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bstract. We propose an efficient lossless compression scheme
or still images based on arithmetic coding. The scheme presents a
ovel adaptive arithmetic coding that updates the probabilities of
ixels only after detecting the last occurrence of each pixel and then
emoves the redundancy from the original image effectively. The
roposed approach has interestingly low computational complexity.
n addition, unlike other statistical coding techniques, arithmetic cod-
ng in the proposed scheme is not solely dependent on the pixel
robability distribution but also on the image block sorting. The pro-
osed method is compared to both static and adaptive order-0 mod-
ls while taking into account compression ratios and processing
ime. Experimental results, based on a set of 100 gray-level images,
emonstrate that the proposed scheme gives mean compression
atios that are 5.5% higher than those by the conventional arithmetic
ncoders as well as significantly faster than the order-0 adaptive
rithmetic coding. © 2010 SPIE and IS&T. �DOI: 10.1117/1.3435341�

Introduction
ecently, many lossless schemes for image compression1–4

ased on arithmetic coding �AC�5,6 have been proposed.
he goal of these schemes is to represent an image with the
mallest possible number of bits without loss of any infor-
ation in order to speed up transmission and minimize

torage requirements.7 AC is a statistical coding technique
hat uses probability estimates of pixel intensities to assign
single bitstream for the data set and achieve a high com-

ression ratio. The AC needs to work with a modeler that
stimates the probability of each pixel at each iteration in
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the encoding and decoding processes. The modeler needs to
find the probability distribution of those symbols that maxi-
mizes the compression efficiency and send this information
to the decoder as header information to ensure decodability.
The models can be static or adaptive. On the one hand, the
static model uses fixed probabilities for all pixels, and when
AC works with a static model, it is called static arithmetic
coding �SAC�.8 On the other hand, an adaptive model dy-
namically estimates the probability of each pixel based on
the previously encoded pixels, and when AC works with an
adaptive model, it is usually referred to as adaptive arith-
metic coding �AAC�. When the adaptive model considers
the probability of just the symbol, without any other addi-
tional information, it is called adaptive arithmetic coding
order-0 �AAC-0�.9,10 Note that static models are less effi-
cient than adaptive models because the probability table
must be saved as header information.

Recently, many AAC-oriented coding schemes have
been proposed in the literature. Carpentieri,5 while present-
ing his lossless image compression algorithm, proposes to
select dynamically, for each pixel position, one of the large
number of possible probability distributions and encode the
current pixel prediction error by using the selected distribu-
tion as the model for the arithmetic encoder. His scheme is
slow, especially for large images. Golchin and Paliwal6 pro-
pose to combine a context classification scheme with adap-
tive prediction and entropy coding to produce an adaptive
lossless image encoder. They maximize the benefits of
adaptivity using both adaptive prediction and entropy cod-
ing. Matsuda et al.11 propose a lossless coding scheme us-
ing a block-adaptive prediction technique to remove redun-
Apr–Jun 2010/Vol. 19(2)1

79.89.192.50. Terms of Use:  http://spiedl.org/terms



d
k
a
i
v
t
p
w
p
e
T
h
F
A
p
t
c
a
c

p
m
p
t

2
I
A
l
m
a
i
S
d

H

S
e
v
J
t
v
d
c
e
m
a
a
L
e

a
c
w
p
a

�
i

Masmoudi, Puech, and Bouhlel: Efficient adaptive arithmetic coding based on updated probability distribution…

J

ancy. The image prediction errors are encoded using a
ind of context-adaptive AC. They propose a model that
pproaches the probability density of errors by a general-
zed Gaussian function. The encoding algorithm is also
ery slow—e.g., when the size of the images is 512�512,
he coder takes between 10 and 20 min for the encoding
rocess. Recently, Kuroki et al.12 have presented an AAC
ith prediction errors in lossless image compression. They
ropose a model that estimates the probability density of
ach error pixel by Laplacian distribution with zero mean.
he compression ratios in Ref. 12 are at an average 5%
igher than those by the conventional arithmetic encoders.
rom the description of these schemes, we can notice that
AC requires a large amount of computations. In this pa-
er, we propose an AAC for lossless image compression
hat is quite efficient in terms of compression ratio and
omputational time. The idea behind our approach is to use
dynamic probability table that is updated only after en-

oding the last occurrence of each pixel.
The rest of this paper is organized as follows: Section 2

resents the AC principle. In Sec. 3, we detail our proposed
ethod and present the mathematical proof. In Sec. 4, we

rovide experimental results to verify the performance of
he proposed approach. Conclusions are drawn in Sec. 5.

Overview of Arithmetic Coding
n this section, we will present the basic notions of
C,10,13–15 which is one of the efficient techniques for loss-

ess data compression. Given an alphabet A composed of n
utually distinct symbols A= ��1 , . . . ,�n� and the prob-

bility distributions P= �p1 , . . . , pn� of the symbols where pk

s the probability of occurrence of �k, for k� �1, . . . ,n�.
hannon16 proved that the number of bits needed to encode
ata cannot be less than the entropy of P, defined by:

�P� = �
k=1

n

− pk log2�pk� . �1�

ince AC produces a rate that approaches the entropy of the
ncoded data,16,17 it is widely used in modern image and
ideo compression algorithms such as JBIG, JBIG2,
PEG2000, H263, and H.264/AVC. The main idea of AC is
o represent data by the interval �0, 1�. Thus, each binary
alue on this interval can uniquely identify the encoded
ata. Initially, the AC determines the symbols to be en-
oded, as well as the probabilities of these symbols. To
stimate the probabilities of symbols, the AC works with a
odeler that can be static or adaptive. Note that the best

nd the most popular approaches are based on the choice of
good model to obtain maximum compression of the data.
ast, the encoder performs the encoding algorithm and gen-
rates the bitstream.

The encoding algorithm used in SAC works conceptu-
lly as follows: Let X be a message to compress that is
omposed of m events—i.e., X=x1 , . . . ,xm. Each event xi,
ith i� �1, . . . ,m�, takes a value from an alphabet A com-
osed of n symbols A= ��1 , . . . ,�n�. We denote the prob-
bility distributions P of the symbols of the alphabet A as

P= �p1 , . . . , pn�, where pk is the probability of �k, for k
�1, . . . ,n�. AC begins by subdividing the interval �0, 1�

nto n nonoverlapping intervals.7 Let �L� ,H� � be the in-
k k
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terval corresponding to the symbol �k, with H�k−L�k= pk.
Let L be the lower interval limit and H be the higher inter-
val limit. The output of AC is an interval �L ,H� in the range
�0, 1�, and the bitstream is the binary representation of any
value in the interval �L ,H�. In the SAC technique, the first
step consists of calculating the true frequency table for all
symbols. However, in the AAC-0 �Ref. 9�, the modeler up-
dates the frequency of each symbol by incrementing its
count just after it has been encoded. No additional informa-
tion is required to be sent to the decoder that mirrors the
encoder’s operations.

It should be noticed that AC generates a file consisting
of a header followed by the compressed bitstream of the
input message. The header information contains the
frequency/probability table of all the symbols. After having
encoded a message X of m events with AC, we can decode
this sequence by using the probability table and the corre-
sponding bitstream.

Let S be the size of the current interval S=H−L. Then,
the encoding algorithm will assign a message X to this
interval. In AC, the length of the bitstream is equal to the
product of the probabilities of the individual symbols, and
it decreases at each iteration:

S = p1 � ¯ � pm = �
i=1

m

pi. �2�

If we let p�X� denote the probability of the message X, then
p�X�=S. Therefore, we can bound the number of bits re-
quired to represent the message X by −�log2�p�X���+2 bits
�Ref. 13�, where �.� is the floor function.

Arithmetic coders are therefore most useful when there
are large probabilities in the probability distribution. In the
next section, we show how to update the probabilities to
reduce the data size.

3 Proposed Approach
In this section, we present an efficient method that allows
us to update probabilities in the AC process in order to
reduce the data size. We propose a new AAC that dynami-
cally calculates the probability of the current pixel based on
all pixels that precede it. The proposed AAC requires two
passes. In the first pass, the true probability table is calcu-
lated and inserted in the compressed header file, whereas in
the second pass, the AAC encodes the input image and
dynamically updates probabilities when finding the last oc-
currence of the current pixel.

3.1 Overview of the Proposed Method
Let X be an image of m pixels. Instead of coding X with a
fixed probability distribution, a dynamic probability table is
used. Therefore, while encoding the image pixels, we verify
whether we have encoded the last occurrence of the current
pixel. If this has been the case, we must subtract the fre-
quency of the corresponding pixel from the image size, and
hence the probability table must be recomputed to encode
the remained pixels. In the end, we provide a file decom-
posed into a header followed by the compressed bitstream
of the original image. Note that the initial frequencies need
to be transmitted to the decoder as header information. Fur-
thermore, if we suppose that we have an alphabet of n
Apr–Jun 2010/Vol. 19(2)2
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ymbols, we have at the most updated the probability table
−1 times, whatever the size of the input sequence. How-
ver, the traditional AAC-0 �Ref. 9� updates probabilities
/2 times, on average, for each pixel. So, if we have an

mage with m pixels, we must update the probability table
� �n /2� times for the traditional AAC-0, which requires a

arge amount of computation with our approach. Our ap-
roach is elaborated in the form of flowcharts in Fig. 1 and
ig. 2. Thus, Fig. 1 describes how the proposed encoding
lgorithm works, while Fig. 2 describes the decoding one.

.2 Mathematical Proof
n this section, we proceed to develop a mathematical proof
n order to prove that our approach is better than the SAC
nd always offers higher compression rate. Let X be a se-
uence of m events X=x1 , . . . ,xm, taking values from an
lphabet of n symbols A= ��1 , . . . ,�n�. We denote the
robability distributions P of each symbol of the alphabet

as P= �p1 , . . . , pn�, where pk= fk /m, and fk represents the
requency of the corresponding symbol �k from the total
ength of the sequence X.

Note that the number of bits required representing the
equence X, after applying SAC, is calculated as:

i <− i + 1

read Xi

arithmetic encoding of Xi

no

yes

m <− m − frequency of Xi

i <− i + 1

last occurence
of Xi

i <− 1
N_updates <− 0

of length m
message X

Calculate frequency table
n = number of symbols

done

N_updates <− N_updates + 1

update probabilities
pi <− 0

yes

N_updates = n − 1 ?
no

Fig. 1 Block diagram of the proposed encoding scheme.

i <− i + 1

N_updates <− 0

arithmetic decoding of Xi
calculate new code

N_updates = n−1 ?

done

yesno

last occurence
of Xi

yesno

m <− m − frequency of Xi
pi <− 0
update probabilities

i <− i + 1
N_updates <− N_updates + 1

code alphabet nlength m

frequency table

Old_m <− m
i <− 1

Old_m − i Xi
Output

Fig. 2 Block diagram of the proposed decoding scheme.
ournal of Electronic Imaging 023014-
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NSAC = �− log2	�
i=1

n

pi
fi
� + 2 = �− log2��

i=1

n 	 f i

m

 f i�� + 2. �3�

However, to calculate the size of the compressed file,
according to our approach, we use NAAC bits, which is given
by:

NAAC = �− log2��
i=1

n

p��i�1, . . . ,�i−1� f i�� + 2. �4�

Proposition.
The compression ratio with our AAC approach is better

than with SAC because

�− log2��
i=1

n

p��i�1, . . . ,�i−1� f i��
+ 2 � �− log2��

i=1

n 	 f i

m

 f i�� + 2. �5�

Proof.
So, we must prove that

�
i=1

n

p��i�1, . . . ,�i−1� f i � �
i=1

n 	 f i

m

 f i

. �6�

We proceed to prove by induction with n, which is the
number of symbols in the message X. We start with n=2.
Suppose that the sequence X is composed only of events
from an alphabet of two symbols A= ��1 ,�2� with respec-
tive probabilities f1 /m, f2 /m. Without loss of generality,
suppose that the message X is terminated by the event �2.

By using SAC to encode the sequence X, the number of
bits needed can be calculated using the product of the prob-
abilities:

PoPSAC = 	 f1

m

 f1	 f2

m

 f2

. �7�

On the other side, by using our approach to encode the
sequence X, the number of bits needed is also obtained by
the product of the probabilities:

PoPAAC = 	 f1

m

 f1	 f2

m

T1−f1

, �8�

where T1= inf�k�1 encoding the last occurrence of �1�.
We must then compare PoPSAC and PoPAAC, as de-

scribed in Eqs. �7� and �8�, respectively. So, we have to
compare �f2 /m� f2 with �f2 /m�T1−f1. The objective is then to
show that T1− f1� f2.

We know that T1�m; thus, T1−m�0 and T1−m+ f2
� f2. Since we know that m= f1+ f2, thus T1− f1=T1−m
+ f2, and then we have:

T1 − f1 � f2. �9�

From Eq. �9�, we can conclude that NAAC�NSAC, where
NAAC and NSAC are respectively the number of bits needed
to encode data using AAC and SAC.
Apr–Jun 2010/Vol. 19(2)3
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Now, with m�2, we assume that X is composed of n
vents from an alphabet A= ��1 , . . . ,�n� with the probabili-
ies f i /m. Without loss of generality, we suppose that X is
erminated by �n.

The total number of bits needed to encode the sequence
with static arithmetic coding is related to Eq. �3�. With

i= inf�k�1 encoding the last occurrence of �i�, for i
�1, . . . ,n−1�, we may now assume that Ti�Tj if i� j for

, j� �1, . . . ,n−1�.
Let fk

�i� be the occurrence of �k within �Ti−1 ,Ti�, with
fk=�i=1

k fk
�i� for i� �1, . . . ,n−1� and T0=1. Thus, we may

rove that:

�
k=1

n−1

�
i=1

k 	 fk

m − f i−1

 fk

�i�

� �
k=1

n−1 	 fk

m

 fk

. �10�

e know that

�
i=1

k 	 fk

m − f i−1

 fk

�i�

� �
i=1

k 	 fk

m

 fk

�i�

, �11�

ith

�
i=1

k 	 fk

m

 fk

�i�

= 	 fk

m

��i=1

k fk
�i��

= 	 fk

m

 fk

. �12�

herefore, Eq. �12� is true. So, we can conclude that the
onventional SAC is less efficient than our AAC. Thus, we
rove that thanks to our approach, we will able to further
educe the size of the compressed data.

Table 1 Comparison results between

SAC AAC-0

Compression
ratio

Compression
ratio

Average 1.140 1.144

Min 1.046 1.047

Max 1.998 2.001

Table 2 Comparison results between our appro
blocks.

SAC AAC-0

Compression
ratio

Compression
ratio

Average 1.140 1.144

Min 1.046 1.047

Max 1.998 2.001
ournal of Electronic Imaging 023014-
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4 Experimental Results

We have applied our proposed method to more than 100
gray-level images of size 512�512 with 8 bits per pixel. In
order to evaluate the compression efficiency of our ap-
proach, we have used the compression ratio factor Cr:

Cr =
Total size in bits of the input image

Total size in bits of compressed bitstream
, �13�

which compares the size of the original image with the size
of the bitstream.

Throughout this paper, we propose to compare our
method with the conventional approaches applied directly
on the pixels. The average, min, and max compression ra-
tios for all tested images are listed in Table 1. We can see
that the compression ratios for the proposed AAC are be-
tween 0.067% and 3.974% higher than those obtained by
SAC, and it outperforms AAC-0 by a factor of 0.203% on
average.

The proposed AAC yields a better compression if the
image blocks are sorted for clustering the input data. Thus,
we propose to partition the image into square blocks of
pixels and then sort the image blocks according to chosen
characteristics. For the experimental results presented in
Table 2, we propose to sort the image blocks at the decreas-
ing order of the mean value Mb using Eq. �14�:

pproach and an SAC and an AAC-0.

Proposed AAC

mpression
ratio

Gain �SAC�
�%�

Gain �AAC0�
�%�

1.146 0.511 0.203

1.048 0.067 0.051

2.003 3.974 3.398

d an SAC and an AAC-0 by sorting the image

Proposed AAC

mpression
ratio

Gain �SAC�
�%�

Gain �AAC0�
�%�

1.207 5.811 5.201

1.094 0.602 0.497

2.102 11.310 7.087
our a

Co
ach an

Co
Apr–Jun 2010/Vol. 19(2)4
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Mb =
1

Nb � Nb
�
i=0

Nb−1

�
j=0

Nb−1

P�i, j� , �14�

here Nb�Nb corresponds to the size of the image blocks,
nd P�i , j� represents the pixel P in the i’th row and j’th
olumn. Figure 3 shows an image and its blocks sorted
rom lightness to darkness. Thus, we suggest calculating
he mean value using Eq. �14� of each block of size 32

32 and then sorting all blocks according to the calculated
alues. Tables 1 and 2 show that the compression ratios
btained by SAC and AAC-0 are the same whether sorting
he image blocks or not. This is due to the fact that the SAC
nd the AAC-0 efficiency depend only on the probability
ensity of the encoded symbols and not on the scan order
f the input data. From Table 2, the obtained results high-
ight that we increase the average compression ratios of
.5%. Note that these results are obtained after adding the
nitial blocks’ positions to the header of compressed file.

Table 3 lists the compression ratios of some well-known
ray-level images that are available from the University of
aterloo Greyset2 collection.18 We have used these in or-

(a) (b)

ig. 3 �a� Original image of size 512�512. �b� Original image par-
itioned into blocks of size 32�32 and sorted by the Mb value.

Table 3 Comparison results between our appro
blocks for some well-known gray-level images.

SAC AAC-0

Compression
ratio

Compression
ratio

Barbara 1.068 1.070

Boat 1.103 1.122

France 1.229 1.234

Goldhill 1.066 1.069

Lena 1.071 1.073

Peppers 1.053 1.056

Zelda 1.085 1.100

Average 1.097 1.104
ournal of Electronic Imaging 023014-
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der to further evaluate the performance of our AAC and to
compare the obtained results with both SAC and AAC-0.

We deduce from the experiments that the updating tech-
nique of probabilities and the image block-sorting step im-
prove the compression efficiency of SAC and AAC-0 by a
factor that is on the order of 5.5% on average. Note that for
some images, our AAC works much better than SAC and
AAC-0, and we have an improvement of about 13% in the
compression ratios.

There is one other important issue in an image compres-
sion scheme—the processing time. The analysis has been
done using the same computer �Intel Core 2 Duo 2.93-GHz
CPU with 2-GB RAM�. Table 4 shows the comparisons
between the average processing time of the proposed AAC
and AAC-0 �Ref. 9� algorithms by using 100 images of
different sizes. It is clear that the proposed AAC algorithm
is significantly faster than the AAC-0 algorithm. Note that
this improvement in the processing time is due to the re-
duction in the number of probability updates.

5 Conclusion
In this paper, we have presented a novel method to improve
the compression efficiency of AC. This improvement is

d an SAC and an AAC-0 by sorting the image

Proposed AAC

mpression
ratio

Gain �SAC�
�%�

Gain �AAC0�
�%�

1.096 2.55 2.37

1.133 2.64 0.97

1.423 13.63 13.28

1.102 3.26 2.99

1.117 4.11 3.93

1.079 2.40 2.13

1.135 4.40 3.08

1.155 5.07 4.46

Table 4 Comparison of the processing time between the proposed
AAC and AAC-0 algorithms.

Image size
in pixels

Total elapsed
time �s� using

the AAC-0 algorithm

Total elapsed
time �s� using

the proposed AAC algorithm

256�256 0.06 0.03

512�512 0.25 0.09

1024�1024 1.06 0.36
ach an

Co
Apr–Jun 2010/Vol. 19(2)5

79.89.192.50. Terms of Use:  http://spiedl.org/terms



a
o
c
p
p
i
d
v
t
F
d
a
p

R

1

1

1

1

1

1

1

1

1

F
T
m
M

Masmoudi, Puech, and Bouhlel: Efficient adaptive arithmetic coding based on updated probability distribution…

J

chieved by updating dynamically the probability table
nly after encoding the last occurrence of each symbol and
oding sorted image blocks, which provides a more appro-
riate probability model. The proposed coding scheme de-
ends on the pixels’ occurrence and the image block sort-
ng. Experimental results for a good sample of images
emonstrate that our coding scheme outperforms the con-
entional arithmetic encoders in terms of compression ra-
ios by a factor that is on the order of 5.5% on average.
rom a viewpoint of complexity, the proposed scheme re-
uces the amount of computation when updating the prob-
bility table. The obtained compressed ratios are very im-
ortant, especially in lossless compression.
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