnson, 1979).

-Input: a graph G = (V , E ) -Output: Does G admit a k-vertex/edge/total coloring? k-vertex coloring is NP-complete for every fixed k ≥ 3 (M.R.
k-edge coloring is NP-complete for every fixed k ≥ 3 (I. Holyer, 1981).

k-total coloring is NP-complete for every fixed k ≥ 4 (A. Sánchez-Arroyo, 1989).

Enum-k-vertex/edge/total coloring:

-Input: a graph G = (V , E ) -Output: Enumerate all the k-vertex/edge/total coloring of G .

Algorithmic point of view

What to do with an NP-complete problem?

approximation algorithm: find in poly-time a result which is not worst than c time the optimal.

randomized algorithm: find a result which is good w.h.p. or/and with running time correct w.h.p.

... parameterized algorithm: find an algorithm with running time f (k).poly (n) for some parameter k.

exact (exponential) algorithms: find an algorithm with running time

O ⋆ (c n ) (= O(P(n)c n ))

Examples of exact algorithms

Enum-3-edge coloring:

-Input: a graph G = (V , E ) with ∆(G ) ≤ 3.
-Output: Enumerate all the 3-vertex/edge/total coloring of G .

The exhaustive algorithm:

-Try every possible colorings of the edge set and decide which colorings are proper.

Time analysis:

O ⋆ (3 m ) = O ⋆ (3

Examples of exact algorithms

Enum-3-edge coloring:

-Input: a graph G = (V , E ) with ∆(G ) ≤ 3.
-Output: Enumerate all the 3-vertex/edge/total coloring of G .

The exhaustive algorithm:

-Try every possible colorings of the edge set and decide which colorings are proper.

Time analysis:

O ⋆ (3 m ) = O ⋆ (3

Examples of exact algorithms

Enum-3-edge coloring: a 'naive' branching algorithms 

Previous work: exact algorithms

What is the gain on the running time?

In the same environment:

t = O ⋆ (a n 1 ) = O ⋆ (b n 2 ) with a < b
We obtain: n 1 ∼ log b log a n 2 A multiplicative factor on the instance size of log b log a > 1
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Enum-4-total coloring in O ⋆ (2.8285 n ). Example in Ω(2.3784 n ). Enum-k-edge coloring in O ⋆ ((k -1!) n 2 )
c 3 (C n ) = 2 n + 2, if n is even, 2 n -2, if n is odd.

Number of 3-edge colorings of 3-regular graphs

Lemma Let C n be the cycle of length n.

c 3 (C n ) = 2 n + 2, if n is even, 2 n -2, if n is odd.
Proof: By induction on n. True for n = 2 and n = 3. 

c 3 (C n ) = 2 n + 2, if n is even, 2 n -2, if n is odd.
Proof: By induction on n. True for n = 2 and n = 3. Bessy and F.Havet () Enumerating the edge-colourings WGTC, Kaohsiung, 2012

v2 v1 vn vn-1 v3 vn-2 v2 vn-1 v3 vn-2 v1 c 3 (C n ) = 2.c 3 (C n-2 )+ c 3 (C n-1 ) S.
Number of 3-edge colorings of 3-regular graphs

We denote by n i the number of vertices of degree i in G .

Theorem

Let G be a 2-connected subcubic graph. Then c

3 (G ) ≤ 3 • 2 n-n 3 2 .

Number of 3-edge colorings of 3-regular graphs

We denote by n i the number of vertices of degree i in G .

Theorem

Let G be a 2-connected subcubic graph. Then c

3 (G ) ≤ 3 • 2 n-n 3 2 . Proof: If G is a cycle, it is true.
Otherwise, let v 1 and v n be two vertices of degree 3 and consider v 1 , . . . , v n an st-ordering of G : for all 1 Enum-3-edge coloring:

< i < n, d(v i ) {v 1 ,...,v i-1 } ≥ 1 and d(v i ) {v i+1 ,...,
Corollary (Solving Enum-3-edge coloring:)

There exists a branching algorithm with running time O ⋆ (2 Number of 3-edge colorings for simple graphs

n 2 ) = O ⋆ (1.4143 n
Can we improve a lot? Not really: let H n be:

Lemma (c 3 of the ladder graph)

c 3 (H n ) = 2 n/2 + 8, if n/2 is even, 2 n/2 -2, if n/2 is odd.

Number of 3-edge colorings for simple graphs

Can we improve a lot? Not really: let M n be:

Lemma (c 3 of the Moebius ladder graph)

c 3 (M n ) = 2 n/2 + 2, if n/2 is even, 2 n/2 + 4, if n/2 is odd.
Enum-4-total coloring:

Corollary (Solving Enum-3-edge coloring:)

There exists a branching algorithm with running time O ⋆ (2

2 ) = O ⋆ (2.8285 n ) and polynomial space to solve Enum-4-total coloring. 
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Previous work: exact algorithms

Main results in exact algorithms to color a graph:
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We denote by c k (G ) the number of k-edge-colorings of a graph G .

Here, we want to compute c 3 (G ), G being a sub-cubic (multiple) graph.

We can assume that G is connected. 

Proof:

Orient from left to right.

Number of 3-edge colorings of 3-regular graphs

Proof:

Orient from left to right.

Number of 3-edge colorings of 3-regular graphs

Denote by c i the number of partial 3-edge colorings of arcs with tail in {v 1 , . . . , v i }.

Number of 3-edge colorings of 3-regular graphs

Theorem

Denote by c i the number of partial 3-edge colorings of arcs with tail in {v 1 , . . . , v i }. 

Denote by c i the number of partial 3-edge colorings of arcs with tail in {v 1 , . . . , v i }. 

This is sharp for multi-graphs:
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We denote by c k the number of k-edge colorings of G .

Theorem
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We denote by c k the number of k-edge colorings of G .

Theorem Theorem

We denote by c k the number of k-edge colorings of G .

Theorem Corollary (Solving Enum-3-edge coloring:)

There exists a branching algorithm with running time O ⋆ ((k -1!)

n

2 ) and polynomial space to solve Enum-k-edge coloring.
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So, for simple cubic graphs, we have:

Theorem

Let G be a connected simple cubic graph. Then c 3 (G ) ≤ 9 4 • 2 n-n .

Proof:

We have
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4-total colorings
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