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Abstract—The design of both fast and numerically accurate
programs is a real challenge. Thus, the CGPE tool was introduced
to assist programmers in synthesizing fast and numerically
certified codes in fixed-point arithmetic for the particular case
of polynomial evaluation. For performance purposes, this tool
produces programs using exclusively unsigned arithmetic and
addition/subtraction or multiplication operations, thus requiring
some constraints on the fixed-point operands. These choices are
well-suited when dealing with the implementation of certain
mathematical functions, however they prevent from tackling a
broader class of polynomial evaluation problems. In this paper,
we first extend the arithmetic model of CGPE to handle signed
arithmetic and alignment shifts. Then, in order to make the most
out of advanced instructions, we propose an enhancement of this
tool based on instruction selection. This allows us to optimize the
generated codes according to different criteria, like operation
count, evaluation latency, or accuracy. Finally, we illustrate this
technique on operation count, and we show that it yields an
average reduction of up to 22.3 % of the number of operations
in the synthesized codes of some functions.

Keywords—fixed-point arithmetic, automated code synthesis,

error analysis, polynomial evaluation

I. INTRODUCTION

Polynomials are widely used in computer science, since
they can be evaluated using only addition and multiplication,
two of the cheapest and most ubiquitous instructions on mod-
ern architectures. In computer arithmetic, for example, poly-
nomial evaluation appears frequently as a building block for
the floating-point implementation of a mathematical function.
The speed and the accuracy of these implementations depend
directly on those of the underlying code used to evaluate
the polynomial. However, as shown in [1, §6], the number
of evaluation schemes of a given polynomial is quite huge,
even for small degree univariate polynomials. Moreover these
schemes may offer different numerical qualities, evaluation la-
tencies, or instruction-level parallelism (ILP) exposures. Thus
the combinatorics makes it difficult to choose a good evalu-
ation scheme, since exhaustive testing is not feasible. Hence
tools and heuristics are needed to automate the synthesis of
polynomial evaluation programs and to validate their numerical
quality.

Various projects have been set up in order to assist pro-
grammers in writing automatically efficient routines, either in
floating-point or fixed-point arithmetic, and not especially for

the purpose of evaluating polynomials. The SPIRAL project1

proposes software and hardware dedicated tools capable of
synthesizing fast floating-point codes for DSP algorithms.
In [3], the authors deal with code synthesis to evaluate
dot-products in fixed-point arithmetic in order to implement
IIR filters. A different approach consists of starting from
an existing code, and applying a series of transformations
either to improve its numerical accuracy in floating-point
arithmetic [4] or to minimize the width of integer parts in
fixed-point computations [5]. Yet another option is to convert
the existing program into an equivalent one but using another
arithmetic. This latter technique is investigated in [6] where the
authors focus on the conversion of codes from floating-point
to fixed-point arithmetic. For the special case of polynomial
evaluation, [7] proposes an approach based exclusively on
Horner’s rule. This method is well-known for minimizing the
number of multiplications involved and for having a good
numerical quality, especially when the polynomial is evaluated
not too close to one of its zeros [8], but it fails at exposing
ILP. Finally, [9] suggests a method for the generation of
evaluation schemes using only the FMA operator available on
the Itanium R© architecture, while [10] deals with the generation
of evaluation schemes using at best the SIMD instructions of
the PlayStation R©2 cores.

In this paper, we present an extended version of the
CGPE software tool [11], standing for Code Generation for
Polynomial Evaluation. This tool relies on heuristics to ad-
dress the automated generation of fast and accurate codes to
evaluate polynomials in fixed-point arithmetic. In fact, even
though floating-point arithmetic is more and more used, some
architectures are still shipped without any floating-point unit in
order to satisfy some area, energy consumption, or conception
cost constraints. On these targets, to reach good performance
on the generated codes, the original version of CGPE made
the following assumptions:

• Only unsigned arithmetic is handled. Thus, sign bits
are not stored, which allows to save at least one
bit of accuracy on each computed value during the
evaluation.

• Addition, subtraction, and multiplication are the only
operators used.

1See http://www.spiral.net/ and [2].



However, these assumptions reduce the set of problems that
can be tackled: the polynomial evaluation must be feasible
in unsigned fixed-point arithmetic without inserting shifts
to adapt the fixed-point format of intermediate variables.
Moreover, by generating codes that rely only on addition,
subtraction and multiplication, the tool cannot benefit from
all the features of the target hardware. This is particularly
true since a greater number of architectures are shipped with
advanced instructions such as those combining two binary
operations in a single one, like the fused multiply-add (FMA).

This paper makes the following contributions:

• First we extend and formalize the arithmetic model of
CGPE to handle signed fixed-point arithmetic, as well
as right and left shift operators. This extension clears
the path to tackling more general problems, especially
since there is no more constraints on the sign and
format of the input coefficients and variables.

• Second we add a step based on instruction selection,
that works on the DAGs (Directed Acyclic Graphs)
computed by CGPE. These DAGs are the intermedi-
ate representation of polynomial evaluation schemes
inside the tool. The role of this step is to fuse nodes in
advanced instructions, and more particularly to choose
for each node or set of nodes the instruction to be used
to optimize a given criterion, like evaluation latency,
operator count, or accuracy. A similar technique has
already been investigated by the SPIRAL project to
use FMA operators in the implementation of DSP or
linear transform algorithms [12], [13].

This paper is organized as follows: After a presentation of
the CGPE software tool in Section II, the fixed-point arithmetic
model we propose is detailed in Section III. Section IV is
devoted to our second contribution, that is, the synthesis of
target-dependent codes using instruction selection. Some ex-
amples are given in Section V before concluding in Section VI.

II. THE CGPE TOOL

CGPE2 addresses the automated synthesis of polynomial
evaluation programs in fixed-point arithmetic. It focuses on
both algorithm speed and accuracy of the generated codes, by
adding a systematic certification step. The following of this
section presents its input and output, together with its workflow
and limitations.

A. Input and output of CGPE

CGPE takes as input a polynomial and a set of criteria
and architectural constraints. The polynomial is described in
an external XML file, that contains an interval of values and a
fixed-point format for each coefficient and variable, as well as
a maximum error bound allowed for its evaluation. In addition
to this file, CGPE takes a set of command-line parameters, like
a bound on the evaluation latency, the latency of each basic
operator, and some information on the strategy used during the
computation step detailed in Section II-B below. Besides, since
the tool was initially intended for use with VLIW processors,

2See http://cgpe.gforge.inria.fr and [14], [11].

additional parameters are provided to set the available level of
parallelism, that is, the number of issues on the target.

At the end of the process, CGPE produces a set of C
codes evaluating the input polynomial on the given target.
First for each synthesized code, it ensures that the evaluation
satisfies the latency criterion. Second it guarantees that the
evaluation error is less than the maximum error bound, by
attaching a Gappa3 certificate file to each code. The latter tool
uses formal verification techniques to prove that the evaluation
error entailed in the C code is below a given threshold.
Listing 1 shows an example of an automatically produced code

// a0 = +0x7ffec8d0p-30 a1 = -0x7f9bef55p-30
// a2 = +0x7ab5c54bp-30 a3 = -0x647d671dp-30
// a4 = +0x379913e9p-30 a5 = -0x0e358cb5p-30
uint32_t func_d5(uint32_t x /* 0.32 */) { // Formats
uint32_t r0 = mul(x, 0x7f9bef55); // 2.30
uint32_t r1 = 0x7ffec8d0 - r0; // 2.30
uint32_t r2 = mul(x, x); // 0.32
uint32_t r3 = mul(x, 0x647d671d); // 2.30
uint32_t r4 = 0x7ab5c54b - r3; // 2.30
uint32_t r5 = mul(r2, r4); // 2.30
uint32_t r6 = r1 + r5; // 2.30
uint32_t r7 = mul(r2, r2); // 0.32
uint32_t r8 = mul(x, 0x0e358cb5); // 2.30
uint32_t r9 = 0x379913e9 - r8; // 2.30
uint32_t r10 = mul(r7, r9); // 2.30
uint32_t r11 = r6 + r10; // 2.30
return r11;

}

Listing 1. Example of code automatically generated using CGPE.

for the evaluation of a degree-5 polynomial approximant of
the function 1/(1 + x) over [0, 1] with an evaluation error
bound of 3213 · 2−26 ≈ 2−14.35. This code is optimized for a
target having 1-cycle addition and subtraction and 3-cycle fully
pipelined multiplication, and that can launch 4 instructions
each cycle with at most 2 multiplications. The two main goals
of CGPE are achieved through this example:

1) A certificate is produced, that proves the evaluation
error is no greater than the required evaluation error
bound.4

2) The generated code in Listing 1 has a latency of
10 cycles on the target processor, which is optimal.
In fact, it can be proven, for this example, that a
lower latency cannot be achieved even on unbounded
parallelism and regardless of the tolerated evaluation
error bound.

B. Workflow of CGPE

As illustrated in Figure 1, CGPE works in three steps and
has a compiler-like architecture.

First, CGPE starts by a computation step that plays the
part of a compiler’s front-end. It computes a set of DAGs
(Directed Acyclic Graphs), each DAG being the intermediate
representation of a given polynomial evaluation scheme inside
the tool. During this step, unbounded parallelism is assumed,
and only the latency of each basic operator (adder, subtracter,
and multiplier) is considered. Figure 2 shows the DAG repre-
senting the evaluation code of Listing 1 above. However, unlike
a classical compiler’s front-end, CGPE computes several DAGs
since given an input polynomial, several evaluation schemes

3See http://gappa.gforge.inria.fr and [15].
4For the sake of space, the Gappa certificate is available upon request.
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Figure 1. Dataflow path inside CGPE.

are possible. At this step, CGPE ensures that these DAGs re-
duce the evaluation latency on unbounded parallelism. Various
strategies have been developed to produce these DAGs [14,
§6][1, §8.1.2]. Second, CGPE goes to a filtering step that can
be seen as a compiler’s middle-end. At this step, each DAG
undergoes a series of filters, each filter being dedicated to a
criterion and deciding whether to keep the scheme or to prune
it. DAGs that pass all the filters reach CGPE’s back-end, which
takes care of producing the code and the associated accuracy
certificate.

CGPE’s architecture makes it easy to optimize the syn-
thesized code for different criteria, by simply adding more
constraints in the computation step or new filters. Moreover
the computation algorithms are designed to build DAGs us-
ing only binary operations, typically addition/subtraction and
multiplication. These are already complex, and handling other
binary operations or operations with higher arity seems to be
unreachable at computation time (front-end), especially since
this would require the development of a new DAG computation
algorithm each time a new operation is considered. However
making the most out of the target architecture is feasible
at filtering step, by tweaking only the middle-end. In this
context we suggest an extension of CGPE based on instruction
selection, and presented in Section IV below.
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Figure 2. DAG representing the evaluation code in Listing 1.
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Figure 3. Fixed-point number representation.

III. FIXED-POINT ARITHMETIC MODEL

Fixed-point arithmetic consists in interpreting an integer as
a rational value [16]. In other words, it allows the manipulation
of real values by the means of integers coupled with an implicit
scaling factor. Here, implicit means that it is not encoded into
the data of the program, but fixed and only known by the
programmer. It follows that each variable appearing in a fixed-
point program is supposed to have a fixed-point format. This
makes fixed-point programs development quite difficult, more
particularly since, unlike floating-point arithmetic, there is no
standard guiding the implementation of fixed-point arithmetic.
This section presents the fixed-point arithmetic model on
which our extension of CGPE is based.

A. Fixed-point number representation

Let X be a k-bit radix-2 integer and f ∈ Z. Combined
with the implicit scaling factor f , the integer X represents the
real value x defined as follows:

x = X · 2−f .

We detail here the principle of signed fixed-point arithmetic,
unsigned arithmetic being easily deducible from it. In this con-
text, X is usually encoded using two’s complement notation.
And it follows that:

X ∈ {−2k−1, · · · , 2k−1 − 1}

and

x ∈ {X · 2−f}X∈{−2k−1,··· ,2k−1−1}.

Note that f denotes the number of fraction bits in the binary
expansion of x, while the number of bits in the integer part
is i, as shown in Figure 3. This value will be encoded in a
total of k = i+f bits. Obviously the sign of x depends on the
sign of the integer X , and using two’s complement notation,
it is encoded in the most significant bit of X .

From now on, we will denote by Qi,f the fixed-point
format of a given signed fixed-point value v having an i-bit
integer part and a f -bit fractional part. It follows that

v ∈ [−2i−1, 2i−1 − 2−f ].

B. Arithmetic rules

Our extension of CGPE manipulates DAGs, whose nodes
are now either addition, subtraction, multiplication, or left or
right shift operations. The following of this section presents
the semantics of these operations in fixed-point arithmetic.
Recall that we consider here signed arithmetic using two’s
complement notation. Now let v1 and v2 be two signed fixed-
point values in the formats Qi1,f1 and Qi2,f2 , respectively.
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Figure 4. Fixed-point arithmetic rules for addition, multiplication, and right shift.

1) Addition and subtraction: To be added or subtracted,
the two values must be in the same format, that is, with the
same integer and fractional part sizes. This comma alignment
can be done by adding trailing zeros in the binary expansion of
the operand with the smallest fractional part, and by extending
the sign representation size of the operand with the smallest
integer part, as shown in Figure 4(a) for the addition. In this
case, the alignment can be seen as a shift operator, described
below. It follows that the result of the addition between v1 and
v2 is in the format Qir,fr with

ir = max(i1, i2) + 1 and fr = max(f1, f2).

Notice that the most significant bit of the result is there to
prevent overflow issues. If we can ensure that no overflow
occurs while adding both values, we can reduce the format of
the result, and thus gain one bit of accuracy to the detriment
of inserting a shift into the DAG and possibly increasing the
critical path. In this case, we have ir = max(i1, i2). This
decision may be made using interval arithmetic.

2) Multiplication: Concerning the multiplication, there is
no constraints on the format of the operands. Multiplying v1
and v2 results in a fixed-point value in the format Qir,fr with

ir = i1 + i2 and fr = f1 + f2,

as shown in Figure 4(b). Note that the most significant bit
is a redundant bit and can be discarded. Nevertheless an
exception occurs in signed arithmetic when the operands are
both equal to the smallest negative value, that is, in our
example v1 = −2i1−1 and v2 = −2i2−1. In that case, only
the most significant bit represents the sign of the result and it
cannot be discarded.

Observe that a multiplication by a power of 2 can be
interpreted as a virtual shift. A virtual shift simply consists of
changing the fixed-point format of the operand, and thus the
encoded real value, but it does not imply any true operation
during the evaluation on the target. Hence the interest is that
a virtual shift is cost-free, and does not impact the evaluation
program latency. If we detect that one of the operands is a
power of 2, we can replace the effective multiplication by a
virtual shift. For example, the multiplication of v1 by 2p results
in a fixed-point value in the format Qir,fr with

ir = i1 + p and fr = f1 − p.

3) Left and right shifts: In fixed-point arithmetic, the shift
operation implies the change of the format of the operand,
according to its direction. Here this change is actually a
side effect of the shift performed on the encoding of the

integer representation, allowing to align operand mantissas or
to remove leading redundant sign bits, for example.

• Shifting the value v1 of r bit to the right results in a
fixed-point value in the format Qir,fr with

ir = i1 + r and fr = f1,

as shown in Figure 4(c) for r = 2.

• Shifting the value v1 of ℓ bit to the left results in a
fixed-point value in the format Qir,fr with

ir = i1 and fr = f1 + ℓ.

In the same way as for the addition, increasing the size of
the integer part relies on sign extension, while increasing the
fractional part consists in adding trailing zeros.

Let us remark that the format of each intermediate variable
can be simply computed by bottom-up scanning the DAG and
by systematically applying these arithmetic rules.

C. Error analysis rules

All the previous arithmetic rules are error-free. However
fixed-point arithmetic usually relies on integer arithmetic avail-
able on the target. Hence, due to finite precision issues, each
fixed-point operation may entail a rounding error.

Let G be a node of a DAG, and Gℓ and Gr be its left and
right children, respectively. To decide the accuracy of each
intermediate variable, CGPE attaches two intervals to each
node G: value(G) that bounds the value resulting from the
evaluation of G, and error(G) that bounds the error between
the computed and the mathematical values due to the usage of
finite precision [11, §4-B]. Note that if G is a leaf (that is, a
variable or a coefficient), then value(G) is read from the XML
input file and error(G) = [0, 0]. Otherwise the computation of
these quantities is done by bottom-up scanning the DAG using
multiple-precision interval arithmetic with the MPFI5 library.

The sequel of this section presents how both intervals are
computed in the case of signed arithmetic. Again let v1 and
v2 be two signed fixed-point values in the formats Qi1,f1 and
Qi2,f2 , respectively. Here we consider that the format of each
fixed-point value has been computed and the alignment shifts
have been inserted in the DAG as presented above. It follows
that no overflow occurs during the evaluation.

5See http://mpfi.gforge.inria.fr/ and [17].



1) Addition and subtraction: In absence of overflow, fixed-
point addition and subtraction are error-free. Hence, if G
represents an operation ⋄ ∈ {+,−}, we have:

error(G) = error(Gℓ) ⋄ error(Gr).

2) Multiplication: The error entailed by the multiplication
depends on the behavior of the underlying multiplication
instruction and the fixed-point format of the result. In most
cases, the instruction returns the k most significant bits of the
exact result, that is, a truncated result. Hence, we have:

error(G) = errormul + error(Gℓ) · error(Gr) (1)

+ error(Gℓ) · value(Gr)

+ value(Gℓ) · error(Gr).

If the truncated result of the multiplication of v1 and v2 is in
the format Qir,fr , we have in signed arithmetic:

errormul = [−ǫ, 0] with ǫ = 2−fr − 2−(f1+f2).

This can be seen as a rounding downward, that is, toward
infinity, since the computed value is always no greater than
the mathematical value.

Recall that if the operation is a multiplication by a power
of 2, we replace it by a virtual shift, which is cost-free, but
also error-free and errormul = [0, 0]. Hence, assuming that the
right operand Gr is 2p, the error for the node G depends only
on the error of its left operand Gℓ. More particularly:

value(Gr) = [2p, 2p] and error(Gr) = [0, 0],

and from (1), it follows:

error(G) = error(Gℓ) · 2
p.

3) Left and right shifts: Since we assume that no overflow
occurs, the left shift is error-free as it just increases the size
of the fractional part: thus errorshift = [0, 0]. Concerning the
right shift, the error can be deduced in a way similar to the
multiplication. As mentioned above, shifting the left child Gℓ

of G, representing the value v1, of r bits to the right results in
a value in the format Qir,fr . Hence:

errorshift = [−ǫ, 0] with ǫ = 2−fr − 2−f1 .

and we have:

error(G) = error(Gℓ) + errorshift.

Remark that these bounds may be pessimistic in some
cases. However if we can determine that, for a given node G,
value(Gℓ) or value(Gr) are point intervals, we can compute a
tighter error interval for the node G. For example, if the value
of the left operand of a right shift is a point interval, the error
on that shift can be simply computed as follows:

error(G) = value(Gℓ)− value(G).

D. How to use fixed-point arithmetic in practice?

All the previous arithmetic rules were given in a general
fashion, without any constraints on the way used to implement
them. In hardware, for example when dealing with FPGA-
like architectures, we can choose the total length of each
intermediate variable of an implementation, and these rules
can thus be applied directly.

In our context, we target C software implementations of
fixed-point arithmetic. Hence, the length of our variables has
to fit both the format lengths available in the C language,
and the hardware available on the architecture. Therefore, for
any variable of a given program in the format Qi,f , we will
typically have i+ f = k with k ∈ {8, 16, 32, 64}. In practice
we mostly used k = 32.

IV. TARGET-DEPENDENT PROGRAMS SYNTHESIS

This section presents our approach based on instruction
selection. It starts by some background and motivation before
presenting the formalism we propose to describe architecture
instructions. Then it details this approach, allowing us to syn-
thesize target-dependent codes optimized for different criteria.

A. Definition and motivation

Instruction selection is a well-known process in compi-
lation theory [18, §8.9]. Given a set of instructions and an
intermediate representation of an expression, possibly a DAG,
an instruction selection algorithm, also called a tiling algo-
rithm, produces a subset of instructions necessary to evaluate
this expression. To optimize the generated code with respect
to some criterion, a cost may be associated to each considered
instruction, allowing thus to define a cost function used to
evaluate the cost of a DAG. It follows that a good selection is
one that minimizes this cost function. Although this problem
was proven to be NP-complete, even for simple machines
in the case of DAGs [19], various algorithms that perform
well in practice have been designed to tackle this problem.
Our technique is inspired by the NOLTIS algorithm [19] and
more generally by bottom-up rewrite systems that deal with
instruction selection on DAGs. It is presented in Section IV-C
below.

This work on instruction selection was primarily motivated
by the large number of patterns (a * b) + c appearing in
polynomial evaluation, as well as shift operations induced by
the use of fixed-point arithmetic. Indeed most of the modern
architectures are shipped with advanced instructions, allowing
to fuse at least two operations in a single one. Cite for example
the fused multiply-add (FMA), computing (a * b) + c in
one instruction and with only one final rounding, and now
required by the IEEE 754-2008 standard [20] in floating-point
processors. When dealing with integer arithmetic, let us cite,
the mulacc instructions, available on certain architectures,
like ARM processors [21], and that computes (a * b) +

c in a single instruction. Furthermore, CGPE initially targeted
the ST231 [22], a processor of the ST200 core family. It is
shipped with a shift-and-add instruction performing a left shift
of 1 up to 4 positions followed by an addition, that is, the
pattern (a << b) + c with b ∈ {1, · · · , 4}.

This approach is highly flexible since it relieves us from
writing a new front-end algorithm each time new instructions



are targeted. Note also that this work was a valuable occasion
to test for new patterns, even ones that were not available
as instructions on any hardware target. This may also help
us in giving feedbacks to processor architects. For instance,
one of the first conclusions we drew was that a shift-and-add
operation based on right shift would have been quite valuable.
Indeed, on the ST231, the shift-and-add instruction (with left
shift) may be quite useful when dealing with signed fixed-
point arithmetic, since it may appear to remove redundant
sign bits [14, §5.1.1]. However, in practice, dealing with fixed
point arithmetic induced a lot of shifts to align operands before
addition. Most of these are right shifts that cannot be embraced
into such a shift-and-add operation.

B. Architecture description

For the sake of modularity, we chose a structure where the
core of the tool is not aware of the instructions available for
use. In our context, an instruction may be either a hardware
instruction or a basic block of instructions. Our architecture
is described in an external XML file, that contains all the
instructions that may be used. Listing 2 gives an example of
an entry for the 32×32→32-bit unsigned addition.

1 <instruction
2 name="add"
3 type="unsigned"
4 inputs="32 32"
5 output="32"
6 latency="1"
7 macro="static uint32_t __name__(uint32_t a, uint32_t b)
8 {
9 return (a + b);

10 }"
11 gappa="_r_ fixed<-_Fr_,dn>= _1_ + _2_;
12 _Mr_ = _M1_ + _M2_;"
13 nodes="add dag 1 dag 2"
14 />

Listing 2. Example of an entry of the architecture file.

Precisely, for each instruction entry, this file contains the
following parameters: the name, its type, that is, signed or
unsigned, the size of its inputs and output, and its latency
in cycles. If the entry matches an instruction available in
hardware, this is its latency on the target. Otherwise, if this
represents a basic block, we consider that this is its latency on
unbounded parallelism, that is, without any resource constraint.
In addition to these parameters, the description contains a C
macro, allowing us to emulate the instruction in software if
it is not available on the target, and a piece of Gappa script.
The latter appears when computing the error entailed by the
evaluation of the instruction in fixed-point arithmetic. The
semantic used is that of Gappa. In Listing 2, line 11 returns the
value _r_ computed in fixed-point arithmetic in the program.
In this example, it corresponds to the computed value _1_

+ _2_ (addition between the first and second parameter of
the instruction) rounded downward (dn) with _Fr_ fractional
bits. Line 12 returns the mathematical value _Mr_ = _M1_

+ _M2_, computed as if all the previous computations had
been done exactly. Once these two values are computed,
we are able to deduce the error entailed by the evaluation
of this instruction by simply subtracting _Mr_ from _r_.
Finally the attribute nodes gives the description of the pattern
matched by the instruction in terms of atomic operations. The
entry of Listing 2 is solely composed of an addition, whose

children are both any DAGs and corresponding to the first
and second parameters of the instruction, respectively. The
node description can be used to match any binary tree of
depth at most 4 (a self imposed limit to ease the step). It is
determined by traversing this tree in left-to-right breadth first
order. For instance, the shift-and-add instruction of the ST231
is represented as follows.

nodes="add shift dag 2 dag 1 value [-4,-1]"

Here “value [-4, -1]” corresponds to the right child of
the shift operator, and indicates that it is a numerical value in
[−4,−1]. Since a negative value means that it is a left shift,
thus it is a left shift of 1 to 4 positions.

C. Filter based on instruction selection

As mentioned earlier, once a fast scheme is computed, it
undergoes a series of filters. Instruction selection intervenes
as a filter : it produces a tiling of the DAG that minimizes a
cost function while making the best of the targeted architec-
ture. Depending on the underlying cost function used for the
selection of instructions, this filter may generate schemes that
are optimized for different criteria.

We have adapted the NOLTIS algorithm (Near-Optimal
Linear Time Instruction Selection) introduced by Koes and
Goldstein [19]. It appeared to be well-suited for our context,
since it allows to tackle the problem of instruction selection
on DAGs. NOLTIS proceeds in three major steps:

1) The first step traverses the DAG and it assigns to each
node the instruction that minimizes the cost function.

2) The second step handles the case of nodes that are
covered by more than a tile: either it leaves the tiles
as they are, or cut the sub-DAG rooted at this shared
node and mark it as resolved for the rest of the
algorithm.

3) The last step consists in another round of instruction
selection. It differs from the first step only since it
does not try to tile sub-DAGs marked as resolved by
step 2.

First let us remark that the second step of NOLTIS may lead
to an increase in the the number of operators in the synthe-
sized codes. Second, as shown for instance in [1, § 7.1.1],
minimizing the evaluation latency on unbounded parallelism
relies on minimizing the maximum of this latency on all
operands. Thus no improvement can be expected by running
step 2. Finally this step might be used only for marking shared
nodes, that is, nodes computing powers of x. Assuming that an
operation fusing several multiplications is at least as accurate
as the combination of the single multiplication instructions,
for accuracy purpose, this step seems to be useless. For all
these reasons, we have mainly benefited from the first part
of NOLTIS, even if the second part is necessary to correctly
synthesize codes on architectures providing instructions like
the one computing (a * b) * c. Hence we present an
adaptation of NOLTIS based on its first step only. This is
mainly what is done to tile trees, which is easier than tiling
DAGs since there is no shared node handling.

Formally let G be a node of the DAG and T be the set of
tiles that match this node and that can be used to evaluate it.



For a given tile t ∈ T , children
(

t
)

denotes the set of nodes
of the DAG being children of t. The sequel of this section
presents the three cost functions we have implemented.

1) Operator count: The original NOLTIS algorithm relies
on a cost function yielding the code size optimization. First this
can be easily adapted to optimize the number of instructions
in the output code. Hence the minimal operator count C(G) is:

C(G) = min
t∈T

(

Ct(G)
)

with Ct(G) = 1 +
∑

n ∈ children
(

t

)

C(n).

2) Evaluation latency: Our second adaptation of NOLTIS
aims at optimizing the evaluation latency on unbounded par-
allelism. Reducing the evaluation latency of G relies on the
reduction of the maximum latency of its children. Hence the
minimal evaluation latency L(G) is as follows:

L(G) = min
t∈T

(

Lt(G)
)

with Lt(G) = latency(t) + max
n ∈ children

(

t

)

L(n).

3) Accuracy optimization: Our third adaptation aims at
reducing the evaluation error. As shown in Section III with
our fixed-point arithmetic model, reducing this error on both
children of G yields the reduction of the error entailed by the
evaluation of G. Our accuracy optimization is mainly based on
this remark. Hence to decide which tile t leads to the tightest
evaluation error, we generate the Gappa script for the sub-DAG
rooted at G, and for each tile t ∈ T , we compute the evaluation
error Et(G) to keep the best one.

V. EXPERIMENTAL RESULTS

This section presents some experimental results in order to
validate our approach.

A. Impact on the number of operations

In this first example, we consider a set of polynomials of
degree 5 up to 12 that approximate the functions cos(x) and
sin(x) over [−1, 1], and log2(1 + x) over [−0.5, 0.5]. These
polynomials were computed using the fpminimax function
of the software tool Sollya.6 For each polynomial of each
degree, we have synthesized a set of 50 programs, each of them
being optimized for the use of a particular instruction among
the following: an add-add computing (a + b) + c, a
mulacc computing (a * b) + c, a shift-and-add

left and right computing (a << b) + c and (a >> b)

+ c, respectively, with b ∈ [1, 4]. For each function and
each advanced instruction below, Figure 5 shows the average
number of operations in the output code. This figure also shows
the number of operations when no advanced instruction is used
as well as when all of them are available for use.

From these results, we can observe that thanks to our tech-
nique, we reduce the number of instructions in the generated
codes of 13.85 % up to 22.3 % depending on the function when
all the advanced instructions are considered, and of 8.3 % up to
11.7 % otherwise. For example, the evaluation of the sin(x)
function illustrates the interest of the shift-and-add operator

6See http://sollya.gforge.inria.fr and [23].
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Figure 5. Average number of instructions in the synthesized codes, for
the evaluation of polynomials of degree 5 up to 12 for various elementary
functions.

available on ST200 family architectures, since, in this case, it
is the most valuable operator and leads to a gain of 10.8 %.

As mentioned in Section IV-A, an operator similar to the
ST231’s shift-and-add, but with a right shift instead of a
left shift, would be of great use for evaluating polynomials
in signed fixed-point arithmetic. Indeed, in the examples of
cos(x) and log2(1 + x) in Figure 5, this is the most relevant
instruction since it leads to a reduction of the operation count
of 8.4 % and 11.4 %, respectively.

B. Evaluation latency reduction for cos(x)

On this second example, let us focus on a degree-7 poly-
nomial approximating the function cos(x) over [0, 2]. Here
we consider 1-cycle addition, subtraction, and shift-and-add
operator (as specified in the ST231), and 3-cycle multiplica-
tion and mulacc operation. We have synthesized codes to

Without tiling With tiling Speed-up

Horner’s rule 41 34 ≈ 17.07 %

Estrin’s rule 16 14 ≈ 12.5 %

Best scheme generated by CGPE 15 13 ≈ 13.33 %

Table I. LATENCY IN # CYCLES ON UNBOUNDED PARALLELISM, FOR

VARIOUS SCHEMES, WITH AND WITHOUT TILING.

evaluate cos(x) using Horner’s and Estrin’s rules, two classical
evaluation schemes, as well as code generated automatically
by CGPE Table I gives the latency on unbounded parallelism
of these codes, before and after tiling. We can observe that
the code after tiling has a lower latency than before tiling, and
that the speed-up may be up to ≈ 17 % for Horner’s rule.

Obviously, it is of great interest to provide hardware
support for instructions fusing several operations, and having
a lower latency than the sum of the latencies of all fused
operations.

C. Accuracy optimization for a degree-3 polynomial

Now let a(x) be a degree-3 polynomial approximant of
exp(x) over [0, 1], evaluated using Estrin’s rule:



a(x) = (a0 + a1 · x) + (x · x) · (a2 + a3 · x),

with a0 = 4192309·2−22, a1 = 65·2−6, a2 = 6947·2−14, and
a3 = 18255 ·2−16, and in the fixed-point format Q8,24, Q24,8,
Q16,16, and Q16,16, respectively. We still consider 1-cycle
addition and subtraction and 3-cycle multiplication. Listing 3
shows the fixed-point code evaluating this polynomial in 9 cy-
cles on unbounded parallelism, with a certified evaluation error
bound of ≈ 2−5.44. In this third example, we define a basic

uint32_t func_0(uint32_t x) { // (+)Q[1.31]
uint32_t r0 = 0x00ffe0d4 >> 17; // (+)Q[25.7]
uint32_t r1 = mul(x, 0x00000104); // (+)Q[25.7]
uint32_t r2 = r0 + r1; // (+)Q[25.7]
uint32_t r3 = mul(x, x); // (+)Q[2.30]
uint32_t r4 = 0x00006c8c >> 1; // (+)Q[17.15]
uint32_t r5 = mul(x, 0x0000474f); // (+)Q[17.15]
uint32_t r6 = r4 + r5; // (+)Q[17.15]
uint32_t r7 = mul(r3, r6); // (+)Q[19.13]
uint32_t r8 = r7 >> 6; // (+)Q[25.7]
uint32_t r9 = r2 + r8; // (+)Q[25.7]
return r9;

}

Listing 3. Synthesized code to evaluate exp(x).

block called fx_fma and behaving in fixed-point arithmetic
like FMA in floating-point arithmetic, and computing (a *
b) + (c >> n) (with n ∈ {0, · · · , 31}) with only one
final truncation. The code of Listing 3 could be evaluated
using 3 fx_fma. Using our technique based on selection for
accuracy improvement, we find automatically that fusing the
first three operations (r0, r1, and r2) into a fx_fma yields
an evaluation error bound of ≈ 2−5.99, that is, a code half a
bit more accurate, which can be quite useful in some contexts.

VI. CONCLUSION AND FUTURE WORK

This paper extends the CGPE software tool, dealing with
automated synthesis of fast and accurate programs for evalu-
ating bivariate polynomials in fixed-point arithmetic. First, we
adapt the fixed-point arithmetic model of CGPE by providing
a support for signed arithmetic. Thus, we are now able to
handle polynomials of degree up to 20 in few minutes, and
without any constraint on the sign of the input and output.
In addition, we propose a new filter based on instruction
selection, allowing us to synthesize codes efficiently for a given
target and optimized for different criteria, like operator count,
evaluation latency, or numerical accuracy. Regarding operator
count, on some examples, this leads to a reduction of up to
22.3 % of the number of operations in the synthesized codes.

The future work direction is threefold: First we will extend
the instruction selection based on a single criterion to a multi-
criteria selection. Indeed as a natural extension, we could
define a cost for a node G as a linear combination of the three
errors defined Section IV-C, that is, with a, b, c ∈ R

+:

Cost(G) = min
t∈T

(

a · Ct(G) + b · Lt(G) + c · Et(G)
)

.

Second, all this work has been done on unbounded parallelism.
A further direction will consist in tweaking the scheduler
of CGPE and our architecture formalism, to check if our
synthesized codes remain efficient under resource constraints.
Third we will extend this tool to tackle other problems than
polynomial evaluation. This simply relies on the design of new
DAG computation algorithms, while all the work on instruction

selection can be used directly by just plugging these new
algorithms on the top of the middle-end of CGPE.

REFERENCES

[1] C. Mouilleron, “Efficient computation with structured matrices and
arithmetic expressions,” Ph.D. dissertation, Univ. de Lyon - ENS de
Lyon, 2011.
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