
HAL Id: lirmm-00815703
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00815703

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A gameplay loops formal language
Yannick Francillette, Abdelkader Gouaich, Nadia Hocine, Julien Pons

To cite this version:
Yannick Francillette, Abdelkader Gouaich, Nadia Hocine, Julien Pons. A gameplay loops formal
language. CGAMES 2012 - 17th International Conference on Computer Games, Jul 2012, Louisville,
KY, United States. pp.94-101, �10.1109/CGames.2012.6314558�. �lirmm-00815703�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00815703
https://hal.archives-ouvertes.fr

A Gameplay Loops Formal Language
Yannick Francillette, Abdelkader Gouaı̈ch, Nadia Hocine and Julien Pons

LIRMM
University of Montpellier, France, CNRS

Email: {yannick.francillette, gouaich, nadia.hocine, julien.pons }@lirmm.fr

Abstract—In this paper we present an approach of procedural
game content generation that focuses on a gameplay loops
formal language (GLFL). In fact, during an iterative game
design process, game designers suggest modifications that often
require high development costs. The proposed language and
its operational semantic allow reducing the gap between game
designers’ requirement and game developers’ needs, enhancing
therefore video games productivity. Using gameplay loops concept
for game content generation offers a low cost solution to adjust
game challenges, objectives and rewards in video games. A pilot
experiment have been conducted to study the impact of this
approach on game development.

I. INTRODUCTION

Game development process has drastically evolved since the
beginning of the video game industry in the late of 70’s. Dif-
ferent factors have since influenced video game development
process due to the growing evolution of:
• technical, narrative and aesthetic aspects of games. Game

developers continuously try to go beyond existing solu-
tion in order to improve video games quality;

• technologies like internet, geolocalization, motion recog-
nition and so on. These technologies offer interesting
features but also require additional skills for game de-
velopers;

• size of teams in game projects that have been accordingly
increased to reach for instance hundreds of members for
some AAA games (games with high budget);

• financial risks management techniques as game produc-
tion has become a cultural industry. Financial risks should
be studied at the start of game projects and stakeholders
expect financial benefits from any production.

Despite these changes in game production, the objective
of game development process still devoted to create a game
that provides an interesting and entertaining player experience
while reducing development costs. Different practices have
been emerged while trying to answer these issues. For instance
Novak [1] suggests the following generic stages of game
development process:
• Concept: an initial idea of the game is defined using for

instance a brainstorming session;
• Pre production: a game design document is written to

specify the gameplay and determine initial game levels
to produce the first game prototype;

• Prototype: an implementation step of a game is carried
out. The goal of the prototype is to check the playability
of the game and fun aspects;

• Production: a heavy phase of actual game development
with the production of all game levels, graphics, sounds
and so on;

• Localization: a step that consists in adjusting the game
to regions and countries’ local requirements;

• α-testing: a test of the game from beginning to the end;
• β-testing: corrections of bug and tuning to specific plat-

forms;
• Gold: the game distribution stage;
• Post production: the final step that may require updates,

community management and so on.
Our context within this paper can be situated between pre

production and prototype stages of game development process.
Our objective in this work is to provide means to rapidly and
iteratively design, implement and evaluate game prototypes.
We focus in our approach on a formal language of objective-
challenge-reward (OCR) gameplay loops [2]. This approach
helps game designers and developers to have a common
language to rapidly: define gameplay loops, implement the
prototype, evaluate and adjust gameplay loops for the next
game development iteration. Besides, development costs as-
sociated with this iterative process are reduced since most of
elements can be reused for a future development cycle.

The rest of the paper is organized as follows: In the next
section we introduce gameplay loops concept while discussing
our motivation in this paper. Then, we describe in section
III related work concerning existing technique to model the
gameplay. After that we present in section IV the gameplay
loops formal language and its semantics. Next, section VI
presents a pilot experiment that have been conducted in order
to evaluate the impact of our solution in game development.
Finally, we conclude this paper by discussing the proposed
language features and our perspectives.

II. MOTIVATION

The advantage of the iterative process of game development
is the experimental and evaluation scheme. In fact, it is
difficult to know in advance players’ reaction and how player
experience metrics [3] will be affected by design decisions. To
assess these effects, an evaluation is required to adjust design
decisions until reaching desired player experience. Obviously,
the iterative approach is possible only when the iteration costs
can be reduced as the game prototype is not rebuilt from
scratch.

In addition, level design that targets classical gaming envi-
ronment, such as consoles and PC, makes often the assumption

CGAMES 2012 The 17th International Conference on Computer Games

that the player context does not influence the gameplay. This
assumption does not hold in some environments such as
mobile and geo-localized games. In fact, the position of the
player and his/her geographical context become fundamental
parameters that determine the gameplay content.

In order to overcome these challenges, a rational game
design method can be used to explicitly model the structure
of a game and to understand the interplay between game
structure elements and player experience. The philosophy of
this approach is somehow related to structuralism movement
[4]. In fact, video game aspects and elements are decomposed,
identified and studied during the interaction to understand how
they affect the player experience.

Being inspired by the rational game design approach, the
Objective Challenge Rewards (OCR) level design method has
been used to creates hierarchical game cycles [2]. This method
identifies the concept of OCR gameplay loop where:
• The objective is the state of a game that steers the

behavior of the player;
• The challenge represents all elements that the player has

to face and overcome to achieve the objective;
• Finally, the reward is what the player gets when achieving

the objective.
Besides, OCR loops can be hierarchically composed to

create different levels from atomic micro gameplay loops to
more complex gameplay loops.

OCR gameplay loops are coherent with the iterative and
rational game design approaches. In fact, adjusting player
experience metrics can be carried out by modifying OCR
loops. However, the OCR method only provides an informal
description and general guidelines to structure a gameplay.
Our objective in this paper is to formally describe a language
and its semantics to handle OCR loops. In this regards,
OCR gameplay loops are considered as gameplay components
allowing a procedural game level generation.

III. RELATED WORK

From game design perspective, the gameplay is composed
of different elements allowing to describe the overall game ex-
perience, including for instance players’ activities, mechanics
and feeling.

As game design document usually provides only a textual
description of game elements, the programmer has to interpret
these textual elements and transform them into specifications
before the implementation. This can create ambiguities and
miss-interpretations.

Different methods have been introduced to easily avoid
ambiguities of natural languages through game concepts mod-
elling in a formal or informal way.

The first approach focuses on describing game rules as
core element representing a gameplay. For example Frasca
[5] considers three kind of rules constituting the gameplay:
(i) manipulation rules that defines what players can do in the
game (ii) goal rules that defines success and failure conditions
and (iii) meta-rules that defines how game rules can be
modified while the game-player interaction. As for Djaouti et

al [6], rules are considered as game bricks that can be defined
in a similar manner. Rules are determined by using a common
template which represents the game behavior.

As described in [7] a gameplay is composed of rules
constituted of (i) pre-conditions to execute rules and (ii) post-
conditions which are the consequences of rule execution. In
this model, three kind of rules are defined: (i) action rules are
actions which can directly be performed by a player thought
the input controller, (ii) internal rules are events which can
occur during the game and (iii) goal rules are events which
lead to the end of the game, victory, failure or draw.

Using a rule-based description can be a useful implicit
model of the gameplay. Nevertheless, rules definition have
seldom clear semantics regarding natural language description.
In addition, updating game challenges, objectives and rewards
requires to identify all rules and entities that constitute these
gameplay components.

In [8] Rollings et al. propose a model based on tokens. A
token is an element which represents a game entity and has
a set of states. Using this model, game designers have to de-
scribe a set of tokens, define their states and then implement an
interaction matrix. The interaction matrix defines relationships
between two states of a token. This model focuses on game
entities and their actions, and it allows to get a quick overview
of the elements composing the game mechanics. However, this
model does not highlight players activities in the game and
it does not provide an easy method to modify challenges.
For example, to increase or decrease the difficulty of the
Pacman video game model, the method requires studying
the interaction matrix to define which element constitute the
challenge.

The second way to describe a gameplay is to consider it
as a behaviour process based on a mathematical structure
or model. The objective is to provide game designers with
a formal and precise rule definition without the ambiguity
of natural language. For example, Gronvogel [9] suggests a
mathematical abstract control system to describe the different
game behaviour regarding the player interaction. Furthermore
Bura [10] and Dormans [11] use Petri Nets diagrams to specify
game rules. Nodes and links represent concrete game design
concepts such as atomic transitions, texts, resource and flows.
According to Araujo et al. [12] who also propose a variant
of this approach, when the game is growing in terms of
complexity, it is difficult for a game designer to read the game
logic.

In [13] Smith et al. propose an event calculus based (EC)
model. EC is a logic-based formalism for representing and
reasoning about events and their effects. This framework focus
on modelling game rules and does not explicitly highlight
challenges elements and game objectives. In addition, game
designers without a solid knowledge of mathematical notation
would have difficulties to express their designs.

Finally, procedural content generation techniques have also
been interested in modelling the dynamic of the game content
including for instance game levels and quests [14]. For in-
stance Doran et al, propose a method to model quest in order to

CGAMES 2012 The 17th International Conference on Computer Games

develop a quest generator [15]. A quest can be defined as a task
where the player is challenged to complete some objectives in
order to get a reward. Quests are modelled by a tree of atomic
actions and the root represents the main objective. In order to
achieve the latter, the player has to overcome all sons of this
node. Like previous work, quests-based models do not offer
an explicit way to modify the challenge of atomic actions.

Our objective in this paper is to suggest a gameplay repre-
sentation or model that can be useful to both game designers
and developers. The purpose of our model is to fill the gap
between game designers and game developers needs.

IV. GAMEPLAY COMPONENTS

A. Introduction

Atomic gameplay components are the elementary building
blocks of the game. In fact, they are set within the scene
to define the player objectives, allowing different levels of
challenge. The player can also be considered as a rational
agent seeking to have either explicit or implicit rewards. By
the latter, we mean all psychological attributes that define the
player experience such as fun, control, flow, excitement and
so on [3]. Explicit rewards, on the other hand, are attributes
defined within the game world such as killed enemies, gathered
items and so on. These elements are provided to the player
when he/she achieves the objective of a gameplay component
and could be used to assess player progression within the
game.

Usually, it is the responsibility of the game designer to
provide such a set of gameplay components and check that the
combination of these elements is consistent with the targeted
players’ experience metrics.

Our proposal is to consider this set of atomic gameplay
component as an alphabet to build a broader language of
gameplay components.

Elements of these language are built using specific operators
with a defined semantics. The goal of this section is to formally
present the construction of such a language of gameplay
components.

The advantage of this approach is that the game designer
focus his/her attention on providing the atomic GCs. The
combination of these elements is performed in later phases
to create game levels that optimize player experience metrics.

Furthermore, creating new situations using the GC language
does not require the game to be reprogrammed from scratch.
In fact, thanks to the operational semantics of operators it
is possible to implement a virtual machine to interpret all
elements of the language.

B. Game loop operators

Operators are provided to combine existing elements and
express infinite situations using only finite elements. As an
example, let us consider a basic shooting game. For this game
the game designer has provided only one atomic GC “kill
(unit)”’ The objective of this gameplay component is simply
to kill the unit put in parameter. The level designer can build
for an instance a situation where the player has to kill 2 units.

The simplest way to express this, is to introduce an (and) ∧
operator that simply composes two sub components and run
them simultaneously (the complete semantics of this operator
is provided in V):

∧

kill(unit1) kill(unit2)
After a brainstorming session, a team member can suggest

that something is missing in the game and that the player has
as an objective to survive. To express this new situation, a
(negate) ¬ operator can be used combined by the the existing
{}“kill” gameplay component. The new expression would be:

∧

¬

kill(player)

kill(unit1) kill(unit2)

This expression is interpreted as follows: to accomplish
completely his/her mission within the level, the player has to
survive, and to kill unit1 and unit2. So the GCs interpreter is
able to check if the player: (i) is still trying to achieve his/her
game objectives, (ii) has already achieved gameloop objective,
or (iii) game objectives cannot be achieved.

This approach makes us introduce a paradigm for level
design in which a meta objective of a player is to resolve
GCs. Thanks to the explicit language of GCs, it is possible to
either: statically build and assign gameplay components to a
level, or use procedural generation at runtime by taking into
account, for instance, player profile and context.

The previous example has introduced two operators. The
next paragraphs informally present all operators that we have
defined.

1) Atomic game loop: This is a utilitarian operator that
takes as an input an atomic GC provided by the game design
phase and makes it an element of the formal language.

2) Parallal And: The idea behind the parallel and oper-
ator is that all sub-components are running simultaneously;
when at least one sub-component states that its objective can
never be achieved then the overall expression is considered
unachievable.

3) Parallal Or: The idea behind the parallel or operator
is that all sub-components are running simultaneously; when
at least one sub-component states that its objective has been
completed then the objective of the overall expression is
considered as achieved.

4) Sequential And: By contrast to parallel and, the eval-
uation of sub-components is ordered and sequential from
the left to the right. When a sub-component states that its
objective has been attained then the next sub-component is
considered running and evaluated. This process is stopped
when a sub-component states that its objective cannot be
achieved. When all sub-components state that their objectives
have been achieved then the overall expression is considered
achieved. The overall expression is considered not achievable
when at least one sub-component is not achievable.

CGAMES 2012 The 17th International Conference on Computer Games

5) Sequential Or: By contrast to parallel or, the evaluation
of sub-components is ordered and sequential from the left to
the right. When a sub-component states that its objective is not
achievable then the next sub-component is considered running
and evaluated.

This process is stopped when a sub-component states that its
objective has been achieved. When all sub-components state
that their objectives cannot be achieved then the overall ex-
pression is not achievable. The overall expression is considered
achieved when at least one sub-component is achieved.

6) Not: This operator simply inverts statements of the sub-
component. So, when the sub-component states that is has
been achieved then the expression states that the objective
cannot be achieved. Similarly, when the sub-component states
that the objective cannot be achieved then the expression states
that the objective has been achieved.

7) Continuation (Cf): The continuation operator allows
to continue with another GC when the current GC has
finished.The new gameplay component is generated by the
function f

8) First: The idea behind the first operator is that the
evaluation of the overall expression is equal to the evaluation
of the first ended GC.

9) Last: The idea behind the last operator is that the
evaluation of the overall expression is equal to the evaluation
of the last ended GC.

10) If Then Else: The if then else operator is a tri-any
operator. This operator evaluate the state of a GC and if the
ended state if this component is equal to a particular state, the
evaluation of this expression is equal to the evaluation of a
second GC, else the evaluation of this expression is equal to
the evaluation of a third GC.

V. FORMAL DESCRIPTION

To build a formal language of gameplay components, we
distinguish two phases : (i) defining the set of well formed
formulas (wff) and (ii) defining the meaning or semantics
of these wff. Section V-A presents definition of the formal
language while sections V-A1 and V-A2 present the semantics
of the language.

A. The formal langage

The GC formal language G is given by < A,Ω, N > where:
• A represents a finite set of atomic gameplay loops iden-

tified during the game design phase;
• Ω represents the set of operators. It is usual to decompse

this set as a union
⋃

n∈N
Ωn where each set Ωn contains

operators taking exactly n arguments;
• N represents a set of functions G → G that generate GC.

Definition 1 (GC language). The formal language G is defined
inductively as follow:
• A ⊂ G, all atomic gameplay loops are well formed

formulas (wff)
• if P1 . . . Pn ∈ G are wff then ∀ω ∈ Ωn: ω(P1 . . . Pn) is

also wff

Within the context of this article, we have identified the
following generic operators for GC:
• Ωo = {ε+, ε−}, this set contains constants respectively,

achieved GC and not achievable GC.
• Ω1 = {¬, Cf∈N}, this set contains two unary operators:

not and continuation
• Ω2 = {∧,∨,−→∧ ,−→∨ , F, L, If}, this set contains the fol-

lowing operators: parallal and, parrallal or, sequential and,
sequential or, fist, last and if then else .

1) Evaluation of gameplay components: To evaluate GCs,
we need to define two basic concepts : a game state and an
algebra used for the semantics of GCs.

Each game owns a state containing all necessary information
to evaluate expressions. The game state should contain enough
information to evaluate weither a GC objective has been
reached (noted >) or cannot be reached (⊥). When neither
of these statement are applicable then the answer will be
unknown (noted ’?’)

Game states naturally owns a partial order relationship
modelling precedence. So, S → S′ means that game state has
evolved to S′ from S in a single update cycle. This notation
is generalized to S n→ S′ and means that S′ has been reached
from S in n update cycles.

The evaluation of GCs is performed using an evaluation
function noted E [[g]]S where g represents the expression to
evaluate and S the game state in which the evaluation is
performed. As said previously, depending on the game state
the evaluation of an expression returns three possible values
representing the following situations:
• The objective of the game loop has been successfuly

reached;
• The objective of the game cannot be achieved;
• Neither of previous claims can be stated on the game

loop.
The three previous situations are represented respectively by
the following symbols : >, ⊥ and ?. The three previous
constants have not to be confused with classical logic operators
of truth since their semantics is different. For instance, the ⊥
constant is very different from classical logic false operator.
In fact, we are not seeking if the GC has not been reached
in the current state but if the GC will never be reached in all
future states. This is to know if failure conditions has been
met so the player will never reach a state where he/her will
resolve the GC objective. More formally this can be defined
as an axiom for our framework.

Axiom (monotonicity). We state the following axiom to unsure
that evaluation of GC when known cannot be changed:

∀g ∈ G,∀S, S′ ∈ S :
E [[g]]S 6=?

S
n→ S′

}
=⇒ E [[g]]S = E [[g]]S′

Definition 2 (GC eval). The evaluation of a GC in a state S,
is defined as a function:

E [[-]]S : G → {>,⊥, ?}
g 7→ E [[g]]S

CGAMES 2012 The 17th International Conference on Computer Games

Futhermore, the set {>,⊥, ?} is attached with . (dot) , +
and ¬ operations that behave similarly as in boolean algebra
for > and ⊥. They are only extended as follow to handle the
? constant:

>∧? = ?

>∨? = >
⊥∧? = ⊥
⊥∨? = ?

¬? = ?

a) Evaluation rules of GC elements:

∀g ∈ A, E [[g]]S ∈ {>,⊥, ?}
E [[ε+]]S = >
E [[ε−]]S = ⊥

E [[g ∧ h]]S = E [[g]]S.E [[h]]S
E [[g ∨ h]]S = E [[g]]S + E [[h]]S
E [[g −→∧ h]]S = E [[g]]S
E [[g −→∨ h]]S = E [[g]]S
E [[Cf g]]S = E [[g]]S
E [[¬ g]]S = ¬E [[g]]S

E [[F g, h]]S = E [[g]]S + E [[h]]S
E [[L g, h]]S = E [[g]]S + E [[h]]S

E [[If g then h1 else h2]]S = E [[g]]S

2) Reduction rules:: Having a starting GC tree the player
interacts with the game and makes its state evolve at each
update cycle. Consequently, the GC tree has to be updated in
order to remove all unnecessary information. In fact, the axiom
stated previously ensures that the evaluation of GC element
when known cannot change in future states. This introduces
the process of simplification GC.

Having evaluations of GC it is possible to rewrite a new
GC tree according to the semantics that we have described
informally in section . The following section presents more
formally the simplification rules and presents the generic
algorithm used within the game loop update cycle to manage
GCs during the game.

a) Idempotent: This rules says that when an atomic GC
state is not known, then the GC remains unchanged.

g ∈ A E [[g]]E =?
g → g (1)

b) Substituion: This rules says that any element can be
replaced by its simplest form.

gi → g′i
ωn(g0, . . . , gi, . . . , gn)→ ωn(g0, . . . , g

′
i, . . . , gn)

(2)

c) Constants: These rules say that GC are replaced by
success or failure constants according to their evaluations:

g ∈ A E [[g]]E = >
g → ε+

g ∈ A E [[g]]E = ⊥
g → ε−

(3)

d) Not operator: The negation of a failure will rewritten
as a success and a negation of a success will be rewritten as
a failure.

(not)
¬ε− → ε+

(not)
¬ε+ → ε−

(4)

e) And operator: The and operator can be simplified if a
sub components is already known to have succeeded. However,
if a component fails then the expression is entirely replaced
by a failure.

ε+ ∧ g → g ε− ∧ g → ε−
(5)

f) Or operator: When a sub component successes then
the overall expression is replaced by a success. The expression
is simplified if we already know that a subcomponent has
failed.

ε+ ∨ g → ε+ ε− ∨ g → g
(6)

g) Sequential and operator: If the first sub component
of this operator has succeeded then the overall expression
is replaced by the next one. On the other hand, if the head
component fails then the overall expression is replaced by a
failure.

ε+
−→∧ g → g ε−

−→∧ g → ε−
(7)

h) Sequential or operator: If the first sub component of
this operator has failed then the everall expression is replaced
by the next one. On the other hand, if the head component
succeed then the overall expression is replaced by a success.

ε−
−→∨ g → g ε+

−→∨ g → ε+
(8)

i) Continue operator: If the state of the sub component
of this operator is known then the expression is replaced with
the newly generated using the function f GC.

E [[g]]S 6=?

Cfg → f(g)
(9)

j) First: When a sub component ends then the overall
expression is replaced by the end state of this component.

Fε−, g → ε− Fε+, g → ε+
(10)

k) Last: The last operator can be simplified if a sub
components is ended. The expression is replaced by the
remaining component.

Lε−, g → g Lε+, g → g
(11)

CGAMES 2012 The 17th International Conference on Computer Games

l) If then else: If the first sub component of this operator
has succeeded then the overall expression is replaced by the
second sub component. If the first sub component of this
operator has failed then the overall expression is replaced by
the last sub component.

ifε+then, g1else, g2

g → g1

ifε−then, g1else, g2

g → g2
(12)

B. The GC interpreter

G C i n t e r p r e t e r u p d a t e ()
{
GC gc = getMainGC () ;
gc = gc . s i m l i f y (g e t C u r r e n t G a m e S t a t e ()) ;
setMainGC (gc) ;
i f (gc == e p s i l o n S u c c e s s | | gc == e p s i l o n F a i l)
{

gameOver () ;
}
}

The behaviour of the interpreter is quite simple: at each
update cycle the main GC element is simplified. When the
main GC becomes either ε+ or ε− then the game level is
terminated in respectively success or failure situations.
C. The GC state machine

The GC component proposes to link to the objective a set
of challenges and a set of rewards (or a set of penalties if
the player do not achieve the objective) according to the OCR
model. We propose to represent challenges and rewards by the
execution of particular scripts. The figure 1 shows the state
machine of the gameplay component.

Fig. 1. The gameplay component state machine

The GC starts on unknown state. At this state, GC applies
challenge scripts. According to the result of the evaluation
function the GC switches in succeeded state or failed state.
In succeeded state, the GC applies reward scripts whereas in

failed state the GC applies penalty scripts. Finally, the GC is
destroyed.

VI. EXPERIMENT

The objective of this pilot experiment is to evaluate the im-
pact of using gameplay components on the game prototyping
process and to evaluate how these concepts are understood by
programmers.

A. Protocol

The experiment follows an independent-measures design
with two independent groups. A group test using a game
development framework with the gameplay components and
a control group using the same game development framework
without the gameplay components. The base game develop-
ment framework is an open source framework named AGDE
accessible from http://gforge-lirmm.lirmm.fr/gf/project/agde/
frs

The experiment proceeds as follows:
1) Each group gets a quick introduction about the AGDE

framework. This course aims to provide an introduction
to AGDE engine for both groups.

2) The same game design document is given to candidates.
Both groups have access to the same set of resources
(graphics, scripts, music). The test group has to develop
the game with gameplay components.

3) After one hour, the number of implemented features is
taken for all games. The game is tested by a player that
validate the presence of each features or not.

Game prototypes are evaluated by providing the following
scores for each feature specified in the document:
• 0, if the feature is missing.
• 1, if the feature is achieved.

B. The Game: My Duck Hunt

My Duck Hunt is a single player shooting game. The player
moves a reticle on the screen and must eliminate targets that
are presented. It requires the player to be able to shoot moving
ducks. The player is evaluated on its ability to destroy all
targets.

The game allows the player to choose between three dif-
ficulty levels at the start of the game. It is played in ten
successive waves. Each wave requires to eliminate eight ducks.
At the end of the last wave, the player gets his final score.

C. Participants

Candidates are developers with basic knowledge in Java
and oriented object programming. They do not have a lot of
experience on game development.

D. Hypothesis

In order to check the differences between the groups, the
following hypotheses are stated:
• H0. there is no difference between the test group and

the control group in terms of number of features that are
implemented.

CGAMES 2012 The 17th International Conference on Computer Games

Fig. 2. A screenshot of My Duck hunt

Group +1 hour +2 hour
Test (n = 5) 3.25 (±1.095) 4.2 (±1.48)
Control (n = 4) 0.23 (±2.06) 3.25 (±1.29)

TABLE I
DATA OF THE PILOT EXPERIMENT

E. Results and discussions

The data of this pilot experiment are presented by table I.
In average, the test group has performed better that the

control group. However, considering the small number of
participants in this pilot experiment, the differences between
the groups cannot be considered statistically significant. This
means that this pilot experiment cannot prove that using
gameplay components accelerates game prototyping when
compared to using usual scripting methods.

Nonetheless, qualitative interviews conducted after the ex-
periment have highlighted some promising points.

We were expecting difficulties to make programmers reason
about their game in terms of tree structure and gameplay
components. The interviews revealed that the logics behind
gameplay components has been accepted and adopted by
programmer very quickly. In fact, tree structures and logical
reasoning is part of their background and culture.

However, when the gameplay situation becomes too com-
plex and involves many conditions and operators then pro-
grammers face difficulties to model these situations as game-
play component expression. For instance, modelling situations
when a defined number of ducks have to be killed was quite
easy. However, modelling situations when the number of ducks
is generated dynamically was found difficult. For instance,
AND and OR operators were found very intuitive to express
game situations. Other operators have been considered as less
intuitive and need more practice to understand their semantics
and usage.

VII. CONCLUSION

In this paper we have introduced a formal language of
gameplay components (GC) that allows to easily design, create
and adjust gameplay loops.

GC language composition propriety allows us to :
• easily reuse game components in order to quickly proto-

type a video game
• develop programs which are able to adapt the game to

some constraints
This document has presented the result of a pilot ex-

periment. This experiments aims to evaluate the impact of
using gameplay components on the prototyping stage of game
development process, and evaluate how these concepts are
understood by programmers. This experiments cannot prove
that using gameplay components accelerates game prototyping
when compared to using usual scripting methods. However,
qualitative interviews revealed that programmer adopted this
concepts very quickly.

As future work, we aim to perform the experiments that
invalids or not our hypotheses: there is no difference between
the test group and the control group in terms of number of
features that are implemented at the end of development. This
experiment will be conducted with more candidate that will
be trained before the experiment.

We plan to develop tools which allow the visualization of
the gameplay component tree. The purpose of this tool is to
help game developers by displaying the state of the game tree.
Moreover we want to create a library of game components
to allow game designers to share GC as resources with a
community of game developers.

Other perspectives are to compare our approach to less
formal methods such as storyboarding. Furthermore we intend
to answer these questions : How does our approach scale well
to more complex games ? Does our approach work better for
particular types of games ?

REFERENCES

[1] M. Krawczyk and J. Novak, Game Development Essentials: Game Story
& Character Development. Thomson Delmar Learning, 2006, vol. 14,
no. 1.

[2] M. Albinet, Concevoir un jeu vidéo: Les méthodes et les outils des
professionnels expliqués à tous !, ser. Entreprendre: Développement
professionnel. Fyp éditions, 2011. [Online]. Available: http://books.
google.fr/books?id=iwOFZwEACAAJ

[3] L. E. Nacke, A. Drachen, K. Kuikkaniemi, J. Niesenhaus, H. J.
Korhonen, W. M. van den Hoogen, K. Poels, W. A. I. IJsselsteijn,
and Y. A. W. de Kort, “Playability and player experience research
[panel abstracts],” in Breaking New Ground: Innovation in Games,
Play, Practice and Theory: Proceedings of the 2009 Digital Games
Research Association Conference, A. Barry, K. Helen, and K. Tanya,
Eds. London: Brunel University, September 2009. [Online]. Available:
http://www.digra.org/dl/display\ html?chid=09287.44170.pdf

[4] M. Frank and C. Berner, Qu’est-Ce que le Neo-Structuralisme?,
ser. Passages (Paris. 1986). Cerf, 1989. [Online]. Available:
http://books.google.fr/books?id=rWt4QgAACAAJ

[5] G. Frasca, “Simulation versus Narrative: Introduction to Ludology,” in
The Video Game Theory Reader. Routledge, 2003, ch. 10.

[6] D. Djaouti, J. Alvarez, J.-P. Jessel, G. Methel, and P. Molinier, “A
gameplay definition through videogame classification,” Int. J. Comput.
Games Technol., vol. 2008, pp. 4:1–4:7, Jan. 2008. [Online]. Available:
http://dx.doi.org/10.1155/2008/470350

[7] E. Montero-Reyno and J. . Cars-Cubel, “A platform-independent model
for videogame gameplay specification,” September 2009. [Online].
Available: http://www.digra.org/dl/display html?chid=09287.28003.pdf

[8] A. Rollings and D. Morris, Game Architecture and Design: A New
Edition. New Riders Games, 2003.

CGAMES 2012 The 17th International Conference on Computer Games

[9] S. M. Grünvogel. (2005) Formal Models and Game Design - last
accessed 29.04.2012. [Online]. Available: http://www.gamestudies.org/
0501/gruenvogel/

[10] S. Bura. (2006, Mar.) A Game Grammar. [Online]. Available:
http://www.stephanebura.com/diagrams/

[11] J. Dormans, Engineering Emergence: Applied Theory for Game Design,
2012. [Online]. Available: http://www.jorisdormans.nl/pdf/dormans\
engineering\ emergence.pdf

[12] M. Araujo and L. Roque, “Modeling games with petri nets,” in Breaking
New Ground: Innovation in Games, Play, Practice and Theory: Pro-
ceedings of the 2009 Digital Games Research Association Conference,
A. Barry, K. Helen, and K. Tanya, Eds. London: Brunel University,
September 2009.

[13] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in IEEE Conference on Computa-
tional Intelligence and Games (CIG), 2010.

[14] R. Lopes and R. Bidarra, “Adaptivity challenges in games and
simulations: A survey,” Computational Intelligence, vol. 3, no. 2,
pp. 85–99, 2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5765665

[15] J. Doran and I. Parberry, “A prototype quest generator based on a
structural analysis of quests from four mmorpgs,” in Proceedings of
the 2nd International Workshop on Procedural Content Generation in
Games, ser. PCGames ’11. New York, NY, USA: ACM, 2011, pp. 1:1–
1:8. [Online]. Available: http://doi.acm.org/10.1145/2000919.2000920

CGAMES 2012 The 17th International Conference on Computer Games

