
HAL Id: lirmm-00815484
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00815484v1

Submitted on 18 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empirical optimization of divisor arithmetic on
hyperelliptic curves over F_2m

Laurent Imbert, Michael Jacobson

To cite this version:
Laurent Imbert, Michael Jacobson. Empirical optimization of divisor arithmetic on hyperelliptic
curves over F_2m. RR-13008, 2012, pp.18. �lirmm-00815484�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00815484v1
https://hal.archives-ouvertes.fr

Manuscript submitted to Website: http://AIMsciences.org
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

EMPIRICAL OPTIMIZATION OF DIVISOR ARITHMETIC ON
HYPERELLIPTIC CURVES OVER F2m

Laurent Imbert
CNRS, LIRMM

Université Montpellier 2
161 rue Ada

F-34095 Montpellier, France

Michael J. Jacobson, Jr.
Department of Computer Science

University of Calgary
2500 University Drive NW

Calgary, Alberta, Canada T2N 1N4

(Communicated by editor’s name)

Abstract. A significant amount of effort has been devoted to improving divi-
sor arithmetic on low-genus hyperelliptic curves via explicit versions of generic
algorithms. Moderate and high genus curves also arise in cryptographic appli-
cations, for example, via the Weil descent attack on the elliptic curve discrete
logarithm problem, but for these curves, the generic algorithms are to date the
most efficient available. Nagao [21] described how some of the techniques used
in deriving efficient explicit formulas can be used to speed up divisor arith-
metic using Cantor’s algorithm on curves of arbitrary genus. In this paper,
we describe how Nagao’s methods, together with a sub-quadratic complexity
partial extended Euclidean algorithm using the half-gcd algorithm can be ap-
plied to improve arithmetic in the degree zero divisor class group. We present
numerical results showing which combination of techniques is more efficient for
hyperelliptic curves over F2n of various genera.

1. Introduction. Hyperelliptic curves defined over finite fields were first proposed
for cryptographic use by Koblitz [18] in 1989, with the special case of genus one
curves (elliptic curves) having been proposed earlier by Koblitz and Miller indepen-
dently [19, 17]. The idea is to base protocols on arithmetic in the degree zero divisor
class group (or Picard group) of the curve, a finite abelian group, basing security
on the assumption that the discrete logarithm problem in that group is intractable.
Further research has shown that the discrete logarithm problem becomes less in-
tractable as the genus increases, leaving elliptic curves (genus one) and low-genus
hyperelliptic curves (genus two and, perhaps, three) as the main settings of choice
for cryptographic applications.

2000 Mathematics Subject Classification. Primary: 94A60, 14H45; Secondary: 14Q05.
Key words and phrases. Hyperelliptic curve, divisor addition, Cantor’s algorithm, NUCOMP,

half-gcd algorithm.
This research was partly supported by the first author’s grants CNRS-PICS05886 and ANR-

12-BS02-002-02. The second author is supported in part by NSERC of Canada.

1

2 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

In the case of elliptic curves, arithmetic in the class group is described geomet-
rically using the fact that this group is isomorphic to the group of points on the
curve. For hyperelliptic curves, the group law is described algebraically using an
algorithm due to Cantor [2], and expressed in terms of polynomial arithmetic. Var-
ious improvements and extensions to Cantor’s algorithm have been proposed, for
example an adaptation of Shanks’ NUCOMP algorithm for composing binary qua-
dratic forms [13] and a tripling formula [11]1. For curves of low genus, specifically
four or less, optimized versions described in terms of arithmetic with field elements
are used; see [4, Ch. 14] for a survey. The vast majority of work has focused on such
formulas, due to the direct applicability of low-genus curves to discrete logarithm
based cryptography.

However, mid- to high-genus curves also have cryptographic applications, most
notably through the Weil descent attack initially suggested by Frey [8] and later
refined by Gaudry, Hess, and Smart [9]. This attack, when successful, reduces the
discrete logarithm problem on an elliptic curve defined over a composite degree
extension of F2 to that on a higher-genus hyperelliptic curve over a smaller finite
field, where the discrete logarithm problem may be easier to solve. One notable
example is elliptic curves defined over F2155 . In the best case, these can be reduced
to genus 31 curves over F25 , where the discrete logarithm problem has been shown
to be solvable in practice [24]. The Oakley key determination protocol, part of an
IETF standard, required an elliptic curve defined over this field and another over
F2185 , and these curves were recently showed by Musson [20] to reduce to genus 16
hyperelliptic curves over F231 or F237 . Teske also describes a constructive application
in which Weil descent is used to furnish a trap-door for an instance of the elliptic
curve discrete logarithm problem. One recommended set of parameters results in a
hyperelliptic curve of genus 7 or 8 defined over F223 .

For all these cases, explicit formulas have not been developed for the group
arithmetic, so Cantor’s algorithm or its variants would have to be used. Compared
to explicit formulas, relatively little work has been done on optimizing these directly.
Nagao [21] described how some of the techniques for optimizing explicit formulas can
be applied to generic formulation of Cantor’s algorithm. These include eliminating
inversions in extended greatest common divisor computation using pseudodivision,
and partially computing products when a subsequent division is known to be exact.
Nagao’s experiments suggest that partial multiplication is the most useful, with
some small improvements with pseudodivision.

In this paper, we extend Nagao’s work by conducting a thorough empirical in-
vestigation of divisor class group arithmetic for hyperelliptic curves defined over
binary fields. In addition to Cantor’s algorithm, we apply similar optimizations to
NUCOMP [13], the tripling formula introduced in [11], and the reduction algorithm
proposed in [1]. Our primary motivation was to identify the fastest methods for
divisor class group arithmetic in the cryptographically-interesting cases arising from
the Weil descent mentioned above. Our second motivation was to optimize divisor
class group arithmetic in general, by learning how the different algorithms and op-
timizations perform as functions of the genus and finite field sizes. The goal was
to investigate the main algorithmic techniques available in an effort to identify the
fastest overall approach to divisor arithmetic for various field size and genera. For
example, the performance results for the reduction algorithm in [1] were somewhat

1The formula given in [11] is for cubing an ideal in an imaginary function field. The translation
to the degree zero divisor class group is immediate.

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 3

inconclusive; through a careful implementation using all the known optimizations,
we hoped to conclusively evaluate the performance of this algorithm with respect
to that of Cantor.

We begin by numerically comparing algorithms for solving the extended GCD
problem, a core component of divisor class group arithmetic, in order to find thresh-
olds indicating which of Euclid’s algorithm, Euclid’s algorithm with pseudodivision,
and the sub-quadratic half-gcd algorithm is optimal for various combinations of field
size and polynomial degree. We do the same for the partial extended GCD compu-
tation required for NUCOMP and the reduction algorithm of [1], using a variation of
the partial half-gcd algorithm suggested in the same context by Ding [6]. Improved
threshold-based GCD algorithms are then applied to Cantor, NUCOMP, fast re-
duction, together with partial versions of polynomial multiplication using the basic
quadratic-complexity algorithm. Extensive numerical results are reported, indicat-
ing which combination of methods is the more efficient for various combinations of
genus and field size. The improvements obtained for the Weil descent examples are
modest; however, our results give a clear picture of how the various algorithms and
optimizations perform for different finite field and genus combinations. To the best
of our knowledge, we have used the most relevant existing algorithmic techniques
at our disposal; our conclusions suggest that further improvements are expected to
require either significant new arithmetic algorithms or low-level code optimization.

The software used to test these algorithms is organized into a C++ library. The
best collection of algorithms is selected adaptively based on the finite field size and
curve genus, together with our experimentally-derived set of thresholds. The code
is available upon request, and will be released publicly in the near future.

2. Divisor Arithmetic on Hyperelliptic Curves. For background on hyperel-
liptic curves, see [4].

A hyperelliptic curve of genus g over a field K of characteristic 2 is an absolutely
irreducible non-singular curve given by an equation of the form

C : y2 + h(x)y = f(x) (1)
where h, f ∈ K[x]. In this paper, we restrict our attention to the imaginary model, so
the equation can be normalized by taking f monic, deg(f) = 2g +1 and deg(h) ≤ g,
where g is the genus of the curve.

Unless the genus of the curve is one (an elliptic curve), the points on the curve
themselves do not form a group. Instead, one works with the degree zero divisor
class group, the group of equivalence classes of degree zero divisors modulo principal
divisors. It is well known that this group is isomorphic to the ideal class group of the
function field K(C). Making this isomorphism explicit, each nontrivial divisor class
over K can be represented uniquely as a pair of polynomials (u(x), v(x)), u, v ∈ K[x],
where u is monic, deg(v) < deg(u) ≤ g and u | v2 + vh + f . This is known as the
Mumford representation of a reduced divisor.

Addition in the degree zero divisor class group is computed using an algorithm
due to Cantor [2]. Given D′ = (u′, v′) and D′′ = (u′′, v′′) two reduced divisors
in Mumford representation, Cantor’s algorithm computes the reduced divisor D =
D′ + D′′ = (u, v). The formulation presented in Algorithm 1 is optimized for the
frequently-occurring situation where gcd(u′, u′′) = 1, based on a description due
to Shanks of Gauss’s composition formulas for binary quadratic forms. A more
efficient doubling formula can be obtained by optimizing in the case that D′ = D′′,
and an efficient tripling formula is given in [11, Algorithm 1]; the output of this

4 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

algorithm requires subsequent reduction using the last part of Algorithm 1 (steps
17 to 28).

Algorithm 1 Addition of Divisor Classes (Cantor)
Input: D′ = (u′, v′), w′ = (f+hv′+(v′)2)/u′, D′′ = (u′′, v′′), w′′ = (f+hv′′+(v′′)2)
Output: Reduced D = D′ + D′′ = (u, v) and w = (f + hv + v2)/u
1: {Addition}
2: S = v1u′ + u1u′′ {only compute S and v1}
3: t1 = v′ + v′′

4: K = v1t1 mod u′

5: if S 6= 1 then
6: t2 = t1 + h
7: S = u2S + v2t2
8: K = u2K + v2w′′

9: u′ = u′/S, u′′ = u′′/S, w′′ = w′′S {exact divisions}
10: K = K mod u′

11: T = u′′K
12: u = u′u′′

13: v = b′′ + T
14: w = (Sw′′ + K(h + T)) /u′ {exact division}
15: w = w LeadCoeff(u), u = u/LeadCoeff(u)
16: {Reduction}
17: if deg(u) ≤ g then
18: if deg(v) ≥ deg(u) then
19: Compute q, r such that b = qu + r
20: w = w − q(v + r + h)
21: v = r
22: else
23: while deg(u) > g do
24: tu = w
25: Compute q, tv such that v + h = qtu + tv

26: w = u + qtv + v
27: v = tv, u = tu

28: w = w LeadCoeff(u), u = u/LeadCoeff(u)

One drawback of all these algorithms is that they can have relatively large inter-
mediate operands. Assuming that the input divisors are reduced (coefficients have
degree ≤ g), the degrees of u and v prior to reduction can be as large as 2g for
addition and doubling, and 3g for tripling. The NUCOMP algorithm of Shanks,
adapted to hyperelliptic curves [14, 13], seeks to reduce the sizes of the intermediate
operands by carrying out a reduction on them before completing the addition step.
In essence, the reduction step, which can be interpreted as computing the continued
fraction expansion of an element of the function field [13], is replaced by a rational
approximation of the continued fraction. In addition to reducing the sizes of inter-
mediate operands, we can achieve further speed-ups by using fast extended GCD
algorithms for this step.

In Algorithm 2, we give an optimized description of NUCOMP following the
presentation in [15] for quadratic number fields. A doubling version (NUDUPL) can
be obtained by setting D′ = D′′ and simplifying. A tripling version (NUTRIPL) can

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 5

be immediately derived from the NUCUBE algorithm presented in [11, Algorithm 2].
In line 19 of Algorithm 2, the call to XGCD-PARTIAL(R2, R1, C2, C1, n) computes
the decreasing Euclidean remainder sequence starting with R2, R1 (together with
the Bezout’s coefficients) until reaching a remainder of degree less then or equal to
the given bound n.

Algorithm 2 NUCOMP
Input: D′ = (u′, v′), w′ = (f+hv′+(v′)2)/u′, D′′ = (u′′, v′′), w′′ = (f+hv′′+(v′′)2)
Output: Reduced D = D′ + D′′ = (u, v) and w = (f + hv + v2)/u
1: {Addition}
2: S = v1u′ + u1u′′ {only compute S and v1}
3: t1 = v′ + v′′, t2 = t1 + h
4: K = v1t1 mod u′

5: if S 6= 1 then
6: S = u2S + v2t2
7: K = u2K + v2w′′

8: u′ = u′/S, u′′ = u′′/S, w′′ = w′′S {exact divisions}
9: K = K mod u′

10: if deg(u′) + deg(u′′) ≤ g then
11: {Sum will already be reduced}
12: T = u′′K
13: u = u′u′′

14: v = b′′ + T
15: w = (Sw′′ + K(h + T)) /u′ {exact division}
16: else
17: {Apply partial reduction before computing the sum}
18: R2 = u′, R1 = K
19: XGCD-PARTIAL(R2, R1, C2, C1, (deg(u′) + deg(u′′) + g)/2)
20: t3 = u′′R1
21: M1 = (t3 + t1C1)/u′ {exact division}
22: M2 = (mR1 + w′′C1)/u′ {exact division}
23: u = M1R1 + M2C1
24: v = v′′ + h + (t3 + uC2)/C1 mod u {exact division}
25: (v2 + vh + f)/u {exact division}
26: w = w LeadCoeff(u), u = u/LeadCoeff(u)
27: Compute q, r such that b = qu + r
28: w = w − q(v + r + h)
29: v = r

The main idea of NUCOMP is that the element (v + y)/u of the function field
of C can be approximated by the rational u′/K. Cantor’s algorithm first computes
the non-reduced divisor D = (u, v), and subsequently applies a reduction algorithm
that can be expressed in terms of expanding the continued fraction of (v + y)/u.
The rational approximation by u′/K allows us to compute the same sequence of
partial quotients using the computationally simpler Euclidean algorithm (and var-
ious optimized version). It also allows us to avoid computing the intermediate
non-reduced divisor D, and instead express the final reduced divisor in terms of
formulas involving lower-degree operands.

6 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

A similar observation can be used to speed the reduction algorithm itself. On
input a non-reduced divisor D = (u, v), the rational v/u is used to approximate
(v + y)/u. This algorithm is a generalization of Sawilla’s algorithm for quadratic
number fields [12], and is described in [1]. Algorithm 3 describes the fast reduc-
tion algorithm using the same notation as the algorithms above. The algorithm
XGCD-PARTIAL-REDUCE is the same as XGCD-PARTIAL, except that the al-
gorithm takes one additional step if deg(R1) = n and deg(u′)− g is odd.

Algorithm 3 Fast Reduction
Input: Non-reduced divisor D′ = (u′, v′), w′ = (f + hv′ + (v′)2)/u′

Output: Equivalent reduced divisor D = (u, v) and w = (f + hv + v2)/u
1: w = w LeadCoeff(u′), u′ = u′/LeadCoeff(u′)
2: if deg(u′) ≤ g then
3: if deg(v′) ≥ deg(u′) then
4: Compute q, r such that b = qu + r
5: w′ = w′ − q(v′ + r + h)
6: v′ = r
7: else
8: R2 = v, R1 = u′, tu = u′

9: XGCD-PARTIAL-REDUCE(R2, R1, C2, C1, (deg(u′) + g + 1)/2)
10: u = (R2

1 + R1C1h + fC2
1)/tu {exact division}

11: v = h + (R1 + uC2)/C1 {exact division}
12: u = u/LeadCoeff(u)
13: v = v mod u
14: w = (v2 + vh + f)/u {exact division}

As can be seen, three different types of extended GCD computations are re-
quired for the above algorithms. For computing S, the divisor addition, doubling,
and tripling algorithms all require an XGCD computation where only one of the
two Bezout coefficients is computed. A full XGCD computation is required in the
relatively rare case that the first GCD is not one. Finally, a partial XGCD com-
putation, where the algorithm terminates once the remainders computed reach a
given degree bound, is required for both NUCOMP and the analogous reduction
algorithm. In the sequel, our main optimizations focus on these variants of the Eu-
clidean algorithm. As pointed out in the comments of Algorithms 1–3, all divisions
are exact. Hence, we also optimize these various exact divisions by computing only
the required terms of the dividends.

3. Extended GCD algorithms for polynomials. As shown in the previous
section, polynomial GCD computation is a pivotal component of arithmetic in the
divisor class group. Our first level of optimization begins there. We consider the
following three cases:
• XGCD: full extended GCD computation,
• XGCD-LEFT: extended GCD where only one of the Bezout coefficients is
computed,

• XGCD-PARTIAL and XGCD-PARTIAL-REDUCE: partial extended GCD
where the algorithm terminates once the operands reach a given degree bound.

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 7

Let A, B be two polynomials in K[X] with B 6= 0. We denote by Q and R the
unique polynomials in K[X] given by the Euclidean division of A by B such that

A = BQ + R, with deg(R) < deg(B). (2)

The greatest common divisor (up to units) of A and B is the least remainder different
from 0 in the Euclidean remainder sequence defined by R0 = A, R1 = B and for
i > 1, Ri+1 = Ri−1 mod Ri, which can be expressed in matrix form as(

Ri

Ri+1

)
=

(
0 1
1 −Qi

) (
Ri−1
Ri

)
.

Multiplying these Euclidean matrices
(0 1

1 −Qi

)
together (to the left), gives(

Rn

0

)
=

(
Un Vn

Un+1 Vn+1

) (
A
B

)
where Rn = gcd(A, B) = AUn + BVn.

For efficiency, it is recommended to make the polynomials monic in order to avoid
field inversions in the course of the polynomial division. Note that this still requires
one field inversion per Euclidean step, which might have a significant impact on the
overall performance depending on the field size.

Alternatively, one can use Knuth’s pseudo-division [16, 3], which requires no field
inversion2. This is done by computing the pseudo-quotient Q′ and pseudo-remainder
R′ such that

`(B)deg(A)−deg(B)+1A = BQ′ + R′, with deg(R′) < deg(B), (3)

where `(B) denotes the leading coefficient of B. Using this pseudo-division, a
greatest common divisor of A and B together with the Bezout’s coefficients can
be computed with no field inversion3 at the extra cost of some field multiplications.
Indeed, each Euclidean step now consists in computing(

Ri

Ri+1

)
=

(
0 1

`(Ri) −Qi

) (
Ri−1
Ri

)
.

This is one of the optimizations suggested by Nagao [21] for improving Cantor’s
algorithm, and the numerical results suggest a modest improvement in general.
However, whether or not pseudo-division is advantageous in the context of extended
GCD and ideal arithmetic depends on several parameters, in particular the cost of
a field inversion and the degrees of the input polynomials.

The algorithm XGCD-PARTIAL computes a given remainder in the remainder
sequence. More specifically, given A, B with deg B < deg A, and dred < deg A, it
computes a matrix M as above such that M(A, B)T = (Rj−1, Rj)T , where Rj is
the first remainder of degree less than or equal to deg(A)− dred.

A faster method of subquadratic complexity, known as the half-gcd algorithm,
aims at computing the matrix M without evaluating all the quotients Qi. Assuming
deg(B) < deg(A) = n, it does so using a divide-and-conquer strategy by computing
a matrix Mh such that Mh(A, B)T = (Rj−1, Rj), where Rj is the first remainder
of degree less than n/2 . A recursive call with inputs of degree ≈ n/2 then gives
remainders of degree ≈ n/4, then ≈ n/8, etc. until one gets the greatest common

2Pseudo-division was originally proposed to deal with polynomials defined over a domain (UFD)
that is not a field.

3Except one at the very end if one wants the greatest common divisor to be monic.

8 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

divisor. It can be proved that the complexity of this algorithm is essentially that of
computing Mh, which can be done in subquadratic time using Algorithm 4.

Algorithm 4 HGCD
Input: A, B ∈ K[X] with deg B < deg A = n
Output: The matrix M such that M(A, B)T = (A′, B′)T with deg B′ < n/2 and

deg A′ ≥ n/2.
1: Let m = dn/2e. If deg B < m, return the identity matrix
2: Let A1 = A/Xm, B1 = B/Xm

{A1, B1 have degree approximately n/2}
3: Recursively compute M1 = HGCD(A1, B1) and A′, B′ such that M1(A, B)T =

(A′, B′)T

4: If deg B′ < m return M1

5: Let R′ = A′ mod B′ and M ′ the corresponding Euclidean matrix
{After step 3, deg B′ is at most 3n/4 but deg A′ might be greater.
This division step allows to reduce both polynomials to degrees
≈ 3n/4}

6: Let ` = 2m− deg B′. Compute B′1 = B′/X` and C ′1 = C ′/X`

7: Recursively compute M2 = HGCD(B′1, C ′1)
8: Return M2M ′M1

The half-gcd algorithm requires O(M(n) log n) operations inK. It can be adapted
to XGCD-PARTIAL in the same complexity. As noted in [6], this subquadratic
complexity naturally extends to the problem of computing a reduced sum of two
divisors of a hyperelliptic curve.

3.1. Analysis and Profiling. We compared the relative performances of the GCD
algorithms presented above for polynomials of degree d ranging from 2 to 100 over
binary fields F2m of sizes from 22 to 22048. Our algorithms are written in C++ (com-
piled using g++ version 4.4.5) and the experiments were performed on a workstation
with 64 Intel Xeon cores, each of which is 64-bit and runs at 2.27 GHz. We used
the NTL [22] computer algebra library for finite field and polynomial arithmetic,
built on gf2x (http://gf2x.gforge.inria.fr/) for faster polynomial arithmetic
over F2.

For the three gcd computations of interest mentioned above (XGCD, XGCD-
LEFT, XGCD-PARTIAL) we ran many simulations and we compared the timings
given by the following three approaches: subquadratic half-gcd, plain extended
euclidean with pseudo-division, and plain extended euclidean algorithm without
pseudo-division. For the later, we made polynomials monic at each step using a
field inversion. In Table 1, we summarize our experimental results for XGCD-
LEFT by giving the ratio between the time taken by the fastest method and the
plain euclidean algorithm with division. The different gray areas clearly show the
best strategy for a given set of parameters (input degree, field size). The cell tags
should be self-explanatory.

Based on our experiments, pseudo-division is never interesting for word-size bi-
nary fields, i.e. for m ≤ 64 and is only faster for larger fields (m > 64) for polynomi-
als of degree at most 20. In the most favorable cases, the pseudo-division alternative

http://gf2x.gforge.inria.fr/

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 9

Table 1. Fastest XGCD-LEFT algorithms for polynomials of de-
gree n defined over F2m

n m

2 4 8 16 32 64 128 256 512 1024 2048

2 1.00 1.00 1.00 1.00 1.00 1.00 0.62 0.52 0.49 0.48 0.47
3 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.50 0.48 0.45 0.45
4 1.00 1.00 1.00 1.00 1.00 1.00 0.61 0.53 0.50 0.49 0.47
5 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.54 0.53 0.52 0.51
10 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.73 0.71 0.72 0.71
15 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.88 0.87 0.89 0.87
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 1.00 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
70 0.99 0.91 0.92 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00
80 0.94 0.82 0.82 0.87 0.93 0.99 1.00 1.00 1.00 1.00 1.00
90 0.88 0.76 0.76 0.80 0.85 0.92 1.00 1.00 1.00 1.00 1.00
100 0.82 0.71 0.71 0.76 0.80 0.88 1.00 1.00 1.00 1.00 1.00
150 0.58 0.55 0.55 0.59 0.65 0.70 1.00 1.00 1.00 1.00 1.00
200 0.53 0.45 0.45 0.49 0.53 0.59 1.00 1.00 1.00 1.00 1.00
250 0.45 0.38 0.39 0.42 0.46 0.51 0.90 0.85 0.85 0.85 0.82

Euclid
Pseudo
Half

can be twice as fast as the classical Euclid’s algorithm. Not surprisingly, half-gcd
is advantageous for polynomials of degree ≥ 30 when m ≤ 64 and for polynomials
of degree ≥ 60 for m > 64. Again, in the most favorable cases, it can be twice as
fast as the plain euclidean algorithm.

Using a similar empirical strategy, we defined thresholds for plain XGCD (com-
puting the two Bezout’s coefficients) and XGCD-PARTIAL. For the latter, the
thresholds also depend on the number of Euclidean steps that have to be performed
to get the expected remainder. Those parameters are all taken into account by
our library in order to select the best strategy according to the various parameters
(genus, field size, input degrees).

4. Partial Multiplication for Exact Divisions. Our second level of optimiza-
tion concerns the algorithms themselves. An important technique in generating
explicit formulas is to make use of the fact that certain polynomial divisions are ex-
act. Supposing the divisor has degree n, the n low degree terms of the dividend are
not required, and can be omitted in the multiplication and squaring operations used
to compute the dividend. As observed by Nagao [21], this is applicable to Cantor’s
algorithm, and numerical results suggest that this is an effective technique.

The problem is that it is only known how to achieve an efficient modification
of the basic quadratic-complexity multiplication algorithm in this manner. Faster
methods such as Karatsuba multiplication and FFT are not as amenable. Thus,
we should not expect this method to improve divisor class arithmetic in all cases.
Instead, we should expect a threshold below which the modified multiplication

10 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

yields an improvement and after which the faster multiplication algorithms (aka
sub-quadratic or quasi-linear) are superior.

We have implemented a partial multiply routine based on the MulPlain function
in NTL’s GF2EX class. This routine applies the basic school book multiplication
algorithm, but only computes the coefficients of the product polynomial for terms
of degree greater than a given bound. In Table 2, we provide a comparison of our
partial multiply routine with the basic multiply routine in NTL.

Table 2. Fastest partial multiply algorithms for hyperelliptic
curves defined over F216

d i = bit length of d − n

1 2 3 4 5 6 7

2 0.86
3 0.57 1.00
4 0.67 0.90
5 0.48 0.58 0.96
10 0.47 0.49 0.76 1.00
20 0.34 0.35 0.51 0.90 1.00
30 0.27 0.31 0.42 0.67 1.00
40 0.23 0.27 0.35 0.54 1.00 1.00
50 0.21 0.24 0.31 0.45 0.91 1.00
60 0.20 0.21 0.27 0.41 0.80 1.00
70 0.16 0.20 0.24 0.35 0.69 1.00 1.00
80 0.16 0.18 0.22 0.32 0.61 1.00 1.00
90 0.15 0.16 0.20 0.28 0.54 1.00 1.00
100 0.15 0.16 0.20 0.27 0.50 1.00 1.00

NTL
partial

For polynomials defined over F2m , NTL uses a combination of a quadratic al-
gorithm and Karatsuba, so we expect it to be superior asymptotically. The table
gives the ratio of the average running time to compute a partial multiply over the
time to compute the same product with NTL’s mul method, and each cell is shaded
according to which of the two algorithms was faster. The field d indicates the degree
of the resulting product, and i denotes the bit length of d−n, i.e. the bit length of
the number of terms in the product that must be computed, from 1 to d/2. This is
the required range of operands for application to the divisor arithmetic algorithms
described earlier, the typical case being d/2. The tables for different finite fields
look similar.

The table shows that the partial multiplication algorithm is most efficient when
the number of terms required in the product is small as compared to the degree of
the output. For all but the smallest output degrees, NTL was faster when half the
terms were required.

We used this data to set thresholds with which our ideal arithmetic programs
can automatically switch between the partial multiplication and NTL multiplication
routines. The threshold is a function of the finite field size and bit length of the
difference between the output degree and bound on the terms to compute.

Notice that in the case of partial squaring, a partial algorithm will always be
superior. This is because in characteristic two, the basic quadratic simplifies to

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 11

a linear complexity algorithm, and this can be made partial as easily as the full
algorithm.

5. Empirical Optimization of Divisor Arithmetic. We have implemented
addition, doubling, and tripling algorithms using both Cantor’s algorithm (Algo-
rithm 1) and NUCOMP (Algorithm 2), using the specializations for doubling and
tripling mentioned in Section 2. The performance of each algorithm was bench-
marked, in order to set thresholds based on the genus and finite field determining
which algorithm is more efficient for particular hyperelliptic curves.

We have compared the practical performance of two variations of each algorithm.
The first one uses none of the optimizations described above. For the various
XGCD algorithms, we simply used the implementations in NTL [22] modified to
compute one Bezout coefficient or to terminate once the remainders reach a given
degree bound. For polynomials with coefficients in a characteristic two finite field,
this meant that the standard extended Euclidean algorithm was used. The second
variation makes use of the XGCD and partial multiplication optimizations described
in the previous two sections. Mechanisms were implemented by which the best
variation of a particular algorithm was automatically used, based on the thresholds
presented above.

5.1. Divisor Addition. In Table 3, we provide a comparison of the four result-
ing variations of divisor addition: Cantor’s algorithm and NUCOMP without using
our improved XGCD and partial multiplication, and both algorithms with our im-
provements. Using Cantor’s algorithm without our improvements as a baseline, we
list for each combination of genus and field size the ratio of the fastest of the four
algorithms with Cantor’s. Shading is used to indicate which of the four was the
fastest.

Table 3. Fastest algorithms for divisor addition in hyperelliptic
curves defined over binary fields F2m

g m

2 4 8 16 32 64 128 256 512 1024 2048

5 1.00 1.00 1.00 1.00 1.00 0.98 0.89 0.84 0.82 0.81 0.82
6 1.00 1.00 1.00 1.00 0.99 0.96 0.87 0.85 0.83 0.83 0.82
7 0.94 1.00 1.00 0.99 0.95 0.94 0.87 0.86 0.85 0.84 0.82
8 1.00 0.99 1.00 0.94 0.93 0.93 0.89 0.84 0.84 0.82 0.83
9 1.00 0.96 0.97 0.96 0.95 0.90 0.87 0.85 0.85 0.84 0.81
10 1.00 0.91 0.93 0.93 0.94 0.88 0.86 0.83 0.83 0.83 0.82
20 0.75 0.81 0.82 0.83 0.84 0.79 0.85 0.86 0.87 0.86 0.86
30 0.67 0.76 0.70 0.78 0.77 0.75 0.82 0.83 0.84 0.83 0.85
40 0.75 0.73 0.73 0.74 0.75 0.73 0.82 0.82 0.83 0.83 0.83
50 0.71 0.71 0.71 0.72 0.72 0.72 0.79 0.79 0.80 0.81 0.81
60 0.71 0.70 0.70 0.70 0.70 0.72 0.77 0.77 0.78 0.79 0.78
70 0.67 0.69 0.69 0.69 0.69 0.71 0.77 0.77 0.79 0.79 0.79
80 0.67 0.68 0.66 0.65 0.66 0.67 0.75 0.77 0.78 0.79 0.79
90 0.68 0.67 0.62 0.62 0.61 0.63 0.75 0.76 0.77 0.77 0.77
100 0.69 0.67 0.62 0.61 0.59 0.60 0.75 0.75 0.77 0.77 0.77

Cantor
NUCOMP

Cantor enhanced
NUCOMP enhanced

12 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

From the data, we see that the NUCOMP algorithm is the fastest except for a few
of the smaller genera. The threshold seems to be around genus 6 for all field sizes
as opposed to 7 or 8 as reported in [13], indicating that our careful implementation
and the improved formulation in Algorithm 2 increase the algorithm’s range of
applicability. We also see that our optimized XGCD and partial multiplications do
have an effect. For the parameter ranges where pseudodivision and half-gcd are
effective, our enhanced algorithms are the fastest.

In Table 4, we list average running times for the four divisor addition algorithms
when applied to some cryptographically relevant examples arising from Weil de-
scent. The first two of these, genus 7 or 8 over F223 , comes from Teske’s trapdoor
cryptosystem [23]. The third and fourth, genus 16 over F231 and F237 , come from
Musson’s application of Weil descent to the elliptic curves defined over F2155 and
F2185 in the Oakley key determination protocol [20]. The last, genus 31 over F25 is
the Weil descent example considered by Velichka et. al. [24] from an elliptic curve
defined over F25 . For each example, the fastest of the four algorithms is shaded,
and the ratio of the runtime over that of Cantor’s algorithm without our improved
XGCD and partial multiplication is given.

Table 4. Timings (in ms) for divisor addition in hyperelliptic
curves over F2m of cryptographic relevance

Genus and Finite Field

Algorithm 7, F223 8, F223 16, F231 16, F237 31, F25

Cantor 0.135 0.147 0.508 0.605 0.789
NUCOMP 0.139 0.148 0.453 0.536 0.602 (0.76)
CANTOR E 0.135 0.148 0.517 0.615 0.858
NUCOMP E 0.130 (0.97) 0.139 (0.95) 0.438 (0.86) 0.517 (0.86) 0.628

The data in Table 4 shows that our improved version of NUCOMP does indeed
offer some modest improvements, except for the last example. In the last case, we
observe that for genus 31 and F25 , none of the pseudodivision XGCD variations and
half-gcd variations offer improvements over the basic Euclidean algorithm. The par-
tial multiplication algorithm also does not yield a big improvement for the operand
sizes arising. Thus, we expect the basic version without our enhancements to be as
fast or better than the version with them.

To get an idea of how much time in the overall discrete logarithm computation
would be saved using our improved arithmetic, we make use of the following es-
timates. Teske [23] estimates that the algorithm of Enge and Gaudry [7] would
require approximately 234 Jacobian additions to compute a discrete logarithm for
the first curve of Table 4, and 237 for the second. Musson [20, p.123] estimates
259 operations using the double-large prime algorithm of Gaudry et. al. [10] for
the third curve, and 270 for the fourth. Velichka et. al. [24] estimate 237 group
operations for the last curve using an empirically-optimized version of Enge and
Gaudry’s algorithm. Using these estimates, we can calculate how much CPU time
on our reference architecture would be saved using our optimized arithmetic as com-
pared to an implementation using an unoptimized version of Cantor’s algorithm —
this data is listed in Table 5. Even though our improvements will likely not affect
a significant percentage of the entire discrete logarithm computation (for example,
previous estimates indicated that group arithmetic accounted for roughly 20% of

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 13

the relation generation time for the fourth example in the table, and 33% for the
fifth), they do result in a non-negligible savings in terms of total CPU time.

Table 5. Estimated total CPU time (days) saved in discrete log-
arithm computation

Genus and Finite Field

7, F223 8, F223 16, F231 16, F237 31, F25

Exp. additions 234 237 259 270 237

Est. Time Saved (days) 1 12 467039961 1202454428508 297

It has been shown for the genus 31 example [24] that sieving results in further
computational improvements in such a way that divisor arithmetic plays a negligible
role. In that case, our optimized arithmetic is unlikely to have much effect. However,
it is not clear whether sieving will out-perform the random walk based algorithms
mentioned above for the lower genus examples; in those cases, the current state-
of-the-art is that our optimized arithmetic algorithms will yield some savings as
indicated in the table.

5.2. Divisor Doubling. In Table 6, we provide a comparison of the four varia-
tions of divisor doubling. Using Cantor’s algorithm without our improvements as a
baseline as above, we list for each combination of genus and field size the ratio of
the fastest of the four algorithms with Cantor’s. Shading is used to indicate which
of the four was the fastest.

Table 6. Fastest algorithms for divisor doubling in hyperelliptic
curves defined over binary fields F2m

g m

2 4 8 16 32 64 128 256 512 1024 2048

5 1.00 0.96 1.00 1.00 0.96 0.99 0.87 0.82 0.81 0.81 0.79
6 1.00 1.00 0.99 0.97 0.92 0.95 0.87 0.84 0.83 0.83 0.83
7 0.97 0.97 0.97 0.98 0.93 0.92 0.85 0.86 0.85 0.86 0.85
8 1.00 0.96 0.93 0.95 0.92 0.91 0.88 0.86 0.86 0.87 0.86
9 0.95 0.95 0.94 0.94 1.00 0.97 0.81 0.86 0.87 0.87 0.84
10 0.96 0.89 0.92 0.91 0.84 0.87 0.87 0.88 0.86 0.87 0.86
20 0.75 0.79 0.79 0.82 0.82 0.79 0.87 0.89 0.91 0.90 0.92
30 0.80 0.74 0.75 0.76 0.76 0.75 0.84 0.85 0.93 0.90 0.93
40 0.86 0.72 0.73 0.73 0.74 0.73 0.83 0.84 0.87 0.87 0.88
50 0.73 0.70 0.71 0.71 0.72 0.72 0.81 0.82 0.84 0.85 0.86
60 0.72 0.69 0.70 0.70 0.70 0.72 0.78 0.80 0.82 0.83 0.84
70 0.67 0.68 0.69 0.69 0.70 0.70 0.79 0.80 0.83 0.84 0.84
80 0.69 0.68 0.69 0.68 0.67 0.67 0.78 0.80 0.82 0.79 0.79
90 0.69 0.67 0.66 0.64 0.63 0.63 0.77 0.79 0.81 0.77 0.78
100 0.68 0.65 0.62 0.61 0.59 0.61 0.77 0.78 0.77 0.78 0.78

Cantor
NUDUPL

Cantor enhanced
NUDUPL enhanced

From the data, we see similar behavior to that of NUCOMP. The NUDUPL
algorithm is the fastest except for a few of the smaller genera. The threshold seems

14 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

to be around genus 5 or 6 for all field sizes as opposed to 7 or 8 as reported in [13],
indicating again that our careful implementation and the improved formulation in
Algorithm 2 increase the algorithm’s range of applicability. We also see that our
optimized XGCD and partial multiplications do offer an improvement when the
parameter ranges are suitable.

5.3. Divisor Tripling. In Table 7, we provide a comparison of six variations of
divisor tripling. As above, we use the basic tripling/reduction and NUTRIPL al-
gorithms from [11], with and without our improved XGCD and partial multipli-
cation methods. In addition, we compare these cubing algorithms with simply
doubling and adding the input. For the variation of this method that does not
use our enhancements, we use the thresholds described above to automatically
select the fastest unenhanced addition and doubling algorithms (Cantor or NU-
COMP/NUDUPL). We do the same for the enhanced version. As above, we list
for each combination of genus and field size the ratio of the fastest of the four algo-
rithms with Cantor’s. Shading is used to indicate which of the six was the fastest.

Table 7. Fastest algorithms for divisor tripling in hyperelliptic
curves defined over binary fields F2m

g m

2 4 8 16 32 64 128 256 512 1024 2048

5 0.96 1.00 1.00 1.00 0.96 1.00 0.90 1.00 0.86 0.91 0.90
6 1.00 0.99 1.00 1.00 0.95 0.96 0.80 0.80 0.80 0.93 0.90
7 1.00 0.98 0.96 1.00 0.86 0.83 1.00 1.00 0.86 0.94 0.85
8 0.92 1.00 0.88 0.93 1.00 0.80 0.60 0.25 0.56 0.85 0.86
9 0.94 0.93 0.95 0.85 0.56 0.60 1.00 0.60 0.80 0.86 0.84
10 0.94 0.89 0.95 0.94 0.91 0.76 0.88 0.80 0.83 0.85 0.82
20 0.75 0.75 0.80 0.77 0.79 0.70 0.75 0.80 0.85 0.79 0.80
30 0.68 0.70 0.71 0.73 0.72 0.76 0.65 0.74 0.72 0.74 0.75
40 0.65 0.68 0.64 0.71 0.75 0.70 0.73 0.72 0.71 0.68 0.70
50 0.66 0.65 0.63 0.68 0.68 0.68 0.66 0.69 0.66 0.65 0.66
60 0.73 0.72 0.69 0.66 0.63 0.67 0.64 0.66 0.66 0.66 0.68
70 0.72 0.71 0.65 0.62 0.63 0.63 0.65 0.67 0.66 0.65 0.67
80 0.73 0.70 0.61 0.62 0.59 0.58 0.67 0.65 0.66 0.67 0.69
90 0.70 0.67 0.63 0.59 0.53 0.57 0.61 0.66 0.65 0.64 0.65
100 0.65 0.60 0.57 0.54 0.51 0.51 0.63 0.60 0.63 0.63 0.64

Cantor
NUTRIPLE
Double/Add

Cantor enhanced
NUTRIPLE enhanced
Double/Add enhanced

Here, is is somewhat harder to determine the trends in the data, but some obser-
vations are apparent. As with addition and doubling, our enhancements to XGCD
and partial multiplication have an effect for the corresponding parameter ranges.
We also see that the tripling formulas from [11] in many cases do not offer an
improvement over doubling and adding. Without our enhancements, the tripling

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 15

algorithm is only better until about genus 12. With our enhancements, this thresh-
old is about 10, NUTRIPL does again become faster for parameters where the
half-gcd algorithm is effective.

5.4. Scalar Multiplication. We apply our optimized arithmetic operations to the
problem of scalar multiplication. We compare the non-adjacent form exponentia-
tion method with a double-base right-to-left method using bases 2 and 3, using
both divisor arithmetic with and without our enhancements. In each case, our
implementation adaptively selects the fastest operation (Cantor/NUCOMP, Can-
tor/NUDUPL, Triple/NUTRIPL/SqrMult) using the thresholds presented above.
In Table 8, we list for each combination of genus and field size the ratio of the
fastest of the four algorithms with unenhanced non-adjacent form. Shading is used
to indicate which of the six was the fastest.

Table 8. Fastest algorithms for scalar multiplication in function
fields defined over binary fields F2m

g m

2 4 8 16 32 64 128 256 512 1024 2048

5 0.92 0.96 0.97 1.00 0.91 0.96 0.84 0.84 0.81 0.79 0.68
6 0.74 1.00 0.91 0.92 0.98 0.95 0.87 0.82 0.84 0.78 0.86
7 0.93 0.91 0.94 0.89 0.94 0.95 0.84 0.81 0.86 0.87 0.85
8 0.94 0.88 0.92 1.00 0.88 0.91 0.88 0.83 0.87 0.88 0.85
9 0.94 0.97 1.00 0.98 0.94 0.95 0.87 0.86 0.88 0.86 0.83
10 0.97 1.00 0.98 1.00 0.98 0.91 0.86 0.86 0.86 0.87 0.85
15 0.94 1.00 1.00 0.96 1.00 0.94 0.90 1.00 0.97 0.99 0.95
20 1.00 1.00 1.00 1.00 1.00 0.94 0.96 0.98 0.97 0.90 0.84
25 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 0.94
30 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.99 1.00 1.00
35 1.00 1.00 1.00 1.00 1.00 0.96 0.99 1.00 1.00 1.00 1.00
40 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.99 0.99 1.00
45 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.99
50 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.99 1.00
60 0.99 1.00 1.00 0.96 1.00 1.00 1.00 1.00 0.99 1.00 1.00
70 1.00 1.00 1.00 0.98 0.98 1.00 0.99 1.00 1.00 1.00 0.92
80 1.00 1.00 0.95 0.97 0.95 0.95 1.00 0.99 1.00 1.00 1.00
90 0.99 0.96 0.92 0.91 0.89 0.91 0.98 1.00 1.00 1.00 1.00
100 1.00 0.96 0.89 0.87 0.86 0.88 1.00 0.99 1.00 1.00 0.98

NAF
DBNS

NAF enhanced
DBNS enhanced

We see from the data that, as before, our enhanced versions of the algorithms
offer improvements for the usual parameter ranges. We also note that double-base
scalar multiplication is faster than NAF in the cases where the cubing algorithms
are faster than the double/add method. Our enhance versions are most applicable
for smaller genera and sufficiently large genera that the half-gcd algorithm is used.

5.5. Fast Reduction. We apply our optimized XGCD and partial multiplication
algorithms to divisor reduction. We compare Cantor’s reduction algorithm (the last
part of Algorithm 1), the reduction algorithm from [1] (Algorithm 3), and the latter
using our enhanced XGCD and partial multiplication methods. Note that Cantor’s

16 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

reduction algorithm uses neither XGCD nor exact divisions, so our enhancements
are not applicable. For the enhanced version of the algorithm from [1], the thresh-
olds from above are used to adaptively select the best XGCD variation of partial
multiplication for the given input sizes.

Table 9 lists data comparing the performance of the three algorithms for reducing
divisors in hyperelliptic curves of various genera defined over F216 , the same field
presented in [1]. The divisors reduced were such that the coefficient u has degree
mg for various integers m, simulating a non-reduced mth power of a typical reduced
divisor. In Table 9, we list for each combination of genus and field size the ratio of
the fastest of the three algorithms with Cantor’s reduction (last part of Algorithm 1).
Shading is used to indicate which of the three was the fastest.

Table 9. Fastest algorithms for ideal reduction in function fields
defined over binary fields F216 ,

g m

2 4 8 16 32 64 128 256

5 1.00 1.00 1.00 0.80 0.54 0.34 0.21 0.12
6 1.00 1.00 0.92 0.66 0.45 0.28 0.17 0.10
7 1.00 1.00 0.88 0.62 0.41 0.26 0.15 0.09
8 1.00 1.00 0.82 0.57 0.37 0.23 0.14 0.08
9 1.00 1.00 0.80 0.55 0.35 0.22 0.13 0.07
10 1.00 1.00 0.78 0.52 0.33 0.20 0.12 0.07
15 1.00 0.88 0.61 0.40 0.25 0.15 0.09 0.05
20 1.00 0.76 0.51 0.33 0.20 0.12 0.07 0.04
25 1.00 0.71 0.44 0.28 0.17 0.10 0.06 0.04
30 1.00 0.60 0.38 0.25 0.15 0.09 0.05 0.03
40 0.91 0.51 0.33 0.20 0.12 0.07 0.04
50 0.85 0.46 0.28 0.17 0.10 0.06 0.03
60 0.79 0.40 0.24 0.15 0.09 0.05
70 0.76 0.37 0.22 0.13 0.08 0.05
80 0.68 0.34 0.20 0.12 0.07 0.04
90 0.65 0.32 0.19 0.11 0.06 0.04
100 0.61 0.30 0.17 0.10 0.06 0.03

Cantor
FAST

FAST/new

Unlike the data in [1], our results here indicate the expected behavior, namely
that the new reduction algorithm should become increasingly better than Cantor’s
as both the genus and degree of the non-reduced input divisor increase. The perfor-
mance becomes significantly better as the half-gcd threshold for partial XGCD are
surpassed. Notice that pseudodivision-base XGCD does not offer any improvements
for this field size.

6. Conclusions. We have attempted to optimize divisor arithmetic for hyperellip-
tic curves of genus larger than 5, using as many of the known methods as possible.
Our results show that the methods used by Nagao, in particular partial multipli-
cation and computing extended GCDs using pseudodivision are only effective for
certain parameter ranges. As expected, the half-gcd algorithm is effective for divisor
arithmetic as soon as the input degrees are sufficiently large, including its applica-
tion to the computation of partial XGCDs. NUCOMP and its variants are superior

DIVISOR ARITHMETIC ON HYPERELLIPTIC CURVES OVER F2m 17

after a smaller genus threshold than previously thought, except for NUTRIPL,
which is often slower than an optimized double and add method except when half-
gcd applies. Our adaptive implementation of exponentiation, using thresholds to
select between XGCD variations, partial multiplication variations, and basic divi-
sor arithmetic variations, offers improvements over the non-adaptive version using
enhanced algorithms. It shows that the double-base right-to-left method is indeed
faster than NAF as long as the tripling algorithm is faster than doubling and adding.
Finally, using our enhanced methods confirms that the reduction algorithm of [1]
does in fact out-perform Cantor’s.

One conclusion to be drawn is that there are very few performance gains left to be
realized with the known algorithms. It is possible that some improvements could be
obtained by using the geometric approach to the group law [5]. Our thresholds used
could also be sampled at finer granularity. However, neither approach is expected to
yield significant improvements; new ideas, or more extensive low-level optimizations,
are required to go further.

The fact that NUCOMP and its variations is faster for smaller genera than pre-
viously believed suggests that some improvements to small genus explicit formulas
could be obtained based on this algorithm. The NUTRIPL algorithm also appears
practical for somewhat small genera, and an explicit version of that combined with
double-base scalar multiplication may also yield improvements for small genera.

It would be of some interest to perform the same optimizations for the odd
characteristic case. All the same techniques would apply, but different thresholds
would almost certainly occur. For example, as inversion in odd characteristic finite
fields is more expensive than the even characteristic case, we would expect a larger
impact from pseudodivision as applied to the various XGCD methods.

REFERENCES

[1] R. Avanzi, M. J. Jacobson, Jr., and R. Scheidler. Efficient divisor reduction on hyperelliptic
curves. Advances in Mathematics of Communications, 4(2):261–279, 2010.

[2] D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48(177):95–
101, 1987.

[3] H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1996.
[4] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercouteren. Handbook

of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, Boca Raton, 2006.
[5] Craig Costello and Kristin Lauter. Group law computations on jacobians of hyperelliptic

curves. In Selected Areas in Cryptography, pages 92–117, 2011.
[6] X. Ding. Acceleration of algorithm for the reduced sum of two divisors of a hyperelliptic curve.

In Information Computing and Applications, volume 105 of Communications in Computer
and Information Science, pages 177–184. Springer, 2011.

[7] A. Enge and P. Gaudry. A general framework for subexponential discrete logarithm algo-
rithms. Acta Arithmetica, 102:83–103, 2002.

[8] G. Frey. Applications of arithmetical geometry to cryptographic constructions. In Proceed-
ings of the Fifth International Conference on Finite Fields and Applications, pages 128–161.
Springer, 2001.

[9] P. Gaudry, F. Hess, and N. Smart. Constructive and destructive facets of weil descent on
elliptic curves. Journal of Cryptology, 15:19–46, 2002.

[10] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime variation for small
genus hyperelliptic index calculus. Math. Comp., 76(257):475–492, 2007.

[11] L. Imbert, M. J. Jacobson, Jr., and A. Schmidt. Fast ideal cubing in imaginary quadratic
number and function fields. Advances in Mathematics of Communications, 4(2):237–260,
2010.

[12] M. J. Jacobson, Jr., R. E. Sawilla, and H. C. Williams. Efficient ideal reduction in quadratic
fields. International Journal of Mathematics and Computer Science, 1:83–116, 2006.

18 LAURENT IMBERT AND MICHAEL J. JACOBSON JR.

[13] M. J. Jacobson, Jr., R. Scheidler, and A. Stein. Fast arithmetic on hyperelliptic curves via
continued fraction expansions. In Advances in Coding Theory and Cryptology, volume 3 of
Series on Coding Theory and Cryptology, pages 201–244. World Scientific Publishing, 2007.
Invited Paper.

[14] M. J. Jacobson, Jr. and A. J. van der Poorten. Computational aspects of NUCOMP. In
Algorithmic Number Theory - ANTS-V, volume 2369 of Lecture Notes in Computer Science,
pages 120–133, Sydney, Australia, 2002. Springer-Verlag, Berlin.

[15] M. J. Jacobson, Jr. and H. C. Williams. Solving the Pell Equation. CMS Books in Mathe-
matics. Springer-Verlag, 2009. ISBN 978-0-387-84922-5.

[16] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, third edition, 1997.

[17] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203–209, 1987.
[18] N. Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139–150, 1989.
[19] V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology — CRYPTO ’85,

volume 218 of Lecture Notes in Computer Science, pages 417–426, 1986.
[20] M. Musson. Another Look at the Gaudry, Hess and Smart Attack on the Elliptic Curve

Discrete Logarithm Problem. PhD thesis, Dept. of Mathematics and Statistics, University of
Calgary, Calgary, Alberta, 2011.

[21] K. Nagao. Improving group law algorithms for Jacobians of hyperelliptic curves. In Algorith-
mic number theory (Leiden, 2000), volume 1838 of Lecture Notes in Computer Science, pages
439–447. Springer, Berlin, 2000.

[22] V. Shoup. NTL: A Library for doing Number Theory. Software, 2010. http://www.shoup.
net/ntl.

[23] E. Teske. An elliptic curve trapdoor system. Journal of Cryptology, 19:115–133, 2006.
[24] M. D. Velichka, M. J. Jacobson, Jr., and A. Stein. Computing discrete logarithms on high-

genus hyperelliptic curves over even characteristic finite fields. to appear in Mathematics of
Computation, 2013.

E-mail address: Laurent.Imbert@lirmm.fr
E-mail address: jacobs@cpsc.ucalgary.ca

http://www.shoup.net/ntl
http://www.shoup.net/ntl

	1. Introduction
	2. Divisor Arithmetic on Hyperelliptic Curves
	3. Extended GCD algorithms for polynomials
	3.1. Analysis and Profiling

	4. Partial Multiplication for Exact Divisions
	5. Empirical Optimization of Divisor Arithmetic
	5.1. Divisor Addition
	5.2. Divisor Doubling
	5.3. Divisor Tripling
	5.4. Scalar Multiplication
	5.5. Fast Reduction

	6. Conclusions
	REFERENCES

