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Abstract

Background

Reconciliation methods compare gene trees and species trees to recover evolutionary events such
as duplications, transfers and losses explaining the history and composition of genomes. It is well-
known that gene trees inferred from molecular sequences can be partly erroneous due to incorrect
sequence alignments as well as phylogenetic reconstruction artifacts such as long branch attraction. In
practice, this leads reconciliation methods to overestimate the number of evolutionary events. Several
methods have been proposed to circumvent this problem, by collapsing the unsupported edges and
then resolving the obtained multifurcating nodes, or by directly rearranging the binary gene trees. Yet
these methods have been defined for models of evolution accounting only for duplications and losses,
i.e. can not be applied to handle prokaryotic gene families.

Results

We propose a reconciliation method accounting for gene duplications, losses and horizontal trans-
fers, that specifically takes into account the uncertainties in gene trees by rearranging their weakly
supported edges. Rearrangements are performed on edges having a low confidence value, and are
accepted whenever they improve the reconciliation cost. We prove useful properties on the dynamic



programming matrix used to compute reconciliations, which allows to speed-up the tree space explo-
ration when rearrangements are generated by Nearest Neighbor Interchanges (NNI) edit operations.
Experiments on synthetic data show that gene trees modified by such NNI rearrangements are closer
to the correct simulated trees and lead to better event predictions on average. Experiments on real data
demonstrate that the proposed method leads to a decrease in the reconciliation cost and the number of
inferred events. Finally on a dataset of 30k gene families, this reconciliation method shows a ranking
of prokaryotic phyla by transfer rates identical to that proposed by a different approach dedicated to
transfer detection [BMCBIOINF 11:324, 2010, PNAS 109(13):4962–4967, 2012].

Conclusions

Prokaryotic gene trees can now be reconciled with their species phylogeny while accounting for the
uncertainty of the gene tree. More accurate and more precise reconciliations are obtained with respect
to previous parsimony algorithms not accounting for such uncertainties [LNCS 6398:93–108, 2010,
BIOINF 28(12): i283–i291, 2012].

A software implementing the method is freely available at http://www.atgc-montpellier.fr/Mowgli/
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Background

A phylogenetic tree or phylogeny is a tree depicting evolutionary relationships among biological entities
that are believed to have a common ancestor. A gene family is a group of genes descending from a
common ancestor, that retains similar sequences and often similar functions [1]. A species tree depicts
the evolutionary history of a group of species, whereas a gene tree depicts the evolutionary history of
a gene family. Gene trees often differ from the species tree due to family-specific evolutionary events
such as gene duplications, gene losses and horizontal gene transfers. By comparing a gene tree with
the species tree, reconciliation methods try to recover those major evolutionary events. Reconciliation
is indeed the process of constructing a mapping between a gene tree and a species tree to explain their
differences and similitudes with evolutionary events such as speciation (S), duplication (D), loss (L), and
horizontal gene transfer (T) events. Reconciliations are most often inferred on the basis of a parsimony
criterion: a cost is given to each event type, the total cost of a reconciliation is the sum of the costs of the
individual events it uses, and a reconciliation of minimum total cost is sought for. This computational
problem is often called Most Parsimonious Reconciliation, or MPR in short, and many works have been
devoted to it recently [2-8].

The first proposed models focused on parsimonious reconciliations involving only duplications and
losses (the DL model) [9-11] or only horizontal transfers and losses [12]. Probabilistic methods have
also been developed for the DL model, such as that of Arvestad et al. [13] (see Doyon et al. [14] for
a review). Most recent works using a parsimony approach have been devoted to models incorporating
duplications, losses and transfers all together (the DTL model) [2,4,5,8], which is necessary to handle
prokaryotes. When accounting for transfer events, the history proposed by a reconciliation is consistent
if, for any transfer, the donor and receiver species co-exist. Ensuring such a time consistency is difficult
and leads to an NP-hard problem in the general case [7,15] which cannot be solved by just examining
couples of species tree edges. However, in the case divergence dates are available for nodes of the species
tree, the problem becomes amenable [2,16]. The difficulty to handle transfers has led to a split within



proposed DTL methods, namely those that ensure time-consistency [2,16] and those that do not [3,4,7].
The fastest parsimony algorithms for the later category runs in O(mn log n) where m and n are the
sizes of the gene and species trees respectively [3], while the fastest time-consistent algorithm runs in
O(mn2) [2]. Probabilistic methods also have been extended recently to the DTL model. Inspired by the
work of Tofigh [17], Szőllösi et al. recently proposed a time-consistent procedure to estimate the species
tree by reconciliations from a set of gene trees [18].

A major problem, when applying reconciliation methods, is that parts of the gene trees can be incorrect.
This leads reconciliation methods to overestimate (S), (D), (L) and (T) events [19,20]. Errors within
a binary gene tree can be due to sequence alignment problems, phylogenetic reconstruction artifacts
(e.g. long branch attraction) or a lack of phylogenetic signal (especially for genes encoded by short
sequences). Such phenomena are well-known in phylogenetics and several support measures, such as
bootstrap values or bayesian posterior probabilities, have been proposed to detect unreliable edges in
a gene tree. Up to now, very few works have tackled the reconciliation problem in the presence of
unsupported edges, and most of them consider only the DL model [19,21-26]. Durand et al. proposed
an exponential exact algorithm to find the best rearrangement of a gene tree while preserving its strongly
supported edges [19]. Another approach is to collapse unsupported edges, thereby creating nodes with
more than two children (i.e., polytomies), and then to rely on a generalization of the least common
ancestor mapping (LCA) to avoid the need for examining all possible binary rearrangements of the
polytomies [21-23,26]. In this way, Chang et al. and Lafond et al. proposed polynomial time algorithms
to solve the MPR problem for a binary species tree and a non-binary gene tree [22,26]. When both the
species tree and the gene tree are non-binary, Berglund et al. proved that finding a refinement of the gene
tree using less than a given number of duplications is an NP-complete problem [21]. They also proposed
a heuristic approach to refine the gene tree by first minimizing duplications and then losses. Zheng et
al. showed that minimizing together duplication and loss costs is NP-hard for reconciling a non-binary
species tree with a binary gene tree [25]. For this specific case, Vernot et al. proposed a fixed parameter
tractable (FPT) algorithm whose complexity is exponential only in the maximum degree of nodes [23].
More recently, Stolzer et al. extended this FPT algorithm by allowing transfers [27].

Overall, several works relied on tree edit operations to deal with uncertainties in the gene trees. Durand
et al. used Nearest Neighbor Interchange (NNI) edit operations to rearrange the local topology of the
gene trees in the regions of low supports [19]. Górecki and Eulenstein proposed an efficient algorithm
to do a similar task and at the same time root the gene trees, while restraining their search to trees that
are at most k NNI moves away from the original gene trees [28]. Chaudhary et al. investigated Subtree
Prune and Regraft (SPR) and Tree Bisection and reconnection (TBR) edit operations to search for the
gene tree rearrangement that minimizes the number of duplications, regardless of losses [24].

It seems hard to have an exact polynomial time algorithm for the MPR problem under the DTL model
even when the polytomies are present only in the gene tree or in the species tree. Following the works
cited above to deal with uncertainties in the gene trees, we propose a heuristic method relying on NNI
edit operations to search for a gene tree rearrangement that preserves strongly supported edges and
minimizes the cost of reconciliation to a fixed binary species tree, but in the context of the more complex
DTL model. The resulting dynamic program, called MowgliNNI, is a generalization of Mowgli [2], a
program initially developed for fixed binary gene trees.

Experiments on simulated data show that MowgliNNI provides a gene tree that is closer to the true
evolutionary history of the gene family, and leads to more accurate D, T and L predictions. Experiments
on real data show a significant decrease in the number of predicted events and an increased precision,
that is a decrease in the number of equally most parsimonious reconciliations. We conducted a large
scale experiment where 30k prokaryotic gene families covering several phyla were reconciled using
MowgliNNI. These phyla were then ordered according to their inferred transfer rate. We obtained the



same phyla ordering as the one obtained using Prunier, a method dedicated to transfer prediction [29,30],
and our reconciliation based approach has the advantage of providing extra information: explicit donor
and receiver branches for transfers, prediction and localization of duplications and losses.

Methods

Basic notations

Trees considered in this paper are rooted and labeled at their leaves only, each leaf being labeled with
the name of a studied species. Given a tree T , its node set, edge set, leaf node set and root are resp.
denoted V (T ), E(T ), L(T ) and r(T ). The label of a leaf u of T is denoted by L(u) and the set of labels
of leaves of T is denoted by L (T ). When a node u has two children, they are denoted u1 and u2.

Given two nodes u and v of T , we write u ≤T v (resp. u <T v) if and only if v is on the unique
path from u to r(T ) (resp. and u 6= v); if neither u <T v nor v <T u then u and v are said to be
incomparable. As we consider rooted trees T only, we adopt the convention that an edge denoted (v, u)
means that u <T v. For a node u of T , Tu denotes the subtree of T rooted at u, up the parent node of u,
while (up, u) is the parent edge of u. A tree T ′ is a refinement of a tree T if T can be obtained from T ′

by collapsing some edges in T ′, i.e. by merging the two extremitites of these edges respectively [31].

A species tree is a rooted binary tree depicting the evolutionary relationships of ancestral (internal nodes)
species leading to a set of extent (leaf) species. A species tree S is considered here to be dated, that is
associated to a time function θS : V (S) → R+ such that if y <S x then θ(y) < θ(x). Such times are
usually estimated on the basis of molecular sequences [32] and fossil records. Note that to ensure the
time consistency of inferred transfers, absolute dates are not required, the important information being
the ordering of the nodes of S induced by the dating.

Given a dated binary species tree S, the reconciliation model we rely on considers a variant S′ of S
called a subdivision (as done also in [2,6,17]), associated to a time function θS′ . More precisely, for
each node x ∈ V (S) \ L(S) and each edge (yp, y) ∈ E(S) s.t. θS(yp) > θS(x) > θS(y), an artificial
node w is inserted along the edge (yp, y), with θS′(w) = θS(x) (see Figure 1). Note that the height of
S′ nodes (i.e. the number of their ancestors) is a valid time function that preserves the same partial order
on nodes as θS′ and that the restriction of this time function to V (S) ⊆ V (S′) preserves the partial order
induced by θS .

Figure 1: The subdivision S′ is obtained from the species tree S by splitting some of its edges
thanks to additional artificial nodes (◦), i.e. nodes with a single child. These nodes are added on
edges at the precise date a node appears somewhere else in S. For instance here, the artificial node s1 is
placed at the same date as the node s2 of S, while s4 and s5 are placed at the same date as s3.

A gene tree is a rooted binary tree depicting the evolutionary history of a gene family, that lead to a
set of homologous sequences observed in current organisms. Each leaf of the gene tree has a unique
label, corresponding to specific extant sequences of the gene. Indeed, several leaves of a gene tree can
be associated to a same species due to duplication and transfert events. We denote by s(u) the species
associated to leaf u ∈ V (G).

A gene tree G with supports is a gene tree whose internal edges each have a support value. Let
wkt(G) ⊆ E(G) be the set of edges having a support value weaker than threshold t and let strt(G)
be E(G)− wkt(G), that is the edges having a support equal or stronger than t.



Reconciliation model

Reconciling a gene tree G with a species tree S means building a mapping α that associates each gene
g ∈ V (G) to a sequence of nodes in V (S), namely the species in which the sequence g evolved. This
evolution is submitted to different kinds of biological events such as speciation, duplication and transfer.
The following definition presents a discrete models of this evolution.

Definition 1 (Reconciliation model). Consider a gene tree G, a species tree S with a time function θS ,
and its subdivision S′.

Let α be a function that maps each node u of G onto an ordered sequence of nodes of S′, denoted α(u).
For u ∈ V (G), let ` denote the length of α(u) and let αi(u) be its ith element (where 1 ≤ i ≤ `). α is
said to be a reconciliation between G and S′ if and only if exactly one of the following atomic events
occurs for each couple of nodes u of G and αi(u) of S′ (where αi(u) is denoted x):

• x is the last vertex α`(u) and exactly one of the cases below is true.

1. u ∈ L(G), x ∈ L(S′) and L(x) = s(u). (C event)

2. x is not artificial and {α1(u1), α1(u2)} = {x1, x2}. (S event)

3. α1(u1) = α1(u2) = x. (D event)

4. α1(u1) = x, and α1(u2) = x′ is such that x′ 6= x and θS′(x′) = θS′(x). (T event)

• otherwise, one of the cases below is true.

5. x is an artificial vertex and αi+1(u) is its only child. (∅ event)

6. x is not artificial and αi+1(u) ∈ {x1, x2}. (SL event)

7. αi+1(u) = x′ is such that x′ 6= x and θS′(x′) = θS′(x). (TL event)

The combinatorial events mentioned above (S, D, T, C, ∅, TL, SL) are those defined in [2]. See Figure 2
for an illustration of these events and Figure 3 for an example of reconciliation according to this model.

Figure 2: The events of the reconciliation model (Def. 1), each time displayed for a node u of G
and a node x of the subdivided species tree S′ on which u is mapped. Note that a same node u can
be mapped to several nodes. As a result of the mapping of its nodes, the gene tree G, extended here with
losses induced by the mapping (†), is embedded in S′ (here dashed lines represent edges of G, and plain
lines those of S′, grayed rectangular zones represent nodes of S′).

Figure 3: (a) A gene tree G, represented with lost copies of the gene (◦), and a subdivided species
tree S′. (b) A reconciliation α between G and S′. The reconciliation maps each node of G onto
a sequence of nodes in S′, inducing evolutionary events. For instance, nodes w, d1 and u from G are
mapped as follows: α(w) = [y], where α1(w) = y is an S event; α(d1) = [x′, x,D], where α1(d1) = x′

is a TL event, α2(d1) = x is an SL event, and α3(d1) = D is a C event; α(u) = [y′, x, C], where
α1(u) = y′, α2(u) = x, and α3(u) = C are respectively a ∅, an SL, and a T event.

Note that among these events, TL and SL are in fact a combination of two independent biological
events. However, the fact that a loss is always taken into account jointly with another event allows to
obtain a recursive algorithm and is done without loss of generality, i.e. does not reduce the power of the
model [2].



Given a gene tree G and species tree S, there is an infinite number of possible reconciliations. Discrete
evolutionary models compare them by counting the number of events they respectively induce. As
different types of event can have different expectancies (e.g. L are thought to be more frequent than
D and T), reconciliation models allow for a specific cost to be given to each kind of event. The cost
of a reconciliation is then the sum of the costs of the individual events it induces. In that setting, the
parsimony approach is then to prefer a reconciliation of lower cost. This is formalized in the following
definition.

Definition 2. Let us consider a gene tree G, a subdivision S′ of a species tree, and a reconciliation α
between trees G and S′. The cost of α is defined as

cost(α) = dδ + tτ + lλ,

where δ, τ , and λ respectively denote the cost of D, T, and L events, while d, t, and l denote the number
of the corresponding events in α. Moreover, a TL event is atomic and costs (τ + λ), while a SL event
just costs λ. Indeed, speciation events are most of the time considered as having a null cost, but the
model easily accommodates for non-null costs if necessary.

The optimal reconciliation cost is

C(G,S′) = min
α
{cost(α)}

over all reconciliations α between G and S′.

Note that several distinct alternative reconciliations can have an optimal reconciliation cost.

Lemma 1 (Consecutive TL events). Consider a gene tree G, the subdivision S′ of a species tree, and a
reconciliation α of optimal cost C(G,S′) = c(α). For any node u of G, if αi(u) corresponds to a TL
event, then αi+1(u) does not.

This results from the observation that two TL in a row can be replaced by single TL, leading to a
reconciliation of lesser cost.

Finding a most parsimonious reconciliation

To find one of the most parsimonious reconciliations between a gene G and a species tree S we will rely
on the dynamic programming algorithm of Doyon et al. [2] that computes the optimal reconciliation
cost, C(G,S′) on G and the subdivision S′ of S. This algorithm successively examines the nodes u of
G and their possible mapping on nodes x of S′ (or equivalently on edges ending at such nodes). A node
u of G can be mapped on such a vertex x according to different scenarios, each postulating a different
event at node u among those of Definition 1. The optimal cost for mapping u at x is defined according to
the scenario of minimal cost. For running time optimization reasons, the scenario involving a TL event,
whose cost is denoted cTL(u, x), is computed after the other possible scenarios, cTL(u, x) denoting the
minimum cost that can be achieved among the latter. This decomposition is possible since a TL event is
always followed by a C, S, D, T, ∅, or SL event (see Lemma 1). As a result, the best receiver for a TL
event of node u with donor branch x can be computed from the costs cTL(u, y) over all vertices y other
than x such that θS′(y) = θS′(x). The cost cTL(u, y) are themselves computed from cTL(ui, x) values
but for children ui of u (see below). These intricate notions are formally detailed in Definition 3.

Definition 3 (Reconciliation cost matrix). Consider a gene tree G and the subdivision S′ of a species
tree S. Let c : V (G) × V (S′) → R denote the cost matrix recursively defined as follows for a node
u of G and a vertex x of S′: cTL(u, x) = min{cE(u, x) : E ∈ {C, S,D,T,∅,SL}} and c(u, x) =



min{cTL(u, x), cTL(u, x)}, where the costs cE(u, x) for all events x E ∈ {C, S,D,T,∅, SL,TL} are
defined below

• cC(u, x) = 0, if u ∈ L(G), x ∈ L(S′) and L(x) = s(u).

• cS(u, x) = min{c(u1, x1) + c(u2, x2), c(u1, x2) + c(u2, x1)}, if u /∈ L(G) and x /∈ L(S′).

• cD(u, x) = c(u1, x) + c(u2, x) + δ, if u /∈ L(G).

• cT(u, x) = min{c(u1, x) + c(u2, z), c(u1, y) + c(u2, x)} + τ , with u /∈ L(G)and z (resp. y)
denoting a vertex that minimizes c(u2, z) (resp. c(u1, y)) over all vertices x′ ∈ V (S′) \ {x} such
that θS′(x′) = θS′(x).

• c∅(u, x) = c(u, x1), if x has a single child.

• cSL(u, x) = min{c(u, x1), c(u, x2)}+ λ, if x has two children.

• cTL(u, x) = cTL(u, y)+τ+λ, where y denotes a vertex that minimizes cTL(u, y) over all vertices
x′ ∈ V (S′) \ {x} such that θS′(x′) = θS′(x).

If the above constraints for an event E ∈ {C, S,D,T,∅, SL,TL} on node u and vertex x are not
respected, the corresponding cost cE(u, x) is set to∞.

The value c(u, x) is the optimal cost when mapping gene node u to node x in S′. The optimal cost for
reconciling G with S′, denoted C(G,S′), is then minx∈V (S′)(c(r(G), x).

The algorithm of Doyon et al. [2], called Mowgli, fills the dynamic programming cost matrix V (S′) ×
V (G)→ R+ by two embedded loops: one loop visits all species nodes of S′ in time order (e.g. accord-
ing to the θS′ partial order, while the other loop visits nodes of the gene tree G in postorder. Due to an
optimization in precomputing the best receiver edge for transfer events of nodes u at a given time, this
algorithm has O(|S|2.|G|) time complexity.

The problem considered in this paper is the following:

MOST PARSIMONIOUS RECONCILIATION GENE TREE (MPR-GT)

INPUT:

• a dated species tree S with a time function θS

• a gene tree G with supports on its edges and whose leaves are associated to leaves of S

• costs δ, τ , resp. λ for D, T, resp. L and

• a threshold t.

OUTPUT: a gene treeG′ such that both L (G) = L
(
G′
)

and strt(G) ⊆ E(G′), and such that C(G′, S′)
is minimum among all such trees.



Algorithm

We describe here a heuristic for the MPR-GT problem that relies on a hill-climbing strategy to seek a
(rooted) gene tree G of minimum reconciliation cost (see Def. 3) using NNI edit operations [33].

Performing an NNI operation around an internal edge (w, v) means swapping the position of one of
the two subtrees connected to v with that of the subtree connected to the sibling of v. Given an initial
gene tree G and an edge of G, two “alternative” trees can be obtained from G by performing an NNI
operation (see Figure 4). The hill-climbing proceeds as follows: (1) select a weak edge of G; (2)
compute the reconciliation cost for the two alternative gene trees obtained by NNI on that edge; (3) if
none of these trees decreases the reconciliation cost, then try another weak edge; if none of the weak
edges allows to progress, then G is a local minimum and the hill climbing stops; (4) otherwise one of
the alternative gene trees leads to a decrease in reconciliation cost, and the above process continues with
the alternative tree of minimum reconciliation cost. MowgliNNI outputs the final binary rearrangement
along with its most parsimonious reconciliation. In the worst cases, MowgliNNI examines all unreliable
edges and does not find any better binary rearrangement of the given gene tree G since the topology G
is already (locally) optimal. The whole scheme of MowgliNNI is described in Figure 5.

Figure 4: A gene tree G with a weak edge (w, v) selected for an NNI. v is connected to two subtrees
Gc andGd, while w is connected to v and to the subtreeGb. Performing an NNI operation around (w, v)
means interchanging subtree Gb with either Gc or Gd, leading to trees G′ and G” respectively.

Figure 5: Algorithmic scheme of MowgliNNIn (non-optimized version of the method).

Consider now the time complexity of MowgliNNI. Identifying the weak edges is done in O(|G|) and
generating the two alternative gene trees for a NNI operation is done in constant time. Hence, the
complexity bottleneck of MowgliNNI is the number of times (denoted N ) the Θ(|S|2 · |G|) Mowgli
algorithm is called. Overall, the time complexity of MowgliNNI is Θ(|S|2 · |G| ·N). The next section
describes how we can avoid recomputing large parts of the cost matrix, and hence greatly reduce the
running time of MowgliNNI.

Combinatorial optimization

We now present results that take advantage of the way the dynamic programming matrix is computed
(Def. 3) to avoid recomputing from scratch the cost matrix associated to a gene tree G′ obtained by
an NNI edit operation from a gene tree G. Consider the gene tree G of Figure 4, the NNI operation
applied on edge (w, v) that swaps the two subtrees Gb and Gc, and the resulting gene tree denoted
G′. We can observe that despite the global architecture of G and G′ differs, the local architectures of
subtrees Gb, Gc, Gd, Ga0 , . . . Gak remain unchanged. Hence, any cost that differs between the matrices
C(G,S′) and C(G′, S′) (see Definition 3) is located in a column (i.e. node of the gene tree) associated
to an ancestor of v (including v itself). For each of those nodes, there are two cases: (i) the node belongs
to the NNI edge and its two children have subtree that have been modified (e.g. nodes w and v); (ii) the
node is a strict ancestor of the NNI edge (w, v) and has exactly one child with a subtree that has been
modified (e.g. gk, . . . , g0).

Lemma 2 below indicates which columns of the cost matrix don’t need to be recomputed.

Lemma 2. Consider a gene tree G, the subdivision S′ of a species tree S, an edge (w, v) of G, and the
gene tree G′ obtained from G by an NNI operation on (w, v). For each node z of G that is not ancestor
of v in G and for each vertex x of S′, then c(z, x) = c′(z, x) holds.



This observation results from the fact that the dynamic algorithm of Mowgli computes the value of a
cell (z, x) in the cost matrix using cells storing values either for the same node z or for its children (see
formulas of Definition 3). Hence the value of a cell (z, x) directly or indirectly depends only on values
for cells corresponding to z and its descendants. Going from gene tree G to G′ by an NNI operation,
precisely changes the descendant relationships of v and its ancestors, i.e. all other nodes z have the same
descendants in both G and G′ (see Figure 4), hence c(z, x) = c′(z, x) holds for all these nodes.

Unfortunately, there is no extension of Lemma 2 to ensure that when an edge has already been unsuc-
cessfully tried for an NNI, it is useless to reconsider it later, even if it is a descendant in G of the edge
leading to the last successful NNI.

Theorem 1. Consider a gene tree G, the subdivision S′ of a species tree S, an edge (w, v) of G,
a gene tree G′ obtained by an NNI operation on (w, v), and any strict ancestor u of w in G where
the unique child of u that is an ancestor of w is u1 w.l.o.g. (i.e. w ≤ u1 in both G and G’). If
c(u1, x) ≤ c′(u1, x) holds for all x ∈ V (S′), then c(u, x) ≤ c′(u, x) holds for all x ∈ V (S′), and as a
corollary C(G,S′) ≤ C(G′, S′).

The proof of Theorem 1 is described in Appendix. This theorem leads to the optimized algorithm of
MowgliNNI, formally stated in Algorithm 1 as an integrated procedure run after Mowgli. The later
computes a dynamic programming matrix c : V (G) → V (S′) that MowgliNNI then partly recomputes
given a rearrangement performed on the gene tree G. For each rearrangement, the matrix recomputed
by MowgliNNI, denoted c′ : V (G′) → V (S′), is obtained in worst case time O(|S′| · h(G)), where
h(G) is the height of G (i.e. the number of its ancestors).

Algorithm 1MowgliNNI(G, c): seeking a gene treeG′ of minimum reconciliation cost, starting from
a gene tree G and the precomputed matrix reconciliation cost c : V (G) × V (S′) → R, where S′ is the
subdivided species tree.

1: for all edges (w, v) ∈ wkt(G) do
2: For each node s of G that is not an ancestor of v, set the column c′(s, ·) to c(s, ·).
3: For each vertex x of S′, recompute the cost c′(v, x) according to Def. 3.
4: for all strict ancestors s of v according to a bottom-up traversal of G do
5: For each vertex x of S′, recompute the cost c′(s, x) according to Def. 3.
6: If c(s, x) ≤ c′(s, x) holds for each vertex x of S′, then examine the next edge of loop at line 1

{the NNI rearrangement tree G′ is refused}.
7: end for
8: Return MowgliNNI(G′, c′) {The rearranged tree G′ is accepted}.
9: end for

10: Return G {No successful rearrangement of G}

Theorem 2. MowgliNNI has worst case running time O(|S|2 · |G|+ |S|2 · h(G) ·N)

Indeed the steps of Algorithm 1 can be described as follows: initializing the reconciliation matrix for
the initial gene tree is done in O(|S|2 · |G|) time; then updating the matrix for each of the N NNIs now
only costs O(|S′| · h(G)) = O(|S|2 · h(G)).

In MowgliNNI ’s naïve implementation each rearrangement requires to recompute the cost associated to
each and every node of the gene tree. In contrast, in the optimized version, an NNI around edge (w, v) is
examined after updating only those costs associated to ancestral nodes of w. This has no impact on the
worst case complexity (when the gene tree is a caterpillar h(G) is in O(|G|)) but significantly reduces
the running times in practice since in most cases the number of nodes in G is much larger than their



average height. For some random tree models the average height of a node in an n-leaf tree is indeed
proportional to log(n) [34].

Results and discussion

Experiments on simulated datasets

Simulated gene trees and evolutionary histories

A phylogeny of 37 proteobacteria was used as a reference species tree (denoted S) [8]. Along this tree,
we simulated the evolutionary history (denoted RTrue) of 1000 gene families (GTrue), each containing
from 10 to 100 genes, according to a birth and death process [35]. Birth events can be one of three kinds
of evolutionary events, i.e. speciation, duplication, and horizontal gene transfer. During the simulation
process along the species tree, a speciation occurs every time a gene lineage reaches an internal node of
the species tree, leading to a split in two gene lineages. A birth event happening strictly between two
nodes of the species tree can only correspond to a gene duplication or a horizontal gene transfer event.
A birth is decided to be duplication or a transfer according to the input rates of these events.

The death of a gene lineage corresponds to a loss event, which happens according to an input loss rate.
The species tree was scaled to the height of 500 million years (Mya). The speciation rate is determined
by the topology and the height of the species tree. Each of the 1000 gene families was generated with
different event rates, the loss rate being randomly chosen in the range [0.0010–0.0018] events/gene
per million year. The ratio between the sum of duplication and transfer rates and the loss rate was
randomly chosen in the range [0.5 - 1.1], the duplication rate being [70% - 100%] of the mentionned
sum. This birth and death process first output a complete gene tree Go, then the “true” gene tree GTrue
was obtained from Go by replacing extinct subtrees by a single loss. The “true” evolutionary events to
be recovered by the reconciliation programs are those appearing in GTrue. We denote RTrue the history
composed by these events. We only considered gene families containing at most ten duplication and
transfer events in their true evolution. In particular for the transfer events, this constraint allowed us to
limit the number of cases where the true evolution contains a sequence of consecutive transfers where
non-transferred genes are lost (i.e. a sequence of TL events). Such a piece of history can hardly be
recovered by reconciliation methods as it left no trace at all in the gene tree.

Starting from GTrue, a further step of the simulation protocol allows to obtain estimates of both this
gene tree and the events composing its history (see Figure 6).

Figure 6: The simulation protocol to obtain inferred gene trees from sequences derived from a
true gene tree. The module “Deviation from ultrametricity” is taken from the program of Galtier
that converts the edge lengths of ultrametric trees from the time unit into substitution numbers [36].
GML denotes the initial gene tree inferred by Maximum Likelihood from the simulated sequences;
RecML, resp. RecR, denotes the reconciliation between GML and the reference species tree predicted
by Mowgli [2], resp. Ranger-DTL-D [3]; GNNI is the alternative gene tree found by MowgliNNI and
RecNNI is the reconciliation between GNNI and the species tree.

The length of the edges in GTrue were first converted from duration to number of substitutions per site
by a module taken from [36]. Next, we simulated the evolution of 1500 - 3000 bp DNA sequences
along this tree under the GTR model, thanks to the Seq-Gen program [37]. The alignment, composed of
one sequence per extant gene, was then given as input to RAxML [38] to obtain a maximum likelihood
estimate of the gene tree, denoted GML (also called initial gene tree below). Mowgli [2] and Ranger-
DTL-D [3] were then used to infer a most parsimonious evolutionary history RML, resp. RR, between
this initial gene tree and the reference species tree S. Separately, MowgliNNI was used to search for



an alternative gene tree topology (GNNI ) of lower reconciliation cost, along with one of its most parsi-
monious evolutionary history (RNNI ). The elementary cost considered for each event kind E (with E
being D, T or L) was computed as follows:

CostE =


log
(DRTrue

+TRTrue
+LRTrue

ERTrue

)
if ERTrue

6= 0

log
(DRTrue

+TRTrue
+LRTrue

0.1

)
otherwise

(1)

where ERTrue
stands for the number of events of the corresponding kind in RTrue.

Measuring the accuracy

First, we estimated the improvement in the accuracy of the gene tree’s topology, as measured by the
Robinson-Foulds (RF) distance [39] between the true gene tree (GTrue) and the inferred gene tree
(GML). As a second measurement of the accuracy of inferred reconciliations we compared the po-
sitions of D, T and L events predicted by MowgliNNI and Mowgli with those present in the true history.
This is achieved by studying the proportion of true positive (TP), false positive (FP) and false negative
(FN) separately for duplications, transfers and losses [2]. True negatives (TN) were not studied as their
number is considerably large (if even finite) and hard to determine. An event of RTrue is declared as
correctly predicted when it concerns the right part of the gene tree (node or edge) placed in the correct
branch or node of the species tree (see [2] for more details). Incidentally, both the receiver and the donor
edge of the species tree have to be correctly indicated for a predicted transfer event to be declared as
correct.

MowgliNNI provides more accurate inferences

We explored the ability of MowgliNNI to improve the set of GML trees using six different bootstrap
values as threshold for defining weak edges, i.e. 20, 40, 60, 80, 90, and 95. The GML trees were
inferred from relatively long sequences, they thus contained a large proportion of high bootstrap values,
e.g. more than 63% edges had a bootstrap value ≥ 80. Though this left only a moderate number of
edges in each gene tree to be considered by MowgliNNI for rearrangement, the method was still able to
improve their quality (see below).

Mowgli and Ranger-DTL-D showed a similar accuracy in inferring duplications and transfers (Figure 7),
though Ranger-DTL-D proposed reconciliations with higher costs in 13% of the cases. As both methods
reconciled the same trees and used the same elementary costs for the events, one might wonder why they
did not always obtain the same reconciliation costs. This results from different factors among which the
most important is that Ranger-DTL-D relies on a less general reconciliation model than Mowgli (e.g.
not ensuring time consistency and not allowing gene loss in the donor branch after a transfer), but which
on the other hand allows it to run at greater speed. As Mowgli and Ranger-DTL-D performed similarly,
in the following we just report results obtained with Mowgli.

Figure 7: The accuracy of Mowgli, Ranger-DTL-D and MowgliNNI (threshold=80) in inferring
duplications and transfers, where TPDT (resp. FPDT , FNDT ) denotes the true positive (resp.
false positive, false negative) of duplications and transfers predicted.

MowgliNNI progressively reduced the number of predicted duplications, transfers and losses as the
threshold increased. At threshold 0 (where MowgliNNI = Mowgli), 5510 duplications, 2494 transfers
and 12190 losses were predicted on the whole dataset; going to threshold 80, these numbers dropped
to 4602 duplications, 1676 transfers and 8133 losses, i.e. values that are much closer to the 4535
duplications and 8260 losses contained in the true reconciliations.



Figure 8(a) shows that, no matter the threshold value, the false positive (FP) of MowgliNNI are always
less than that of Mowgli both in terms of RF distance and evolutionary events (duplications, transfers and
losses). This means that the GNNI trees are closer to the true ones than the initial GML trees inferred
from sequences only. Similarly, the evolutionary events inferred from theGNNI trees are more accurate.
As the threshold increases from 0 to 80, RNNI contains less and less FP events, hence widening the gap
in accuracy between Mowgli and MowgliNNI. As increasing the threshold results in reconsidering a
larger number of GML edges for NNI operations, this means that the species tree examined through the
reconciliation lens is a good guide tree for correcting wrong edges of the gene trees.

Figure 8: (a) Average false positive error reduction achieved by NNI trees (FPNNI ) w.r.t. that of
the initial gene trees (FPML). The positive value indicate that the NNI tree has on average less errors
than the initial tree. (b) Average FP of the NNI trees – note that values at threshold 0 correspond to the
FP of Mowgli.

The average number of false positive events of the RNNI reconciliations decreases as the threshold
increases (Figure 8(b)). However, as in Doyon et al. [2], the average number of FP transfers is quite
high compared to that of duplications and losses. This can be explained by several reasons. First, a
transfer is judged incorrect as soon as (i) it does not depart or end in the same edges of the species tree
as the corresponding true transfer, or (ii) it does not concern the same edge in the gene tree. Overall,
there is an additional constraint w.r.t. duplications and loss events, leading on average to more incorrect
events. This point is all the more sensitive that several most parsimonious reconciliations (MPR) are
obtained in a number of cases, while we just accounted for one of them for each gene family. Hence,
event error rates we report are pessimistic, and especially for transfers due to the stringent conditions
for judging a transfer as correct. Note that the multiplicity of MPRs does not affect the RF error terms.
Last, incorrect gene trees lead to incorrect event inferences, but the latter are very sensitive to only small
errors in gene trees. The event FP error grows almost exponentially when the RF distance between the
initial and the true tree increases from 0 to 10% (Figure 8). Figures 9 and 10 show that transfers are
more influenced by this factor, as a result of more stringent conditions for being correct.

Figure 9: The false positive (FPDTL) error rate of the events predicted by reconciliation methods
grows exponentially with respect to the Robinson Foulds distance between the initial and true tree.

Figure 10: (a) The false negative reduction of NNI gene trees (FNNNI ) in comparison to the
initial gene trees (FNML). While reducing the number of wrong events predicted, MowgliNNI
mostly does not remove the events that have been correctly predicted. (b) FN of the NNI trees. FN and
FP of Robinson Foulds distance are the same since the true, initial and NNI gene trees are binary.

Influence of the sequence length parameter

MowgliNNI achieved a higher improvement over Mowgli on the subset of 327 GML families inferred
from short sequences (length 1500–2000 bp) than on the subset of 336 families inferred from long
sequences (length 2500–3000 bp), see Table 1. For instance, at threshold 80, MowgliNNI was able to
proposed a modified gene tree (GNNI ) for up to 83%, resp. 92%, of the families containing weak edges
when GML was inferred from long, resp. short, sequences. Similar results were observed for the quality
of modified gene trees(GNNI ) in term of RF distance to GTrue and for the quality of reconciliations in
term of event distance between inferred and true reconciliation. The fact that higher improvements are
obtained for shorter sequences was confirmed through the simulation of 1000 GML families inferred
from much shorter sequences (400 bp), where still a higher improvements where obtained (see Table 2).



Table 1: Quality of the gene trees (GNNI ) and reconciliations (RNNI ) inferred by MowgliNNI
depending on the length of the sequences used to obtain GML trees and on the threshold indicating
weak edges

Short sequences Long sequences
Threshold 20 80 95 20 80 95
Number of gene families containing weak edges 163 323 327 118 328 332
%cases s.t. Cost(S,GNNI) < Cost(S,GML) 80 92 91 75 83 84
%cases s.t. RF (GTrue, GNNI) < RF (GTrue, GML) 43 74 73 29 67 67
%cases s.t. RF (GTrue, GNNI) = RF (GTrue, GML) 53 17 18 67 26 24
%cases s.t. RF (GTrue, GNNI) > RF (GTrue, GML) 4 9 9 4 7 9
%cases s.t. ED(RTrue, RNNI) < ED(RTrue, RML) 66 82 83 51 76 76
%cases s.t. ED(RTrue, RNNI) = ED(RTrue, RML) 24 12 12 33 20 19
%cases s.t. ED(RTrue, RNNI) > ED(RTrue, RML) 10 6 5 16 4 5
Threshold of 20, 80 and 95 bootstrap support values are reported and sequence alignments of length in the range 1500 - 2000
bp (short seq.) or 2500–3000 bp (long seq.) were considered. For each threshold, the second row indicates the number of
gene families (GML) containing weak edges among the 327 (resp. 336) families inferred from short (resp. long) sequences.
The third row indicates the percentage of these families where MowgliNNI proposes a modified tree of lower reconciliation
cost. The last six rows provide the percentage of the former families where MowgliNNI provides modified gene trees (resp.
reconciliations) that are closer, equally far or farther from the true gene trees (resp. the true trees). RF (GTrue, GX) denotes
the Robinson Foulds distance between GTrue and GX , ED(RTrue, RX) = |RTrue−RX |+ |RX−RTrue|, where X stands
for NNI or ML.

Table 2: Quality of the gene trees (GNNI ) and reconciliations (RNNI ) inferred by MowgliNNI
on very short sequences
Threshold 20 80 95
Number of gene families containing weak edges 794 1000 1000
%cases s.t. Cost(S,GNNI) < Cost(S,GML) 89 97 97
%cases s.t. RF (GTrue, GNNI) < RF (GTrue, GML) 58 77 75
%cases s.t. RF (GTrue, GNNI) = RF (GTrue, GML) 39 16 16
%cases s.t. RF (GTrue, GNNI) > RF (GTrue, GML) 3 7 9
%cases s.t. ED(RTrue, RNNI) < ED(RTrue, RML) 78 91 91
%cases s.t. ED(RTrue, RNNI) = ED(RTrue, RML) 15 5 5
%cases s.t. ED(RTrue, RNNI) > ED(RTrue, RML) 7 4 4
For each tested threshold value, the second row indicates the number of gene families (GML) containing some weak edges
among 1000 families inferred from very short sequences of length 400 bp. Third row indicates the percentage of these families
where MowgliNNI proposes a modified tree of lower reconciliation cost. The last six rows provide the percentage of the former
families where MowgliNNI provides modified gene trees (resp. reconciliations) that are closer, equally far or farther from the
true gene trees (resp. the true evolutions). RF (GTrue, GX) denotes the Robinson Foulds distance between GTrue and GX ,
ED(RTrue, RX) = |RTrue −RX |+ |RX −RTrue|, where X stands for NNI or ML.

Robustness of reconciliations to imprecision in the event costs

In order to measure the dependance of MowgliNNI on the precise costs used for each kind of event, we
ran the method on GML trees with costs varying up to 10%, 20%, then 50% w.r.t. those used derived
from RTrue using Formula (1). The paired t-test for RF distances shows that the GNNI trees obtained
with the new noisy costs are not significantly different from those obtained with the former costs (p-
value=0.1747, 0.1758, 0.1144 respectively). The accuracy of inferred events also does not change much.
Transfers have the highest variation with 4.2% (resp. 3.1%) increase in FP (resp. FN) when the event
costs vary up to 50% (Table 3). Thus, MowgliNNI is quite robust to changes in the event costs.

Room for future improvement

To measure how much of the achievable improvement over the GML trees was realized by MowgliNNI,
we studied the distribution of reconciliation costs of all possible gene trees for several cases involving a



Table 3: The robustness of MowgliNNI to changes in event costs with respect to the initial ones
computed by Formula (1) (Column 1)
Event cost variation RF FP Dup FP Tran FP Loss FN Dup FN Tran FN Loss

0% 12.8 14.1 69.9 14.9 12.8 42.5 16.2
10% 12.9 14.3 72.1 16.4 13.0 45.0 17.6
20% 12.9 14.4 71.1 16.8 13.2 44.2 17.7
50% 12.9 14.6 74.1 17.8 15.0 45.6 18.9

Error terms (in %) are the Robinson Foulds distances (RF) as well as the false positive (FP), and false negative (FN) for the
various event predicted. Non-negligible variations in event costs result in small variations of the error terms (transfers being
the most affected).

computationally manageable number of species. The shape of the distribution together with the relative
position of the costs obtained for GTrue, GML and GNNI within those distributions gives information
on how much improvement could be achieved in the future by more sophisticated methods (e.g., relying
on SPR moves). We report here on two cases representative of our observations: two true gene trees
GATrue, G

B
True of 8 taxa were generated from the species tree S of 37 proteobacteria according to the

protocol described in Figure 6. Their two associated histories A and B were used as starting points
to obtain both sequence alignments and reconciliations costs (according to Equation 1). This time, 50
sequence alignments were generated from each of the two gene trees. A maximum likelihood tree was
obtained from each of the 100 alignments, with bootstrap supports associated to its edges. These trees
were then submitted for improvement to MowgliNNI, applying a threshold 50 to specify weak edges,
and relying on event costs corresponding to histories A and B respectively. All reconciliations were
performed with respect to the species tree S.

Figure 11 shows the distributions of reconciliation costs C(S,G) obtained for all possible binary trees
G having the same leaves asGATrue andGBTrue respectively. The first observation is that though the same
species tree was used in both cases, these distributions vary significantly in range and shape depending
on the gene tree leaf set. In the case of history B, the number of trees with reconciliation costs falling in
a given range varies sporadically, whereas the number of trees in a given range almost follows a normal
(or beta) distribution for history A.

Figure 11: Distributions of reconciliation costs C(S,G)6 over all possible binary gene trees G
for two sets of 8 taxa from the phylogeny S of 37 proteobacteria, obtained by generating two
simulated histories A and B along S. For each distribution, we indicate the position of C(GTrue, S),
the reconciliation cost obtained by Mowgli for the true gene tree of the corresponding history. The plot
also indicates the average cost C(S,GML) obtained for reconciliations from maximum likelihood trees
and the average cost C(S,GNNI) obtained for reconciliations of MowgliNNI trees obtained from the
maximum likelihood trees.

History A involved 2 duplications, no transfer and 7 losses and was correctly recovered by the parsimo-
nious reconciliation of Mowgli from GATrue. However, History B (involving 2 duplications, 1 transfer
and 5 losses) was incorrectly recovered from GBTrue, the achieved C(GBTrue, S) = 3.98 cost being less
than the 5.75 cost for the real history. Though the real cost is in the left part of the distribution, it is
not the minimum point of the distribution, showing that parsimony can sometimes be misleading when
followed to its extreme.

Nevertheless, in both cases, the true gene tree is among the ones having the minimum reconciliation
costs: it is precisely the one leading to the minimum cost for history B and among the nine best trees for
history A. On these examples (and other cases not shown), parsimony can be considered as a very good
guide towards the correct gene tree, even if the reconciliation from this correct tree can underestimate
the number of real events (as discussed above).



For both histories A and B, MowgliNNI proposed a gene tree GNNI whose reconciliation cost was on
average closer from that of the true gene tree – and from the real cost – than the cost obtained from the
maximum likelihood tree.

Conclusion on simulated datasets

In summary, MowgliNNI successfully uses the reconciliation cost as additional information to resolve
the uncertain parts of gene trees inferred from sequences only. Though the gene tree resolutions are
partly guided by reconciliations with the species tree, they are not attracted away from the true gene
trees, but are closer to them than the initial gene trees. As a result, MowgliNNI infers gene events more
accurately, which is of prior importance to distinguish orthologs from paralogs and xenologs [14].

Experiments on real data

As species tree S, we chose a phylogeny covering 336 genomes of Bacteria and Archaea recently in-
ferred by Abby et al. [30].

Then, a dataset of 29, 709 homologous gene families spanning these taxa was collected from the HOGENOM
database (release 04) [40]. Each such family contains from 3 to 312 taxa. The gene tree of each family
from this dataset was reconciled with the species tree by Mowgli and MowgliNNI using costs τ = 3,
δ = 3.5, resp. λ = 1 for transfers, duplications, resp. losses. These costs were estimated on the basis of
several bacteria phyla by a maximum likelihood method [18,41]. A threshold of 50% for branch support
values was used to indicate to MowgliNNI the weak edges in the gene trees.

A decrease in the number of inferred events and reconciliation costs

MowgliNNI allowed to change the gene tree, hence to lower the reconciliation cost, in 24% of the
≈ 30, 000 families. This gain is non-negligible and has a real importance as changing the gene tree
topology has an important impact on the inferred events (as already shown on simulated datasets and
discussed below). In turn, these inferred events may serve to predict the function of new sequences on
the basis of their orthology relationships with annotated sequences, orthology following from the chosen
reconciliation.

Among previous reconciliation studies that allowed to modify the gene trees, Berglund-Sonnhammer
et al. report that 10% of their families were improved [21] when allowing rearrangements on weak
edges under the DL model, while Chaudhary el al. improved all their gene trees in a pure D model
when rearranging gene trees with Subtree Prune and Regraft (SPR) operations [24]. Note that the
heterogeneity of models and datasets used in these studies limit the comparison of their results, but we
cite them for completeness.

For gene families with a lower reconciliation cost (24% of all families), we counted the number of events
of each kind (D, T, L) inferred by Mowgli and MowgliNNI. As a rule, MowgliNNI led to a decrease in
the number of events in inferred evolutionary histories. In particular, the number of transfers is reduced
in 88.3% of these gene families, the number of losses being reduced in 59.9%, while the number of
duplications is almost the same (decrease in 5.2% of the families). These results obtained in the DTL
model echo those of Durand et al. reporting that in the DL model gene tree rearrangements substantially
reduce the number of events needed to explain the data [19]. The differences in reductions we observed
among the kind of events can be explained by the costs – estimated from [18,41] – that we used for
the events (τ = 3, δ = 3.5, λ = 1). Given those costs, it is usually more parsimonious to explain the
conflicts between a gene and the species tree by a combination of T and L rather than a combination of
D, and L. Thus, when MowgliNNI infers a gene tree closer to the species tree, it mostly removes the



need for artificial transfers (and losses to a lesser extent), while not altering that much the number of
duplications.

To give a precise example of how MowgliNNI proposes a more parsimonious reconciliation on a mod-
ified gene tree than Mowgli on the initial gene tree, Figure 12 details the particular case of family
HBG040981, (a putative tocopherol cyclase). In this case, MowgliNNI proposes a gene history resorting
to less events by rearranging an edge with a very small support. The gene tree modified by MowgliNNI
leads to a reconciliation having one transfer and one loss less than the reconciliation performed from the
initial gene tree. On the whole, the reconciliation cost goes from 9.5 down to 5.5.

Figure 12: Example of reconciliation with Mowgli (top) and MowgliNNI (bottom). A and D are
the gene trees. The NNI rearrangement around the green bold edge in A exchanging the two subtrees in
green circles results in D. B and E are the reconciled gene trees showing the duplications (blue squares),
losses (red crosses) and the transferred subtree (purple). C, resp. F, is the species tree with the events
inferred by Mowgli, resp. MowgliNNI, mapped onto the appropriate edges (a purple arrow shows the
origin and destination of the transfer). NOSTO1 - Nostoc sp. PCC 7120; ANVAR1 - Anabaena variabilis
ATCC 29413; TRERY1 - Trichodesmium erythraeum IMS101; SYNEC4 - Synechococcus sp. JA-2–3B’a(2–13);
SYNEC5 - Synechococcus sp. JA-3–3Ab; SYNEY1 - Synechocystis sp. PCC 6803; GLVIO1 - Gloeobacter
violaceus PCC 7421; THELO1 - Thermosynechococcus elongatus BP-1; PRMAR1 - Prochlorococcus marinus
str. MIT 9312

A decrease in the number of equally most parsimonious reconciliations

In addition to reductions in number of events and hence reconciliation cost, the modified gene trees pro-
posed by MowgliNNI usually reduced the number of alternative MPRs, i.e. equally most parsimonious
histories. On a random sample of two dozens modified gene trees, the number of MPRs is reduced in
63% of the cases (by a factor of 18 in the best case), and increased in 21% (by a factor 3 at worst). This
echoes similar observations done by other authors.

The improvement in running time due to the optimized version of MowgliNNI

We measured the running time of Mowgli and that of both the naive and optimized versions of MowgliNNI
(see Methods), respectively called MowgliNNIn and MowgliNNI. From the ≈ 30k families of our
dataset, we extracted a random sample of 100 families uniformly spanning from 10 to 80 taxa, and
respecting the previously observed proportion of improving / non-improving cases in the reconciliation
cost (i.e., 24% and 76% resp.). This sample was used to run the three programs. Figure 13 reports the ra-
tios of MowgliNNIn and MowgliNNI running times over those of Mowgli, with respect to the number of
weak edges within the input gene tree. Indeed, for each gene tree, the number of tested rearrangements
during the optimization search depends on the number of weak edges, which hence strongly impacts
MowgliNNIn and MowgliNNI running times. Note that the number of weak edges often represents
between 10% and 20% of the gene tree edges, but can go up to 70%.

Figure 13: Compared running times of reconciliation methods. Two sets of values are plotted:
each blue dot, resp. red triangle, corresponds to the ratio between the running time of MowgliNNIn,
resp. MowgliNNI and that of Mowgli on a same gene tree, depending on the number of weak edges.
Regression lines are provided for both dot sets.

Figure 13 shows that MowgliNNI is 20 (resp. 50 and 80) times faster than MowgliNNIn, when facing
1–20 (resp. 20–40 and 40–60) weak edges. This shows that the combinatorial optimization proposed in
the Methods section is crucial in practice.



Now, when compared to Mowgli, the rearrangements tried by MowgliNNIn on weak edges to obtain a
better gene tree are done at the price of a relatively small computation time overcost. We also indicate
the regression line of MowgliNNI running times with respect to those of Mowgli, plotted against the
number of weak edges. Its slope is only 0.01186, meaning that MowgliNNI (the optimized version) is
able to take into account the gene tree uncertainties with just a slight increase in the running time.

Transfers in prokaryotic phyla

On our whole dataset of 29, 709 homologous gene families, we particularly studied transfers in 5 bacte-
rial and 1 archaeal phyla: Proteobacteria (169 genomes), Actinobacteria (31 genomes), Cyanobacteria
(14 genomes), Chlamydiae (7 genomes), Spirochaetes (7 genomes) and Crenarchaeota (10 genomes).
We compared our results obtained with Mowgli and MowgliNNI to those of Abby et al. [30] obtained
with the Prunier method [29] that infers transfers in mono-copy gene families on another basis than
reconciliation.

In order to compare our results to the Abby et al. study, we extracted particular families from HOGENOM
v4. For each of the 6 phyla of interest, we collected the list of families having at most one copy of the
gene for the genomes of this phylum and separated them into two groups: families having one copy of
the gene for each genome of the phylum, so-called “universal families”, and families having a copy of
the gene for at least 7 genomes of the phylum, so-called “non-universal families”.



For each phylum, we computed the number of intra-phylum transfers inferred by reconciliations of
Mowgli and MowgliNNI for families of the two groups (universal and non-universal). As the number
of families we found in several groups among the various phyla varied slightly from those reported by
Abby et al. [30] we summarized the findings of both studies in terms of transfer rates, expressed in
number of transfers per million year and per family.

Figures 14 and 15 display transfer rates of universal, resp. non-universal families, for the studied phyla
ordered by increasing transfer rate. We note that the obtained order on the phyla depends on the profile
of the studied families, as in Abby et al. [30]. For both the universal and the non-universal families, the
transfer rates obtained through Mowgli and MowgliNNI follow the same trend as that prediced by the
Prunier method, i.e. the phyla are ordered in the same way, from the Spirochaetes up to the Actinobac-
teria in the case of universal families and from the Proteobacteria up to the Crenarchaeota in the case of
non-universal families.

Figure 14: Comparison of Mowgli, MowgliNNI and Prunier [29] on the basis of their transfer rate
per million year per gene family, for prokaryotic phyla having mono-copy universal families (i.e.
families having one copy of the gene for each genome of the considered phylum). No mono-copy
universal family was found for Proteobacteria.

Figure 15: Comparison of Mowgli, MowgliNNI and Prunier [29] on the basis of their transfer rate
per million year per gene family, for prokaryotic phyla having mono-copy non-universal families
(i.e. families having at most one copy of the gene for the genomes of a considered phylum, and
covering at least 7 genomes of this phylum). No mono-copy non-universal families was found for the
Chlamydiae and Spirochaetes phyla.

Finally, as expected, MowgliNNI reduced the number of inferred transfers compared to Mowgli, leading
to transfer rates closer to that inferred by Prunier.

Conclusion

We introduce the MowgliNNI heuristic method relying on NNI rearrangements of the uncertain parts of
the gene trees to solve a parsimony optimization problem for reconciliations accounting for duplications
(D), losses (L) and transfers (T). We show experimental evidence that reconciliations computed under
the parsimony criterion can efficiently correct erroneous parts of gene trees inferred from sequence
data. On simulated data, MowgliNNI often proposes a new gene tree topology that is closer to the
correct one and that also leads to better D, T and L predictions. Moreover, the number of events and
the number of most parsimonious reconciliations predicted by MowgliNNI are significantly lower than
those obtained without questioning the gene tree topology. This is confirmed on real data. A critical
point for parsimony methods is the choice of respective costs for the considered evolutionary events. We
show here that MowgliNNI’s performance is only slightly altered when changing the costs given to the
individual events (D, T and L), that is, the method is robust to cost misspecification.
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Appendix

Proof of Theorem 1

Theorem 1. Consider a gene tree G, the subdivision S′ of a species tree S, an edge (w, v) of G,
a gene tree G′ obtained by an NNI operation on (w, v), and any strict ancestor u of w in G where
the unique child of u that is an ancestor of w is u1 w.l.o.g. (i.e. w ≤ u1 in both G and G’). If
c(u1, x) ≤ c′(u1, x) holds for all x ∈ V (S′), then c(u, x) ≤ c′(u, x) holds for all x ∈ V (S′), and as a
corollary C(G,S′) ≤ C(G′, S′).

Proof. First remark that an NNI operation performed around the edge (w, v) of G to obtain a modified
tree G′ does not alter the order of the nodes above v, which are then considered below indifferently of
the tree they belong.

The proof is done with a recurrence over increasing time t ∈ {0, 1, . . . , h(r(S′))} for the subset of
nodes Vt(S′) ⊂ V (S′). Recall that, in S′ the height of a node u (denoted h(u)) is a valid time function
(see Figure 1) and that u1 is the child of u that is an ancestor of w (whereas u2 is incomparable with w).

Base case

For time t = 0, the possible events for the internal node u and any leaf x ∈ V0(S′) are D, T, and TL
(see the reconciliation model of Definition 1).

For each event E ∈ {D,T}, cE(u, x) (resp. c′E(u, x)) depends on the costs c(ui, y) (resp. c′(ui, y))
over all children ui ∈ {u1, u2} and vertices y ∈ Vt(S

′) (see Definition 3). Since u2 (resp. u1) is
incomparable to (resp. an ancestor of) w, Lemma 2 implies that c(u2, y) = c′(u2, y) and the assumption
states that c(u1, y) ≤ c′(u1, y). That all costs used in the equation of c′E(u, x) are not lower than the
corresponding costs in that of cE(u, x) leads to the following properties:

Remark 1. The following properties hold for all internal nodes u ∈ V (G) \ L(G).

1. For all events E ∈ {D,T} and leaves x ∈ V0(S′), cE(u, x) ≤ c′E(u, x) holds.

2. For all leaves leaves x ∈ V0(S′), min{cE(u, x) : E ∈ {D,T}} ≤ min{c′E(u, x) : E ∈ {D,T}}.

3. min
x∈V0(S′)

cTL(u, x) ≤ min
x′∈V0(S′)

c′TL(u, x′), since C/S/∅/SL are impossible events at height 0.



For a TL event of node u on a leaf x ∈ V0(S′), we have the following:

cTL(u, x) = τ + λ+ (where y min. cTL(u, y)
cTL(u, y) over all y ∈ V (S′) \ {x}

s.t. θS′(y) = θS′(x))

≤ τ + λ+ (where y′ min. c′TL(u, y′)

c′TL(u, y′) over all y′ ∈ V (S′) \ {x},
s.t. θS′(y) = θS′(x))
Remark 1(3))

= c′TL(u, x) (Def. 3)

Hence, we have the following result:

Remark 2. For all internal nodes u ∈ V (G) \ L(G) and leaves x ∈ V0(S
′), cTL(u, x) ≤ c′TL(u, x)

holds.
And we obtain the following:

c(u, x) = min{ cE(u, x) : (Def. 3; D,T,TL are
E ∈ {D,T,TL} } the only possibilities)

≤ min{ c′E(u, x) :

E ∈ {D,T,TL} } (Remarks 1 and 2)
= c′(u, x) (Def. 3; D,T,TL are

the only possibilities)

Therefore, c(u, x) ≤ c′(u, x) holds for each leaf x ∈ V0(S′).

Inductive step

For a height 0 ≤ t < h(S), we now suppose that the expected property c(u, y) ≤ c′(u, y) holds for all
vertices y ∈ Vt(S′) and prove that it still holds for any vertex x ∈ Vt+1(S). S, D, T, ∅, SL, and TL are
the possible events for node u and vertex x. Following exactly the same arguments as in the base case,
Remark 1 (D and T) and Remark 2 (TL) still hold for the current time (t+ 1).

The dependencies of the corresponding cost for S, ∅, and SL events are as follows: cS(u, x) depends
on the costs c(ui, xi) for ui ∈ {u1, u2} and xi ∈ {x1, x2}, with xi ∈ Vt(S′); c∅(u, x) on c(u, x1), with
x1 ∈ Vt(S′); and cSL(u, x) on c(u, xi) for xi ∈ {x1, x2}, with xi ∈ Vt(S′). The same dependencies
apply for c′S(u, x), c′∅(u, x), and c′SL(u, x). Recall that u2 (resp. u1) is incomparable (resp. an ancestor
of) to w and that Lemma 2 (resp. the assumption) implies that c(u2, xi) = c′(u2, xi) (resp. c(u1, xi) ≤
c′(u1, xi)) for each xi ∈ {x1, x2}. Moreover, the inductive hypothesis states that c(u, xi) ≤ c′(u, xi)
holds for each child xi of x since xi ∈ Vt(S′). For each event E ∈ {S,∅,SL}, that all costs used in the
equation of c′E(u, x) are not lower than the corresponding costs in that of cE(u, x) leads to the following
result:

Remark 3. For all events E ∈ {S,∅,SL}, internal nodes u ∈ V (G) \ L(G) and internal vertices
x ∈ Vt+1(S

′), cE(u, x) ≤ c′E(u, x) holds.



We obtain the following:

c(u, x) = min{ cE(u, x) : E ∈ (Def. 3, C is not an
{D,T,TL,S,∅, SL} } event for u /∈ L(G))

≤ min{ c′E(u, x) : E ∈
{D,T,TL,S,∅, SL} } (Remarks 1, 2, 3)

= c′(u, x) (Def. 3, C is not an
event for u /∈ L(G))

Therefore, c(u, x) ≤ c′(u, x) holds for each vertex x ∈ Vt+1(S
′), and thus for all vertices of S′.

As a corollary, the same inequality holds between the root nodes r of G and G′, since w ≤ r. Then
C(G,S′) ≤ C(G′, S′).
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