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Autonomous underwater vehicles (AUVs) are widely used to explore the mysterious underwater world. Following along 
predefined spatial paths, AUVs are able to gather valuable seabed information in a designated area by recruiting sonar 
suites. The acoustic data collected by AUVs are usually in the type of point cloud with range information. Hence, how to 
reconstruct the topography of seabed via 3D point cloud data is the key to build the 3D seabed map. In order to address the 
problem, the paper presents a practical mesh method to achieve an accurate reconstruction of seabed surface from raw sonar 
records. Sonar data processing consists of three stages: point clearing, point normal and 3D surface reconstruction. 
Simulation results show the effectiveness of the proposed approach. 
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Introduction 

3D Seabed Mapping through Autonomous 

underwater vehicles (AUVs) with acoustic sensors 
has been more and more widely studied these years in 

order to explore the underwater environment
1,2

.  

In order to design and achieve a robust 
implementation of 3D Seabed Mapping, 3D surface 

reconstruction approaches are studied in this paper. 

Existing methods to reconstruct surface can be 
broadly categorized into three groups: (1) through the 

use of computational geometry techniques
3,4,5,6,7

, (2) 

by directly fitting a surface to the point samples
8,9

, 
and (3) by fitting a 3D function to the point samples 

and then extracting the reconstructed surface  

as an iso-surface of the implicit function
10,11,12,13,14

.  
The computational geometry based methods proceed 

by computing either the Delaunay triangulation or the 

dual Voronoi diagram of the point samples. However 
these methods work less satisfactorily when the point 

samples are not uniformly distributed over the surface 

of the model. Surface fitting methods deform a base 
model to optimally fit the input sample points, but 

these methods tend to be restrictive as the topology of 

the reconstructed surface is required to be the same as 
the topology of the base shape, limiting the kind of 

models reconstructed by using this method.  

The third class of approaches use the point samples to 

define an implicit function in 3D and then extracts the 

reconstructed surface as an iso-surface of the 
function. The advantages of these approaches are in 

two-folds. First, the extracted surface is always 

guaranteed to be water-tight, returning a model with a 
well-defined interior and exterior, and second, the use 

of an implicit function does not place any restriction 

on the topological complexity of the extracted  
iso-surface, providing a reconstruction algorithm that 

can be applied to many different 3D models
14

. 

In this paper, a mesh method is proposed to 
reconstruct the seabed map. Data collection of seabed 

is firstly presented, and then 3D reconstruction in a 

three-step process is adopted to analyze these data and 
reconstruct the seabed map. Experiment result are 

given to validate the proposed method, and the final 

part offers some concluding remarks. 
 

Materials and Methods 
 

Data Collection 

Acoustic sonar systems (e.g. side-scan sonar, 

mechanically scanned pencil beam, and sub-bottom 

profiler) provide a remarkable sensing extension in 
the dark and murky underwater environment.  

The sonar data enable the new challenges and 

possibilities within the field of underwater 
visualization. The marine robots, including ROV and 
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AUVs, now heavily depend on sonar data to 

reconstruct the images in the unknown underwater 

world. By mounting the acoustic sonar on the AUVs, 
the seabed mapping raw data can be collected while 

the AUVs cruise along planned path in the interested 

underwater area. If the path is predefined in the 

interested area, the AUVs can trace the spatial path 
with high accuracy even in the presence of unknown 

ocean currents, wave action and modeling 

uncertainty, by adopting the path following  
control algorithm

15
. Moreover, multiple AUVs  

under specific geometric formation can augment 

the underwater view fields and improve  

the efficiency of data collection. As illustrated in 
Fig. 1, by requesting a specifically geometric 

formation of three AUVs to cooperatively  

traverse parallel paths and make the overlap  
of acoustic coverage on the seabed, large areas  

can be covered and no piece will be omitted. 

Simultaneously, the team of cooperative multiple 
AUVs could accomplish the task of acoustic 

coverage more rapidly and economically than  

a single AUV in a wide-range survey mission
16

.  

In Fig. 2, the cooperative acoustic coverage  
of underwater area shown in Fig. 1 is simulated  

by a team of three AUVs, which track the  

predefined paths in a triangle formation.  
The readers can refer to the work

17
, for more  

details about coordinated paths following  

control algorithms of the AUVs. Hence, the  
acoustic data of the interested area can be collected, 

which will be processed in the next step in order to 

reconstruct the 3D seabed surface. 

 

Results and Discussion 
 

Data Processing 

In order to reconstruct the topography of seabed via 

3D point cloud data, the approach consists of three 

stages as shown in Fig. 3: 
 

1. Point clearing via alpha shape; 
2. Point normal; 

3. 3D surface reconstruction. 
 

The method proposed in this paper is designed to 

analyze and reconstruct unorganized or organized  
3D point set. The input is an unorganized or 

organized 3D point set, possibly with normal 

attributes. The objective of the method is to 
reconstruct the 3D surface for these raw data acquired 

by acoustic sonars. We explain these three steps one 

by one in the following sub-sections.  
 
Point cleaning 

In the point cleaning phase, noisy points are 

cleaned and deleted. It is realized by employing the 

alpha shape algorithm proposed by Edelsbrunner
3
. 

The alpha shape algorithm describes the surfaces of 

 

 
Fig. 1—3D acoustic coverage of the seabed 

 
 
Fig. 2—Coordinated control of AUVs for acoustic data collection 
along predefined spatial paths 

 

 
 

Fig. 3—Process of 3D seabed surface reconstruction 
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terrain as lists of adjacent triangles depending on the 

value of alpha, and delineates the cavity shape. Alpha 

shape algorithm is an effective tool for computing the 
"shape" of a point set. If points are affected by noise, 

then some points lying below the surface will not be 

included in the alpha shape result. Thus, the noisy 
points produced by sonar errors can be cleared by 

adopting the approach. 

An unorganized 3D point set (Fig. 4a) is treated 
compared by regular Delaunay triangulation and 

alpha shape algorithm. As shown here, the regular 

Delaunay triangulation connects all the points 
including inner points (Fig. 4b). However, alpha 

shape just connects the points on the surface (Fig. 4c). 

After eliminating unconnected points, the contour of 
the object becomes visible (Fig. 4d). Note that the 

figures in this paper are mainly to demonstrate the 

result of 3D reconstruction. Some information like 
angular parameters are ignored, as they do not affect 

the 3D reconstruction results. 

The algorithm is achieved by using Hull 

programming[http://www.netlib.org/voronoi/hull.html], 

which is designed to compute the convex hull of a 
point set. 

 
Point normal 

After clearing noisy points, the point set is oriented 
in this phase. The principle idea is to orient the normals 

of a set of points by using the method proposed by 

Hoppe
18

. The advantage of this method is that it 
constructs a Riemannian graph (the graph of the K 

nearest neighbor points) over the input points and 

propagates a seed normal orientation within a 
minimum spanning tree computed over this graph. The 

result is an oriented normal vector for each unoriented 

normal input, except for the normals which could not 
be successfully oriented. Thus, the normal can be 

calculated according to different given K attribute. 
The algorithm defines a function which estimates 

the signed geometric distance to an unknown surface. 

 
 

Fig. 4—Comparison of regular Delaunay triangulation and alpha shape for an unorganized 3D point set 
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The zero set of this function can approximate the 

surface. The function is based largely on computing 

tangent planes which locally approximate each 
experimental data point. This algorithm is split into 

two steps: calculating tangent planes locally 

approximate to data points, and orienting the planes 
(i.e., normal vectors) so as to define a globally 

consistent surface orientation. 
 

Step 1 Tangent plane estimation: 
In this step, the tangent plane for a point x is 

defined by a center point and a unit normal vector. 

The center is defined as the centroid of the  
k-neighborhood of x, or the k points geometrically 

nearest to x.  
 

Step 2 Tangent plane orientation: 
In this step, a method for reliably orienting the 

normal vectors is used, in order to sufficiently close 
tangent planes to point in the approximately same 

direction. During this phase, the unoriented point set 

can be treated which is more generally produced by 
ordinary sensors. 
 

To achieve this functionality, related algorithms of 

CGAL[http://www.cgal.org/] is adopted.  

 
Reconstruction 

The reconstruction phase addresses the problem of 

reconstruction 3D surface via the oriented point set 

obtained in the previous stage. Some algorithms are 
proposed for 3D reconstruction

10,11,12,13
, while the 

meshing algorithm
14

 is adopted in this paper which is 

a method for reconstructing water-tight surfaces from 
an input of oriented points. The advantage of this 

algorithm approach is that it provides an automatic, 

simple, and efficient method for computing the solid 

model represented by a point set without requiring the 
establishment of adjacency relations between samples 

or iteratively solving large systems of linear 

equations. Secondly, it can be directly applied to 
models with holes and cracks, providing a method for 

hole-filling and zippering of disconnected polygonal 

models. Furthermore, the additive nature of the 
reconstruction makes it stable in the presence of noise 

and a simple heuristic technique works well when the 

points are non-uniformly distributed
14

. In a word, all 

these advantages are what we need to reconstruct the 
undersea terrain model.  

Generally speaking, this method reduces the 

problem of surface reconstruction to convolution, and 
provides an efficient method for reconstruction that 

reduces the reconstruction process to three simple 

steps. It constructs the characteristic function of the 

solid defined by the point sampling the function, 
whose value is one inside of the solid and zero outside 

of it, and then the appropriate iso-surface is extracted. 

The characteristic function χV ˙˘˘
 
of a solid V is the 

function: 
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The Fourier coefficients of the characteristic function 

are computed by using the divergence theorem. If M is a 

solid model and ˆ
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The inverse Fourier Transform is applied to obtain 

the characteristic function. Since the input to our 
algorithm is an oriented point set, the Fourier 

coefficients of the characteristic function can be 

computed by using a Monte-Carlo approximation. 

Specifically, given the points { }1, ,
n

p p
� �

…
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To extract an iso-surface, we use marching cubes 

method
19

, and an appropriate iso-value is required to 

be chosen in order to extract an iso-surface from the 
characteristic function.  

The average value of the obtained characteristic 

function at the sample positions 
j

p
�

 is used as  

iso-value. It can provide a robust iso-surfacing value 

even in the case that input points are obtained from a 
not-water-tight model. 

The result of 3D triangular mesh for a simulated 

seabed map is shown in Fig. 5, where the contours of 
the seabed terrain are well sketched out. 

Experiments 

Based on the theories and methods described 

above, a dedicated software is developed that can treat 

the real sonar data obtained from AUV as well as the 

data generated by the simulator. The software is 
developed by C++ and supported both by Windows 

and Linux32/64 bit. 

In this paper, some representative experiments are 
given to illustrate the feasibility and effectiveness of 

proposed methodology. Behind these illustrative 

experiments, we have made many different experiments 

to valid the methodology. However, considering the size 
of this paper and the objective of experiments, we only 

demonstrate the representative cases.  

Generate random points and Delaunay triangulation. 
The software allows generating any number of 

random points and connecting these points by 

Delaunay triangulation, as shown in Fig.6 a-c. 
 

Alpha shape and mesh 
In this trial, the program accepts 500 points as 

input and then alpha shape is computed by using 

automatic alpha value. After alpha shape, inner points 

are eliminated from the point set as shown in  
Fig. 7 a-c. The normals of remained surface points are 

calculated by calling CGAL and the object is meshed 

out in Fig. 7.d. 

 
 
Fig. 5—Example of triangular mesh for a simulated seabed map 

 
 

Fig. 6—Random points generation and Delaunay triangulation 
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3D seabed map reconstruction 

The experiment shows the reconstruction of 3D 

seabed map. A simulated map is generated by the 
software as shown in Fig. 8a.  

An AUV equipped with acoustic sonar suite 
traverses the entire map by employing the path 

following algorithm to obtain a set of point cloud data 

that is shown in Fig. 8b. In Fig. 8c, points are 

 
 

Fig. 7—Alpha shape and mesh 
 

 
 

Fig. 8—3D seabed map reconstruction 
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connected after applying triangular mesh, and the 

final reconstruction is accomplished in Fig. 8d after 

being covered the skin.  
The above experiments illustrate two typical cases: 

closed surface and boundary surface. In the first 

experiment, random point cloud is used, which raises 

the difficulty of the reconstruction. The objective is  
to test the robust of our methodology, especially  

the realistically complicated seabed situation.  

In the second experiment, we try to reconstruct  
a simulated seabed map, which is a boundary surface. 

The objective is to test the robust of the  

methodology when the collection of data is  

not enough to construct a precise map. With these  
two experiments, it shows that proposed methodology 

can handle both of these two situations and 

successfully reconstruct 3D surface.  
 

Conclusions 

In this paper, acoustic data collection by AUVs is 
briefly introduced, and the reconstruction of  

the seabed topography problem is studied in  

details. We have proposed a practical mesh method  
to achieve an accurate reconstruction of seabed 

surface from raw sonar records by adopting three 

different techniques: Delaunay triangulation, alpha 
shape and 3D triangular mesh. Based on the proposed 

method, the software is developed which permits to 

reconstruct 3D map based on the real sonar data 

obtained from AUV as well as the data generated by 
the simulator. With the experiments, the practical 

method demonstrates its robustness and effectiveness 

in 3D visualization of topography. 
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